Academic literature on the topic 'Test BCI (Bulk Current Injection)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Test BCI (Bulk Current Injection).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Test BCI (Bulk Current Injection)"

1

Hassanpour Razavi, Seyyed Ali, and Stephan Frei. "Characterization of DUT impedance in immunity test setups." Advances in Radio Science 14 (September 28, 2016): 155–59. http://dx.doi.org/10.5194/ars-14-155-2016.

Full text
Abstract:
Abstract. Several immunity test procedures for narrowband radiated electromagnetic energy are available for automotive components. The ISO 11452 series describes the most commonly used test methods. The absorber line shielded enclosure (ALSE) is often considered as the most reliable method. However, testing with the bulk current injection (BCI) can be done with less efforts and is often preferred. As the test setup in both procedures is quite similar, there were several trials for finding appropriate modifications to the BCI in order to increase the matching to the ALSE. However, the lack of knowledge regarding the impedance of the tested component, makes it impossible to find the equivalent current to be injected by the BCI and a good match cannot be achieved. In this paper, three approaches are proposed to estimate the termination impedance indirectly by using different current probes.
APA, Harvard, Vancouver, ISO, and other styles
2

Miropolsky, S., and S. Frei. "Reproducing system-level bulk current injection test in direct power injection setup for multiple-port DUTs." Advances in Radio Science 11 (July 4, 2013): 177–82. http://dx.doi.org/10.5194/ars-11-177-2013.

Full text
Abstract:
Abstract. Many investigations have been published on the transferability of RF immunity test results between system and IC-levels. The RF signal level at DUT (Device under Test) inputs, i.e. either RF voltage amplitude or RF input current, is used as a reference value for the load on the DUT. Existing approaches analyze the DUT response as a function of the RF signal level at a single input pin, e.g. supply voltage. Sufficient accuracy of such an approach could be shown in several cases, but results are not sufficient as a general solution for complex DUT. This paper proposes both theoretical analysis and practical implementation of a DPI setup, where a disturbance, equivalent to system-level BCI setup, can be delivered to multiple DUT input ports.
APA, Harvard, Vancouver, ISO, and other styles
3

Orlandi, Antonio, Giulio Antonini, and Romeo Michele Rizzi. "Equivalent Circuit Model of a Bundle of Cables for Bulk Current Injection (BCI) Test." IEEE Transactions on Electromagnetic Compatibility 48, no. 4 (2006): 701–13. http://dx.doi.org/10.1109/temc.2006.882850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huynh, Hai Au, Hak-Tae Lee, Wansoo Nah, and SoYoung Kim. "Analysis of Power Transfer Efficiency of Standard Integrated Circuit Immunity Test Methods." International Journal of Antennas and Propagation 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/497647.

Full text
Abstract:
Direct power injection (DPI) and bulk current injection (BCI) methods are defined in IEC 62132-3 and IEC 62132-4 as the electromagnetic immunity test method of integrated circuits (IC). The forward power measured at the RF noise generator when the IC malfunctions is used as the measure of immunity level of the IC. However, the actual power that causes failure in ICs is different from forward power measured at the noise source. Power transfer efficiency is used as a measure of power loss of the noise injection path. In this paper, the power transfer efficiencies of DPI and BCI methods are derived and validated experimentally with immunity test setup of a clock divider IC. Power transfer efficiency varies significantly over the frequency range as a function of the test method used and the IC input impedance. For the frequency range of 15 kHz to 1 GHz, power transfer efficiency of the BCI test was constantly higher than that of the DPI test. In the DPI test, power transfer efficiency is particularly low in the lower test frequency range up to 10 MHz. When performing the IC immunity tests following the standards, these characteristics of the test methods need to be considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Aiello, Orazio. "Hall-Effect Current Sensors Susceptibility to EMI: Experimental Study." Electronics 8, no. 11 (2019): 1310. http://dx.doi.org/10.3390/electronics8111310.

Full text
Abstract:
The paper deals with the susceptibility to Electromagnetic Interference (EMI) of Hall-effect current sensors. They are usually employed in power systems because of their galvanic isolation. The EMI robustness of such contactless device was compared with that of resistive current sensing (wired method). To this purpose, a printed circuit board (PCB) was fabricated. EMI tests methods such as Bulk Current Injection (BCI), Transverse-Electromagnetic (TEM) cell and Direct Power injection (DPI) were performed to evaluate the robustness of the Hall-Effect current sensor. EMI-induced failures are highlighted by comparing the different measurements tests and setups.
APA, Harvard, Vancouver, ISO, and other styles
6

Orlandi, A. "Circuit model for bulk current injection test on shielded coaxial cables." IEEE Transactions on Electromagnetic Compatibility 45, no. 4 (2003): 602–15. http://dx.doi.org/10.1109/temc.2003.819060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kondo, Yosuke, Masato Izumichi, and Osami Wada. "Simulation of Bulk Current Injection Test for Automotive Components Using Electromagnetic Analysis." IEEE Transactions on Electromagnetic Compatibility 60, no. 4 (2018): 866–74. http://dx.doi.org/10.1109/temc.2017.2751580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KONDO, Yosuke, Masato IZUMICHI, Kei SHIMAKURA, and Osami WADA. "Modeling of Bulk Current Injection Setup for Automotive Immunity Test Using Electromagnetic Analysis." IEICE Transactions on Communications E98.B, no. 7 (2015): 1212–19. http://dx.doi.org/10.1587/transcom.e98.b.1212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spadacini, G., and S. A. Pignari. "A Bulk Current Injection Test Conforming to Statistical Properties of Radiation-Induced Effects." IEEE Transactions on Electromagnetic Compatibility 46, no. 3 (2004): 446–58. http://dx.doi.org/10.1109/temc.2004.831896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Toscani, Nicola, Flavia Grassi, Giordano Spadacini, and Sergio A. Pignari. "Circuit and Electromagnetic Modeling of Bulk Current Injection Test Setups Involving Complex Wiring Harnesses." IEEE Transactions on Electromagnetic Compatibility 60, no. 6 (2018): 1752–60. http://dx.doi.org/10.1109/temc.2018.2794823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Test BCI (Bulk Current Injection)"

1

Diop, Mor Sokhna. "Simulation numérique CEM du test BCI (Bulk Current Injection) de la norme aéronautique DO 160." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT045/document.

Full text
Abstract:
Ces travaux de recherche présentent une modélisation/Simulation du Test BCI (Bulk Current Injection) sous contrainte RTCA – DO 160, test de qualification des équipements très contraignant en termes de coûts et délais. Lors de sa réalisation, il présente aussi beaucoup de disparités dont il est parfois difficile d’identifier les sources et de les maîtriser lors du test avec une maquette physique. La simulation présente tout son intérêt dans l’étude de ces phénomènes (qui peuvent avoir un impact non moins significatif sur les résultats de test) mais aussi la répétabilité des essais.Dans un premier temps, une méthode de modélisation du couplage pince d’injection de courant et câbles est établie qui tient compte de l’évolution en fonction de la fréquence du noyau de ferrite du transformateur RF (Pince de courant) et des paramètres linéiques des câbles. Deux modèles sont principalement proposés dans ces travaux :- Un modèle générique, modèle circuit constitué uniquement d’éléments passifs RLC et élaboré (sous SPICE) à partir de la mesure des paramètres S. Ce modèle fait apparaitre la zone de couplage entre pince et câbles au secondaire.- Un modèle magnétique, macro-modèle développé sous le logiciel Flux2D. Les paramètres géométriques du modèle sont renseignés à partir de la connaissance des dimensions de la pince (diamètres intérieur /extérieur, longueur) et des câbles (diamètres/longueurs). Les paramètres physiques de la pince de courant particulièrement la perméabilité magnétique complexe du noyau de ferrite est obtenue à partir de la mesure du coefficient de réflexion au port d’entrée de la pince et extraction en post-traitement.Les validations dans le domaine fréquentiel ont été effectuées avec une bonne corrélation entre simulations et mesures dans la bande BCI [10 kHz – 400 MHz]. Ces résultats obtenus ont permis l'élaboration d'un modèle complet du test BCI (sous l’outil logiciel PAM-CEM/CRIPTE) qui tient compte d’un toron aéronautique complexe et de l’EST (Équipement Sous Test modélisé au laboratoire Ampère de Lyon). Il est constitué du générateur de perturbation (qui fait office de pince d’injection de courant), du modèle du toron de câbles (constitué de paires torsadées blindées, de paires non-blindées, …) et de l’EST (Équipement Sous Test) dans la bande [10 kHz – 400 MHz]. La bonne concordance entre simulations et mesures laisse présager une utilisation par les avionneurs ou équipementiers pour des études paramétriques concernant le test BCI (influence de la disposition des câbles, queue de cochon, longueur toron, disposition de l’EST par rapport au plan de masse, …) et/ou pour une virtualisation dans une phase de pré-qualification des équipements.Mots clés : CEM (Compatibilité ElectroMagnétique), Test BCI (Bulk Current Injection), Modélisation/Simulation, Norme aéronautique DO 160
This work presents a modeling/simulation approach of BCI (Bulk Current Injection) test under constraint RTCA - DO 160. This qualification test of equipment is very constraining in terms of cost and deadline. During the test, there are also many disparities for which it is difficult to identify sources (and control them) with a physical test setup. The simulation is of interest in the study of phenomena (which can have negative impacts on test results) but also the repeatability of tests.First, a method of modeling for the probe/cables coupling is established which takes into account the variation with frequency of the RF transformer (current probe) of the magnetic ferrite core and the linear parameters of cables (skin/ proximity effects). Two models are proposed in this work:- A generic model which is made up solely of passive elements RLC and elaborated (with SPICE software) from the measurement of S-parameters. It shows the coupling zone between probe and cables (secondary winding).- A magnetic macro-model developed with the Flux2D software. Its geometrical parameters are defined from dimensions of the probe (inner/outer diameter, length) and cables (diameters / length). Physical parameters of the current probe, particularly the complex magnetic permeability of the ferrite core, are obtained from measurement of the S-parameter at the input port of the probe and post-treatment extraction.Frequency domain validations were performed with a good correlation between simulations and measurements in the BCI band ([10 kHz - 400 MHz]).These results led to the development of a complete virtual BCI test (with PAM-CEM / CRIPTE software), which take into account an aeronautic complex harness and a DUT (Device Under Test which is modeled at Ampère laboratory). It consists of disturbance generator, harness model (consisting of shielding twisted cables, no shielding cables, etc.) and DUT (Device Under Test) in the band [10 kHz - 400 MHz].The good correlation between simulations and measurements suggests a use by the aircraft manufacturers or equipment manufacturers for parametric studies about BCI test (uncertainties related to cable positions, pigtail, cable length, DUT position with respect to the ground plane, ...) and /or for virtualization in a pre-qualification phase of the equipment.Keywords: EMC (ElectroMagnetic Compatibility), BCI (Bulk Current Injection) test, Modeling/Simulation, DO 160 aeronautic standard
APA, Harvard, Vancouver, ISO, and other styles
2

Diomande, Karamoko. "Modélisation des essais BCI (Bulk Current Injection) pour l’aide à la pré-qualification des équipements embarqués dans la bande [10 kHz - 400 MHz]." Limoges, 2012. https://aurore.unilim.fr/theses/nxfile/default/e5be390e-5299-4fd7-ab44-ff634d25e228/blobholder:0/2012LIMO4040.pdf.

Full text
Abstract:
La qualification des équipements aéronautiques est une étape industrielle indispensable du fait de l’augmentation des sources de perturbation électromagnétique, des puissances mises en oeuvre mais aussi en raison du nombre et de la complexité croissante des équipements embarqués. Les recherches menées au titre de cette thèse de doctorat s’intéressent à l’élaboration d’outils orientés métiers d’aide à la pré-qualification des équipements. Pour ce faire, nous avons élaboré plusieurs outils qui, utilisés avec des codes basés sur la méthode Ligne de Transmission Multiconductrice (MTL), permettent l’évaluation des niveaux de contraintes conduites dans la bande [10 kHz - 400 MHz] dans un scénario d’injection BCI fondée sur la norme aéronautique DO160. Ainsi, l’outil principal IMEA est utilisé pour caractériser les interfaces des équipements sous test à travers la génération automatique des matrices impédances associées. Les travaux réalisés mettent aussi en évidence l’importance de la prise en compte des incertitudes liées à la quantification des paramètres géométriques et électriques de l’expérimentation BCI. Ainsi, nous montrons que cet incertain est étroitement lié à la complexité des interfaces et influence fortement la modélisation. Nous mettons en évidence les limites fréquentielles de la modélisation déterministe en fonction de cette complexité des interfaces. Dès lors, il devient judicieux d’appréhender la modélisation sous un aspect statistique dans le cas des configurations réelles. Nous évaluons alors les écarts types en fonction de la complexité des interfaces des équipements sous test
Aeronautical equipments qualification is an important industrial step because of the increasing disturbance source number, power levels and due to the high level of on-board equipments complexity. The researches made in this PHD focused on the elaboration of tools allowing, using the Multiconductor Transmission Lines (MTL) method, the evaluation of conducted constraints level in the frequency bandwidth [10 kHz - 400 MHz]. The aim is to help first step of equipments qualification. So the main developed tool IMEA is used to characterize the equipments under test and the load box interfaces by automatically generating their linked impedance matrices. These works highlight the fact that it is important to take into account uncertainties on electrical and geometrical normative BCI test setup parameters characterization. We demonstrate that this characterization error is closely connected to interfaces complexity and have to be integrated in the modelling processes. The deterministic frequency modelling limitations are shown due to the size of interface under test. So, we introduce statistical modelling which is suitable for real equipment test case. This method is applied on a simple interface and real one identified to Enhanced VHF Radioaltimeter. We then compute the standard deviations according to the equipment interfaces complexity
APA, Harvard, Vancouver, ISO, and other styles
3

Miropolsky, Sergey [Verfasser]. "Simulation-based Prediction of System-Level RF Immunity Test Results for Automotive Open-Loop Bulk Current Injection Tests / Sergey Miropolsky." München : Verlag Dr. Hut, 2020. http://d-nb.info/1220568090/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miropolskiy, Sergey [Verfasser]. "Simulation-based Prediction of System-Level RF Immunity Test Results for Automotive Open-Loop Bulk Current Injection Tests / Sergey Miropolsky." München : Verlag Dr. Hut, 2020. http://d-nb.info/1220568090/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Test BCI (Bulk Current Injection)"

1

Li, Jinlong, Fujie Qiu, and Shiping Ma. "Effects of Current Probe Input Port Impedance during Bulk Current Injection (BCI) Test." In 2021 IEEE 4th International Conference on Electronics Technology (ICET). IEEE, 2021. http://dx.doi.org/10.1109/icet51757.2021.9451055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheaito, Hassan, Mor-Diop Sokhna, Marwan Ali, Edith Clavel, Arnaud Breard, and Christian Vollaire. "Versatile susceptibility model of complex systems for Bulk Current Injection (BCI) test." In 2016 IEEE International Symposium on Electromagnetic Compatibility - EMC 2016. IEEE, 2016. http://dx.doi.org/10.1109/isemc.2016.7571701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jinlong, Zeng Gong, Shanyi Jin, Heqing Tian, and Shiping Ma. "An experimental analysis of the effects of wiring harness during bulk current injection (BCI) test." In 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). IEEE, 2017. http://dx.doi.org/10.1109/emc-b.2017.8260476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miropolsky, Sergey, Alexander Sapadinsky, and Stephan Frei. "A generalized accurate modelling method for automotive bulk current injection (BCI) test setups up to 1 GHz." In 2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo). IEEE, 2013. http://dx.doi.org/10.1109/emccompo.2013.6735174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klezar, Siegfried. "Bulk Current Injection (BCI): Road Vehicles-Component Test Methods for Electrical Disturbances from Narrow Band Radiated Electromagnetic Energy." In SIAT 2005. SAE International, 2005. http://dx.doi.org/10.4271/2005-26-078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rasek, Guido A., and Martin Gabrisak. "Wire bundle currents for High Intensity Radiated Fields (HIRF) and Indirect Effects of Lightning (IEL) with focus on Bulk Current Injection (BCI) test." In 2011 21st International Conference Radioelektronika (RADIOELEKTRONIKA 2011). IEEE, 2011. http://dx.doi.org/10.1109/radioelek.2011.5936484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Some aspects of bulk cable current injection (BCCI) test method at system level testing of an aircraft." In Proceedings of the International Conference on Electromagnetic Interference and Compatibility'99. IEEE, 1999. http://dx.doi.org/10.1109/icemic.1999.871591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nayak, Bibhu Prasad, Arkaprovo Das, Sreenivasulu Reddy Vedicherla, and Dipanjan Gope. "Circuit models for Bulk Current Injection (BCI) clamps with multiple cables." In 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). IEEE, 2018. http://dx.doi.org/10.1109/isemc.2018.8393970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Study on bulk current injection (BCI) evaluation method of battery pack." In 2017 2nd International Conference on Mechatronics and Information Technology. Francis Academic Press, 2017. http://dx.doi.org/10.25236/icmit.2017.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carter, N. J. "Bulk current injection (BCI): its past, present and future(?) in aerospace." In IEE Colloquium on EMC Testing for Conducted Mechanisms. IEE, 1996. http://dx.doi.org/10.1049/ic:19960729.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Test BCI (Bulk Current Injection)"

1

Frazier, Sam, and Kurt Sebacher. Development of a Bulk Current Injection Direct-Drive System to Test System Level Components with Stress Waveforms that are Encountered During Full Threat Indirect Effects Lightning. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada284160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography