Academic literature on the topic 'Test de permutation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Test de permutation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Test de permutation"
Anderson, Marti J. "Permutation tests for univariate or multivariate analysis of variance and regression." Canadian Journal of Fisheries and Aquatic Sciences 58, no. 3 (March 1, 2001): 626–39. http://dx.doi.org/10.1139/f01-004.
Full textSavchuk, M., and M. Burlaka. "Encoding and classification of permutations bу special conversion with estimates of class power." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 2 (2019): 36–43. http://dx.doi.org/10.17721/1812-5409.2019/2.3.
Full textMielke, Paul W., Kenneth J. Berry, and Charles O. Neidt. "A Permutation Test for Multivariate Matched-Pair Analyses: Comparisons with Hotelling's Multivariate Matched-Pair T2 Test." Psychological Reports 78, no. 3 (June 1996): 1003–8. http://dx.doi.org/10.2466/pr0.1996.78.3.1003.
Full textSari, Resti Mustika, Yudiantri Asdi, and Ferra Yanuar. "PERBANDINGAN KUASA WILCOXON RANK SUM TEST DAN PERMUTATION TEST DALAM BERBAGAI DISTRIBUSI TIDAK NORMAL." Jurnal Matematika UNAND 3, no. 4 (December 1, 2014): 139. http://dx.doi.org/10.25077/jmu.3.4.139-146.2014.
Full textCollins, Mark F. "A Permutation Test for Planar Regression." Australian Journal of Statistics 29, no. 3 (September 1987): 303–8. http://dx.doi.org/10.1111/j.1467-842x.1987.tb00747.x.
Full textCade, Brian S., and Jon D. Richards. "A permutation test for quantile regression." Journal of Agricultural, Biological, and Environmental Statistics 11, no. 1 (March 2006): 106–26. http://dx.doi.org/10.1198/108571106x96835.
Full textBasso, Dario, and Luigi Salmaso. "A permutation test for umbrella alternatives." Statistics and Computing 21, no. 1 (August 27, 2009): 45–54. http://dx.doi.org/10.1007/s11222-009-9145-8.
Full textShparlinski, I. E. "A deterministic test for permutation polynomials." Computational Complexity 2, no. 2 (June 1992): 129–32. http://dx.doi.org/10.1007/bf01202000.
Full textToth, Daniell. "A Permutation Test on Complex Sample Data." Journal of Survey Statistics and Methodology 8, no. 4 (August 13, 2019): 772–91. http://dx.doi.org/10.1093/jssam/smz018.
Full textBerry, Kenneth J., and Paul W. Mielke. "Analysis of Multivariate Matched-Paired Data: A Fortran 77 Program." Perceptual and Motor Skills 83, no. 3 (December 1996): 788–90. http://dx.doi.org/10.2466/pms.1996.83.3.788.
Full textDissertations / Theses on the topic "Test de permutation"
Baranzano, Rosa. "Non-parametric kernel density estimation-based permutation test: Implementation and comparisons." Thesis, Uppsala universitet, Matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-147052.
Full textEckerdal, Nils. "A permutation evaluation of the robustness of a high-dimensional test." Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352914.
Full textAlbert, Mélisande. "Tests d’indépendance par bootstrap et permutation : étude asymptotique et non-asymptotique. Application en neurosciences." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4079/document.
Full textOn the one hand, we construct such tests based on bootstrap and permutation approaches. Their asymptotic performance are studied in a point process framework through the analysis of the asymptotic behavior of the conditional distributions of both bootstrapped and permuted test statistics, under the null hypothesis as well as under any alternative. A simulation study is performed verifying the usability of these tests in practice, and comparing them to existing classical methods in Neuroscience. We then focus on the permutation tests, well known for their non-asymptotic level properties. Their p-values, based on the delayed coincidence count, are implemented in a multiple testing procedure, called Permutation Unitary Events method, to detect the synchronization occurrences between two neurons. The practical validity of the method is verified on a simulation study before being applied on real data. On the other hand, the non-asymptotic performances of the permutation tests are studied in terms of uniform separation rates. A new aggregated procedure based on a wavelet thresholding method is developed in the density framework. Based on Talagrand's fundamental inequalities, we provide a new Bernstein-type concentration inequality for randomly permuted sums. In particular, it allows us to upper bound the uniform separation rate of the aggregated procedure over weak Besov spaces and deduce that this procedure seems to be optimal and adaptive in the minimax sens
Yu, Li. "Tau-Path Test - A Nonparametric Test For Testing Unspecified Subpopulation Monotone Association." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1255657068.
Full textKačkina, Julija. "Svertinių rodiklių agregavimo lygmens parinkimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20090908_201759-89606.
Full textThis paper focuses on the choice between macro and micro models. I suggest a hypothesis testing procedure for in-sample model selection for such variables as average wage. Empirical results show that Lithuanian average wage should be predict by using aggregate model.
Zhang, Yan. "The impact of midbrain cauterize size on auditory and visual responses' distribution." unrestricted, 2009. http://etd.gsu.edu/theses/available/etd-04202009-145923/.
Full textTitle from file title page. Yu-Sheng Hsu, committee chair; Xu Zhang, Sarah. L. Pallas, committee members. Description based on contents viewed June 12, 2009. Includes bibliographical references (p. 37). Appendix A: SAS code: p. 38-53.
Shadrokh, Ali. "Analyse comparative des tests de permutations en régression multiple et application à l'analyse de tableaux de distances." Université Joseph Fourier (Grenoble), 2006. http://www.theses.fr/2006GRE10084.
Full textWhen the data generation process does not satisfy some of the assumptions founding the statistical inferences in the classic linear regression model, permutation tests offer a reliable nonparametric alternative for constructing distribution-free tests. The first application of the permutation test method%gy for statistical inference on the simple linear regression model can be traced back to papers by Fisher (1935) and Pitman (1937a, b, 1938). This resampling method is founded on hypothesis weaker than the ciassic parametric approach and which are easily checkable in practice: the exchangeability of the observations under the null hypothesis. There is general agreement concerning an appropriate permutation method yielding exact tests of hypotheses in the simple linear regression mode!. This is not the case, however, for partial tests needed in multiple linear regressions. Then, the problem becomes much trickier to test a null hypothesis concerning one partial regression coefficient. Due exchangeability properties are no more satisfied, and thus no exact test exists for that problem. Several asymptotically exact candidate methods have been proposed in that case. The main goal of our work aims at comparison of permutation test startegies adapted to the hypotheses of nullity of a partial coefficient regression in a linear regression model with p explanatory variables, conditionally on the information contained in the sam pie at hand. Four permutation test methods are compared, first on simulated data resorting to the double linear regression model, and then on theoretical grounds, in order to explore their unbiasedness properties, as weil as their power function's hierarchy. The results obtained are then extended to the general multiple linear regressions setting. A final chapter supplements our research by focussing on inferential problems met when dealing with partial dependence structures between inter-point distance matrices of finite order. We compared the adaptation of four candidate permutation test strategies in this context, the specificity of which relies on the complexities induced by the dependence structure existing between e/ements of a distance matrix. Therefore, we obtained resu/ts that revealed themselves quite different in this case from those obtained in the classic situation of linear regression applied to independent sam pies, which is the object of our simulations and formal developments presented in the first part of the thesis
ZHONG, WEI. "STATISTICAL APPROACHES TO ANALYZE CENSORED DATA WITH MULTIPLE DETECTION LIMITS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130204124.
Full textAnnica, Ivert. "Determining Attribute Importance Using an Ensemble of Genetic Programs and Permutation Tests : Relevansbestämning av attribut med hjälp av genetiska program och permutationstester." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185260.
Full textDå man handskas med data av hög dimensionalitet kan man uppnå både bättre precision och förkortad exekveringstid genom att enbart fokusera på de viktigaste attributen. Många metoder för att hitta viktiga attribut är baserade på ett grundantagande om en stark korrelation mellan de viktiga attributen och dess tillhörande klass, men ofta även på ett oberoende mellan de individuella attributen. Detta kan å ena sidan leda till att överflödiga attribut lätt kan elimineras och därmed underlätta processen att hitta en bra klassifierare, men å andra sidan också ge missvisande resultat ifall förmågan att separera klasser i hög grad beror på interaktioner mellan olika attribut. Då lämpligheten av de valda attributen också beror på inlärningsalgoritmen i fråga är det troligtvis inte optimalt att använda sig av metoder som är baserade på korrelationer mellan individuella attribut och dess tillhörande klass, ifall målet är att skapa klassifierare i form av genetiska program, då sådana metoder troligtvis inte har förmågan att fånga de komplexa interaktioner som genetiska program faktiskt möjliggör. Det här arbetet introducerar en metod för att hitta viktiga attribut - både de som kan klassifiera data relativt oberoende och de som får sina krafter endast genom att utnyttja beroenden av andra attribut. Den föreslagna metoden baserar sig på två olika typer av permutationstester, där attribut permuteras mellan de olika dataexemplaren för att sedan klassifieras som antingen oberende, beroende eller irrelevanta. Lämpligheten av ett attribut utvärderas direkt med hänsyn till den valda inlärningsalgoritmen till skillnad från så kallade wrappers, som är tidskrävande då de kräver att flera delmängder av attribut utvärderas. Resultaten visar att de attribut som ansetts viktiga efter permutationstesten genererar klassifierare som är åtminstone lika bra som när alla attribut används, men ofta bättre. Metoden står sig också bra när den jämförs med andra metoder som till exempel RELIEFF och CFS.
Fu, Min. "A RESAMPLING BASED APPROACH IN EVALUATION OF DOSE-RESPONSE MODELS." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/300992.
Full textPh.D.
In this dissertation, we propose a computational approach using a resampling based permutation test as an alternative to MCP-Mod (a hybrid framework integrating the multiple comparison procedure and the modeling technique) and gMCP-Mod (generalized MCP-Mod) [11], [29] in the step of identifying significant dose-response signals via model selection. We name our proposed approach RMCP-Mod or gRMCP-Mod correspondingly. The RMCP-Mod/gRMCP-Mod transforms the drug dose comparisons into a dose-response model selection issue via multiple hypotheses testing, an area where not much extended researches have been done, and solve it using resampling based multiple testing procedures [38]. The proposed approach avoids the inclusion of the prior dose-response knowledge known as "guesstimates" used in the model selection step of the MCP-Mod/gMCP-Mod framework, and therefore reduces the uncertainty in the significant model identification. When a new drug is being developed to treat patients with a specified disease, one of the key steps is to discover an optimal drug dose or doses that would produce the desired clinical effect with an acceptable level of toxicity. In order to nd such a dose or doses (different doses may be able to produce the same or better clinical effect with similar acceptable toxicity), the underlying dose-response signals need to be identified and thoroughly examined through statistical analyses. A dose-response signal refers to the fact that a drug has different clinical effects at many quantitative dose levels. Statistically speaking, the dose-response signal is a numeric relationship curve (shape) between drug doses and the clinical effects in quantitative measures. It's often been a challenge to nd correct and accurate efficacy and/or safety dose-response signals that would best describe the dose-effect relationship in the drug development process via conventional statistical methods because the conventional methods tend to either focus on a fixed, small number of quantitative dosages or evaluate multiple pre-denied dose-response models without Type I error control. In searching for more efficient methods, a framework of combining both multiple comparisons procedure (MCP) and model-based (Mod) techniques acronymed MCP-Mod was developed by F. Bretz, J. C. Pinheiro, and M. Branson [11] to handle normally distributed, homoscedastic dose response observations. Subsequently, a generalized version of the MCP- Mod named gMCP-Mod which can additionally deal with binary, counts, or time-to-event dose-response data as well as repeated measurements over time was developed by J. C. Pinheiro, B. Bornkamp, E. Glimm and F. Bretz [29]. The MCP-Mod/gMCP-Mod uses the guesstimates" in the MCP step to pre-specify parameters of the candidate models; however, in situations where the prior knowledge of the dose-response information is difficult to obtain, the uncertainties could be introduced into the model selection process, impacting on the correctness of the model identification. Throughout the evaluation of its application to the hypothetical and real study examples as well as simulation comparisons to the MCP-Mod/gMCP-Mod, our proposed approach, RMCP-Mod/gRMCP-Mod seems a viable method that can be used in the practice with some further improvements and researches that are still needed in applications to broader dose-response data types.
Temple University--Theses
Books on the topic "Test de permutation"
Czaplewski, Raymond L. Expected value and variance of Moran's bivariate spatial autocorrelation statistic for a permutation test. Fort Collins, Colo. (240 W. Prospect Rd., Fort Collins 80526): U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1993.
Find full textBradbury, Ian Stuart. Permutation tests. Birmingham: University of Birmingham, 1987.
Find full textGood, Phillip. Permutation Tests. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3235-1.
Full textGood, Phillip. Permutation Tests. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2346-5.
Full textSALMASO, LUIGI, and Chiara Brombin. Permutation Tests in Shape Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8163-8.
Full textPermutation, parametric and bootstrap tests of hypotheses. 3rd ed. New York: Springer, 2005.
Find full textSolari, Aldo, Luigi Salmaso, Fortunato Pesarin, and Dario Basso. Permutation Tests for Stochastic Ordering and ANOVA. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-85956-9.
Full textPesarin, Fortunato. Permutation tests for complex data: Theory, applications, and software. Hoboken, N.J: Wiley, 2010.
Find full textPesarin, Fortunato. Permutation tests for complex data: Theory, applications, and software. Hoboken, N.J: Wiley, 2010.
Find full textGood, Phillip I. Permutation tests: A practical guide to resampling methods for testing hypotheses. 3rd ed. New York: Springer, 2005.
Find full textBook chapters on the topic "Test de permutation"
Stanberry, Larissa. "Permutation Test." In Encyclopedia of Systems Biology, 1678. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1186.
Full textBasso, Dario, Fortunato Pesarin, and Luigi Salmaso. "A permutation test for umbrella alternatives." In Contributions to Statistics, 193–208. Heidelberg: Physica-Verlag HD, 2009. http://dx.doi.org/10.1007/978-3-7908-2385-1_12.
Full textChung, Moo K., Linhui Xie, Shih-Gu Huang, Yixian Wang, Jingwen Yan, and Li Shen. "Rapid Acceleration of the Permutation Test via Transpositions." In Connectomics in NeuroImaging, 42–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32391-2_5.
Full textRadivojac, Predrag, Zoran Obradovic, A. Keith Dunker, and Slobodan Vucetic. "Feature Selection Filters Based on the Permutation Test." In Machine Learning: ECML 2004, 334–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30115-8_32.
Full textBonnini, Stefano, Eleonora Carrozzo, and Luigi Salmaso. "A Review on Heterogeneity Test: Some Permutation Procedures." In Theoretical and Applied Statistics, 13–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05420-5_2.
Full textLeimer, I., H. Peil, and J. Ellenberger. "Statistical Analysis of the Micronucleus Test with the Fisher-Pitman Permutation Test." In Statistical Methods in Toxicology, 20–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-48736-1_3.
Full textBavaud, François. "Testing Spatial Autocorrelation in Weighted Networks: The Modes Permutation Test." In Advances in Spatial Science, 67–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30196-9_4.
Full textQu, Wen, Haiyan Liu, and Zhiyong Zhang. "Permutation Test of Regression Coefficients in Social Network Data Analysis." In Springer Proceedings in Mathematics & Statistics, 377–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43469-4_28.
Full textNg, Bernard, Jean Baptiste Poline, Bertrand Thirion, and Michael Greicius. "Bootstrapped Permutation Test for Multiresponse Inference on Brain Behavior Associations." In Lecture Notes in Computer Science, 113–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19992-4_9.
Full textLuo, Chuanjiang, Guoyin Wang, and Feng Hu. "Two-Step Gene Feature Selection Algorithm Based on Permutation Test." In Rough Sets and Current Trends in Computing, 249–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32115-3_30.
Full textConference papers on the topic "Test de permutation"
Mao, Yunlong, and Yuan Zhang. "Privacy Preserving Distributed Permutation Test." In ASIA CCS '16: ACM Asia Conference on Computer and Communications Security. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2898445.2898450.
Full textSanz-Gonzalez, J. L., F. Alvarez-Vaquero, and J. E. Gonzalez-Garcia. "Permutation test algorithms for nonparametric radar detection." In IET International Conference on Radar Systems 2007. IEE, 2007. http://dx.doi.org/10.1049/cp:20070542.
Full textStratis, Panagiotis, and Ajitha Rajan. "Test case permutation to improve execution time." In ASE'16: ACM/IEEE International Conference on Automated Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2970276.2970331.
Full textDatta, Kamalika, Indranil Sengupta, Hafizur Rahaman, and Rolf Drechsler. "An evolutionary approach to reversible logic synthesis using output permutation." In 2013 Design and Test Symposium (IDT). IEEE, 2013. http://dx.doi.org/10.1109/idt.2013.6727117.
Full textAlvarez-Vaquero, Francisco, and Jose L. Sanz-Gonzalez. "Complexity analysis of permutation test versus rank test for nonparametric radar detection." In Optical Science, Engineering and Instrumentation '97, edited by William J. Miceli. SPIE, 1997. http://dx.doi.org/10.1117/12.279467.
Full textAlvarez-Vaquero, Francisco, and Jose L. Sanz-Gonzalez. "Signal processing algorithms by permutation test in radar application." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Franklin T. Luk. SPIE, 1996. http://dx.doi.org/10.1117/12.255427.
Full textJaamoum, Amine, Thomas Hiscock, and Giorgio Di Natale. "Scramble Cache: An Efficient Cache Architecture for Randomized Set Permutation." In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9473919.
Full textGrzegorzewski, Przemyslaw. "Permutation k-sample Goodness-of-Fit Test for Fuzzy Data." In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020. http://dx.doi.org/10.1109/fuzz48607.2020.9177765.
Full textGrishchenko, M. V., A. A. Yakimenko, and M. S. Khairetdinov. "Permutation test implementation for testing set of genetic hypotheses using GPU." In 2016 11th International Forum on Strategic Technology (IFOST). IEEE, 2016. http://dx.doi.org/10.1109/ifost.2016.7884158.
Full textHuang, Gan, and Zhiguo Zhang. "Improving sensitivity of cluster-based permutation test for EEG/MEG data." In 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. http://dx.doi.org/10.1109/ner.2017.8008279.
Full textReports on the topic "Test de permutation"
Bugni, Federico A., and Joel L. Horowitz. Permutation tests for equality of distributions of functional data. The IFS, March 2018. http://dx.doi.org/10.1920/wp.cem.2018.1818.
Full textKamat, Vishal, and Ivan A. Canay. Approximate permutation tests and induced order statistics in the regression discontinuity design. Institute for Fiscal Studies, June 2015. http://dx.doi.org/10.1920/wp.cem.2015.2715.
Full textCanay, Ivan A., and Vishal Kamat. Approximate permutation tests and induced order statistics in the regression discontinuity design. IFS, August 2016. http://dx.doi.org/10.1920/wp.cem.2016.3316.
Full textCanay, Ivan A., and Vishal Kamat. Approximate permutation tests and induced order statistics in the regression discontinuity design. The IFS, May 2017. http://dx.doi.org/10.1920/wp.cem.2017.2117.
Full textPermutation tests for equality of distributions of functional data. Cemmap, March 2021. http://dx.doi.org/10.47004/wp.cem.2021.0621.
Full text