Academic literature on the topic 'Test de Monte Carlo'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Test de Monte Carlo.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Test de Monte Carlo"
Ohta, Shigemi. "Self-Test Monte Carlo Method." Progress of Theoretical Physics Supplement 122 (1996): 193–200. http://dx.doi.org/10.1143/ptps.122.193.
Full textOht, Shigemi. "Self-test Monte Carlo method." Nuclear Physics B - Proceedings Supplements 47, no. 1-3 (March 1996): 788–91. http://dx.doi.org/10.1016/0920-5632(96)00175-2.
Full textGangur, Mikuláš, and Milan Svoboda. "Simulation of Bayes' rule by means of Monte Carlo method." Teaching Statistics 40, no. 3 (April 6, 2018): 83–87. http://dx.doi.org/10.1111/test.12158.
Full textSilva, Ivair R., and Renato M. Assunção. "Optimal generalized truncated sequential Monte Carlo test." Journal of Multivariate Analysis 121 (October 2013): 33–49. http://dx.doi.org/10.1016/j.jmva.2013.06.003.
Full textSilva, I., R. Assunção, and M. Costa. "Power of the Sequential Monte Carlo Test." Sequential Analysis 28, no. 2 (April 27, 2009): 163–74. http://dx.doi.org/10.1080/07474940902816601.
Full textTheil, Henri, J. S. Shonkwiler, and Timothy G. Taylor. "A Monte Carlo test of Slutsky symmetry." Economics Letters 19, no. 4 (January 1985): 331–32. http://dx.doi.org/10.1016/0165-1765(85)90230-7.
Full textSelvanathan, Saroja. "A Monte Carlo test of preference independence." Economics Letters 25, no. 3 (January 1987): 259–61. http://dx.doi.org/10.1016/0165-1765(87)90224-2.
Full textPiras, Gianfranco, and Nancy Lozano-Gracia. "Spatial J-test: some Monte Carlo evidence." Statistics and Computing 22, no. 1 (November 6, 2010): 169–83. http://dx.doi.org/10.1007/s11222-010-9215-y.
Full textHunt, R. A., D. R. Dance, M. Pachoud, G. Alm Carlsson, M. Sandborg, G. Ullman, and F. R. Verdun. "Monte Carlo simulation of a mammographic test phantom." Radiation Protection Dosimetry 114, no. 1-3 (May 17, 2005): 432–35. http://dx.doi.org/10.1093/rpd/nch511.
Full textVishnyakov, Aleksey, and Alexander V. Neimark. "Monte Carlo Simulation Test of Pore Blocking Effects." Langmuir 19, no. 8 (April 2003): 3240–47. http://dx.doi.org/10.1021/la0269107.
Full textDissertations / Theses on the topic "Test de Monte Carlo"
Ding, Jie. "Monte Carlo Pedigree Disequilibrium Test with Missing Data and Population Structure." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218475579.
Full textSheytanova, Teodora. "The Accuracy of the Hausman Test in Panel Data: a Monte Carlo Study." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-44288.
Full textYeung, Alan B. (Alan Brian) Carleton University Dissertation Physics. "A Monte Carlo study of the Sudbury Neutrino Observatory small test detector experiment." Ottawa, 1990.
Find full textXie, Wen. "A Monte Carlo Simulation Study for Poly-k Test in Animal Carcinogenicity Studies." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10638898.
Full textAn objective of animal carcinogenicity studies is to identify a tumorigenic potential in animals and to assess relevant risks in humans. Without using the cause-of-death information, the Cochran-Armitage test is applied for detecting a linear trend in the incidence of a tumor of interest across dose groups. The survival-adjusted Cochran–Armitage test, known as the Poly-k test, is investigated for the animals not at equal risk of tumor development by reflecting the shapes of the tumor onset distributions. In this thesis, we will validate Poly-k test through a Monte Carlo simulation study. We will design the simulation study to assess the size and power of the poly-k test using a wide range of k values for various tumor onset rates, for various competing risks rates, and for various tumor lethality rates. In this thesis, the Poly-k testing approach will be investigated to evaluate a dose-related linear trend of a test subject on the incidence of tumor and will be implemented in R package to be used widely amongst toxicologists.
Leite, Nelson Paiva Oliveira, and Lucas Benedito dos Reis Sousa. "Uncertainty Determination with Monte-Carlo Based Algorithm." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595756.
Full textThe measurement result is complete only if it contains the measurand and its units, uncertainty and coverage factor. The uncertainty estimation for the parameters acquired by the FTI is a known process. To execute this task the Institute of Research and Flight Test (IPEV) developed the SALEV© system which is fully compliant with the applicable standards. But the measurement set also includes Derived Parameters. The uncertainty evaluation of these parameters can be solved by cumbersome partial derivates. The search for a simpler solution leads us to a Monte-Carlo based algorithm. The result of using this approach are presented and discussed.
Georgii, Hellberg Kajsa-Lotta, and Andreas Estmark. "Fisher's Randomization Test versus Neyman's Average Treatment Test." Thesis, Uppsala universitet, Statistiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385069.
Full textLindahl, John, and Douglas Persson. "Data-driven test case design of automatic test cases using Markov chains and a Markov chain Monte Carlo method." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43498.
Full textLuo, Zhisui. "A Bayesian Analysis of a Multiple Choice Test." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/269.
Full textSenteney, Michael H. "A Monte Carlo Study to Determine Sample Size for Multiple Comparison Procedures in ANOVA." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou160433478343909.
Full textNguyen, Diep Thi. "Statistical Models to Test Measurement Invariance with Paired and Partially Nested Data: A Monte Carlo Study." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7869.
Full textBooks on the topic "Test de Monte Carlo"
Koura, Katsuhisa. A sensitivity test for accuracy in evaluation of molecular collision number in the direct-simulation Monte Carlo method. Tokyo, Japan: National Aerospace Laboratory, 1990.
Find full textHaug, Alfred A. Tests for cointegration: a Monte Carlo comparison. Toronto, Ont: York University, Department of Economics, 1993.
Find full textInoue, Atsushi. A portmanteau test for serially correlated errors in fixed effects models. Cambridge, MA: National Bureau of Economic Research, 2005.
Find full textMorelli, Eugene A. Determining the accuracy of aerodynamic model parameters estimated from flight test data. Washington, D.C: American Institute of Aeronautics and Astronautics, 1995.
Find full textMorelli, Eugene A. Determining the accuracy of aerodynamic model parameters estimated from flight test data. Washington, D.C: American Institute of Aeronautics and Astronautics, 1995.
Find full textMorelli, Eugene A. Determining the accuracy of aerodynamic model parameters estimated from flight test data. Washington, D.C: American Institute of Aeronautics and Astronautics, 1995.
Find full textAnderson, Gordon. Nonparametric tests for common but unspecified population distributions: A Monte Carlo comparison. Toronto: Dept. of Economics and Institute for Policy Analysis, University of Toronto, 1994.
Find full textBöhning, Dankmar. On minimizing chi-square distances under the hypothesis of homogeneity of independence for a two-way contingency table. Osnabrück: Fachbereich Psychologie, Universität Osnabrück, 1985.
Find full textScott, Louis O. The present value model of stock prices: Regression tests and Monte Carlo results. [Urbana]: College of Commerce and Business Administration,University of Illinois at Urbana-Champaign, 1985.
Find full textBook chapters on the topic "Test de Monte Carlo"
Matsumoto, Makoto, and Takuji Nishimura. "A Nonempirical Test on the Weight of Pseudorandom Number Generators." In Monte Carlo and Quasi-Monte Carlo Methods 2000, 381–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56046-0_26.
Full textHaramoto, Hiroshi, Makoto Matsumoto, Takuji Nishimura, and Yuki Otsuka. "A Non-empirical Test on the Second to the Sixth Least Significant Bits of Pseudorandom Number Generators." In Monte Carlo and Quasi-Monte Carlo Methods 2012, 417–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41095-6_19.
Full textChou, Wun-Seng, and Harald Niederreiter. "On the lattice test for inversive congruential pseudorandom numbers." In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 186–97. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2552-2_10.
Full textBod, Rens. "Monte Carlo Parsing." In Text, Speech and Language Technology, 255–80. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9733-8_14.
Full textSchmolck, Björn. "Monte Carlo experimentation." In Omitted Variable Tests and Dynamic Specification, 75–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58324-7_6.
Full textLeopardi, Paul. "Testing the Tests: Using Random Number Generators to Improve Empirical Tests." In Monte Carlo and Quasi-Monte Carlo Methods 2008, 501–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04107-5_32.
Full textL’Ecuyer, Pierre. "Random Number Generators and Empirical Tests." In Monte Carlo and Quasi-Monte Carlo Methods 1996, 124–38. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1690-2_7.
Full textHo, Chih-Hsiang. "A Simulation Study of a Change-Point Poisson Process Based on Two Well-known Test Statistics." In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 228–38. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2552-2_14.
Full textHaramoto, Hiroshi. "Automation of Statistical Tests on Randomness to Obtain Clearer Conclusion." In Monte Carlo and Quasi-Monte Carlo Methods 2008, 411–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04107-5_26.
Full textQuicke, Donald, Buntika A. Butcher, and Rachel Kruft Welton. "Monte Carlo tests and randomization." In Practical R for biologists: an introduction, 187–93. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245349.0187.
Full textConference papers on the topic "Test de Monte Carlo"
Stratigopoulos, Haralampos-G., and Stephen Sunter. "Efficient Monte Carlo-based analog parametric fault modelling." In 2014 IEEE 32nd VLSI Test Symposium (VTS). IEEE, 2014. http://dx.doi.org/10.1109/vts.2014.6818741.
Full textGRIGORIEV, D. YU, E. JANKOWSKI, and F. V. TKACHOV. "A MONTE CARLO TEST OF THE OPTIMAL JET DEFINITION." In Proceedings of the Eighteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702777_0023.
Full textKanoria, Yashodhan, Subhasish Mitra, and Andrea Montanari. "Statistical static timing analysis using Markov chain Monte Carlo." In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). IEEE, 2010. http://dx.doi.org/10.1109/date.2010.5456938.
Full textMingfu, Xue, Hu Aiqun, Huang Yi, and Li Guyue. "Monte Carlo Based Test Pattern Generation for Hardware Trojan Detection." In 2013 IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC). IEEE, 2013. http://dx.doi.org/10.1109/dasc.2013.50.
Full textSarmento, Rafaela, Ettore Segreto, Ana Machado, Henrique de Souza, Bruno Gelli, Marina Guzzo, Jully Nascimento, and Greg Souza. "Test of X–ARAPUCA through Monte Carlo simulation in Brazil." In Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192106.
Full textRunkel, Michael J. "Monte Carlo simulation of the R/1 automated damage test." In Laser-Induced Damage in Optical Materials: 1998, edited by Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, Keith L. Lewis, and M. J. Soileau. SPIE, 1999. http://dx.doi.org/10.1117/12.344457.
Full textLeger, Gildas, and Manuel J. Barragan. "Questioning the reliability of Monte Carlo simulation for machine learning test validation." In 2016 IEEE European Test Symposium (ETS). IEEE, 2016. http://dx.doi.org/10.1109/ets.2016.7519307.
Full textJaffari, Javid, and Mohab Anis. "Practical Monte-Carlo based timing yield estimation of digital circuits." In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010). IEEE, 2010. http://dx.doi.org/10.1109/date.2010.5456941.
Full textMahmoudi, Hiwa, and Horst Zimmermann. "A new sampling technique for Monte Carlo-based statistical circuit analysis." In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7927188.
Full textPrulhiere, Géraud, Bruno Fontaine, and Thomas Frosio. "Simulation of the core flowering End-of-life test realized on PHENIX reactor." In SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, edited by D. Caruge, C. Calvin, C. M. Diop, F. Malvagi, and J. C. Trama. Les Ulis, France: EDP Sciences, 2014. http://dx.doi.org/10.1051/snamc/201401403.
Full textReports on the topic "Test de Monte Carlo"
Davidson, J. R. Monte Carlo tests of the ELIPGRID-PC algorithm. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/52637.
Full textSchwert, G. William. Tests For Unit Roots: A Monte Carlo Investigation. Cambridge, MA: National Bureau of Economic Research, December 1988. http://dx.doi.org/10.3386/t0073.
Full textChang, B. Six 1D Polar Transport Test Problems for the Deterministic Monte-Carlo Method. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1769096.
Full textBrown, Forrest B., and William Russell Martin. Statistical Tests for Convergence in Monte Carlo Criticality Calculations. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471319.
Full textG. S. Chang and R. C. Pederson. Monte-Carlo Code (MCNP) Modeling of the Advanced Test Reactor Applicable to the Mixed Oxide (MOX) Test Irradiation. Office of Scientific and Technical Information (OSTI), July 2005. http://dx.doi.org/10.2172/911248.
Full textLo, Andrew, and A. Craig MacKinlay. The Size and Power of the Variance Ratio Test in Finite Samples: A Monte Carlo Investigation. Cambridge, MA: National Bureau of Economic Research, June 1988. http://dx.doi.org/10.3386/t0066.
Full textRemund, Todd, and William Kitto. Monte Carlo Techniques for Estimating Power in Aircraft T&E Tests. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada545255.
Full textBrown, Forrest B. Statistical Tests for Diagnosing Fission Source Convergence and Undersampling in Monte Carlo Criticality Calculations. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1638606.
Full textVogel, Thomas. Monte Carlo Methods. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1148317.
Full textBrown, F. B., and T. M. Sutton. Monte Carlo fundamentals. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/270327.
Full text