To see the other types of publications on this topic, follow the link: Tetrachloropalladate(II).

Journal articles on the topic 'Tetrachloropalladate(II)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 49 journal articles for your research on the topic 'Tetrachloropalladate(II).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fábry, Jan, Radmila Krupková, Přemysl Vaněk, Michal Dušek, and Ivan Němec. "Bis(tetramethylammonium) tetrachloropalladate(II)." Acta Crystallographica Section E Structure Reports Online 60, no. 7 (2004): m924—m926. http://dx.doi.org/10.1107/s1600536804013388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Casellato, U., R. Ettorre, and R. Graziani. "Bis(5-bromocytosinium) tetrachloropalladate(II)." Acta Crystallographica Section C Crystal Structure Communications 49, no. 5 (1993): 956–57. http://dx.doi.org/10.1107/s0108270192011429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Valle, G., and R. Ettorre. "Bis(3-bromoimidazolium) tetrachloropalladate(II)." Acta Crystallographica Section C Crystal Structure Communications 50, no. 8 (1994): 1221–22. http://dx.doi.org/10.1107/s0108270193014222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cruz-Cruz, Sandra, Modesto Rodríguez-Pastrana, Sylvain Bernès, and René Gutiérrez-Pérez. "Bis[(S)-(–)-1-phenylethylammonium] tetrachloropalladate(II)." Acta Crystallographica Section E Structure Reports Online 60, no. 3 (2004): m342—m344. http://dx.doi.org/10.1107/s1600536804003411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ortwerth, M. F., M. J. Wyzlic, and R. G. Baughman. "Bis(1-ethyl-3-methylimidazolium) Tetrachloropalladate(II)." Acta Crystallographica Section C Crystal Structure Communications 54, no. 11 (1998): 1594–96. http://dx.doi.org/10.1107/s0108270198006829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zawartka, Wojciech, Andrzej Gniewek, Anna M. Trzeciak, Łukasz Drzewiński, and Tadeusz Lis. "Bis(1-butyl-4-methylpyridinium) tetrachloropalladate(II)." Acta Crystallographica Section E Structure Reports Online 62, no. 5 (2006): m1100—m1102. http://dx.doi.org/10.1107/s1600536806013912.

Full text
Abstract:
The title compound, (C10H16N)2[PdCl4], has been crystallized from acetonitrile. The asymmetric unit contains two 1-butyl-4-methylpyridinium cations in general positions and two halves of tetrachloropalladate(II) anions, with the metal atoms lying on inversion centers. The Pd atoms are four-coordinated in a slightly distorted square-planar geometry. The crystal structure is stabilized by numerous weak C—H...Cl interactions.
APA, Harvard, Vancouver, ISO, and other styles
7

Mita, Basak (nee Mallick), and Banerjea D. "Studies on the kinetics of complex formation in the tetrachloropalladate(II) – ligand systems : Ligands being thiosemicarbazide, amidinothiourea and biguanide." Journal of Indian Chemical Society Vol. 92, Nov 2015 (2015): 1617–24. https://doi.org/10.5281/zenodo.5679334.

Full text
Abstract:
Former Sir Rashbehary Ghose Professor of Chemistry, Calcutta University, Kolkata-700 009, India <em>E-mail</em> : banerjeas2005@yahoo.co.in <em>Manuscript received 05 September 2015, accepted 01 October 2015</em> Based on detailed kinetic studies on these systems, plausible reaction schemes have been proposed that account for the experimental observations; component rate constants of the derived rate-laws have been evaluated by graphical/least square procedure. The results indicated the reactivity order thiosemicarbazide &gt; amidinothiourea &gt;&gt; biguanide. The results of the amidinothiour
APA, Harvard, Vancouver, ISO, and other styles
8

Lyapina, Maya, Todor Kundurjiev, and Karolina Lyubomirova. "CONTACT SENSITIZATION TO METALS AMONG A GROUP OF BULGARIAN DENTAL TECHNICIAN STUDENTS IN RELATION TO THE DURATION OF THEIR EDUCATIONAL EXPOSURE." Journal of IMAB - Annual Proceeding (Scientific Papers) 27, no. 3 (2021): 3835–41. http://dx.doi.org/10.5272/jimab.2021273.3835.

Full text
Abstract:
Purpose: Sensitization to metals is a significant problem in dental, occupational exposures. The purpose of this study was to evaluate the prevalence of contact sensitization to selected metals during the course of study among students from dental technician school and the prevalence of co- sensitization. Material and Methods: Skin patch testing with potassium dichromate, cobalt, gold, nickel, copper, palladium, aluminium, tin and sodium tetrachloropalladate(II)hydrate was performed among 150 dental technician students (38 – 1st year of study,40 – 2nd year of study and 38 – 3rd year of study);
APA, Harvard, Vancouver, ISO, and other styles
9

Kiriyama, H., N. Matsushita, and Y. Yamagata. "Structures of diguanidinium tetrachloropalladate(II) and guanidinium tetrachloroaurate(III)." Acta Crystallographica Section C Crystal Structure Communications 42, no. 3 (1986): 277–80. http://dx.doi.org/10.1107/s010827018609649x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Le, Anh L., and Patrick E. Hoggard. "The Solvent-Initiated Photochemistry of Tetrachloropalladate(II) in Chloroform." Photochemistry and Photobiology 84, no. 1 (2007): 86–89. http://dx.doi.org/10.1111/j.1751-1097.2007.00202.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mjwara, Pinky N., Tshephiso R. Papo, and Siphamandla Sithebe. "bis[N-(4-Bromophenyl)pyridine-2-carboxamidato]palladium." Molbank 2022, no. 4 (2022): M1496. http://dx.doi.org/10.3390/m1496.

Full text
Abstract:
We report the crystal structure of bis[N-(4-bromophenyl)pyridine-2-carboxamidato]Palladium (C1) which was isolated from the reaction of aqueous potassium tetrachloropalladate(II) and N-(4-bromophenyl)-pyridine-2-carboxamide in dichloromethane under nitrogen flow. The structure was characterised by the following spectroscopic methods 1H NMR, FT-IR and X-ray diffraction.
APA, Harvard, Vancouver, ISO, and other styles
12

Kalaiarasi, G., S. Dharani, V. M. Lynch, and R. Prabhakaran. "para metallation of 3-acetyl-chromen-2-one Schiff bases in tetranuclear palladacycles: focus on their biomolecular interaction and in vitro cytotoxicity." Dalton Transactions 48, no. 33 (2019): 12496–511. http://dx.doi.org/10.1039/c9dt02663k.

Full text
Abstract:
Three tetranuclear (1–3) complexes and a mononuclear (4) palladium(ii) complex were synthesized from 3-acetyl-chromen-2-one Schiff base ligands [H<sub>2</sub>-3MAC-Rtsc] (where R = H; CH<sub>3</sub>; C<sub>2</sub>H<sub>5</sub>[H<sub>2</sub>-3MAC-etsc] or C<sub>6</sub>H<sub>5</sub>) and potassium tetrachloropalladate.
APA, Harvard, Vancouver, ISO, and other styles
13

Casellato, U., R. Ettorre, and R. Graziani. "Crystal structure of bis(1-methylcytosinium) tetrachloropalladate(II), (C5H8N3O)2PdCl4." Zeitschrift für Kristallographie - New Crystal Structures 215, no. 2 (2000): 289–90. http://dx.doi.org/10.1515/ncrs-2000-0248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ranjbar, M., H. Aghabozorg, and A. Moghimi. "Crystal structure of bis(2,6-diaminopyridinum) tetrachloropalladate(II), (C5H8N3)2 · PdCl4." Zeitschrift für Kristallographie - New Crystal Structures 218, no. 1 (2003): 75–76. http://dx.doi.org/10.1524/ncrs.2003.218.1.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ranjbar, M., H. Aghabozorg, and A. Moghimim. "Crystal structure of bis(2,6-diaminopyridinum) tetrachloropalladate(II), (C5H8N3)2 · PdCl4." Zeitschrift für Kristallographie - New Crystal Structures 218, JG (2003): 75–76. http://dx.doi.org/10.1524/ncrs.2003.218.jg.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Heines, P., and H. L. Keller. "Crystal structure of di(tetramethylammonium)tetrachloropalladate(II), [N(CH3)4]2[PdCl4]." Zeitschrift für Kristallographie - New Crystal Structures 219, no. 1 (2004): 9–10. http://dx.doi.org/10.1524/ncrs.2004.219.1.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Heines, P. '., and H. L. Keller. "Crystal structure of di(tetramethylammonium)tetrachloropalladate(II), [IN(CH3)4]2[PdCl4]." Zeitschrift für Kristallographie - New Crystal Structures 219, no. 1-4 (2004): 9–10. http://dx.doi.org/10.1524/ncrs.2004.219.14.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bol'shakova, L. D., A. M. Bol'shakov, and O. V. Sergeeva. "ChemInform Abstract: Synthesis of Pentaamminechlorocobalt(III) Tetrachloropalladate(II) [Co(NH3)5Cl][PdCl4]." ChemInform 31, no. 52 (2000): no. http://dx.doi.org/10.1002/chin.200052024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kaluđerović, G. N., F. W. Heinemann, N. Ž. Knežević, S. R. Trifunović, and T. J. Sabo. "Crystal structure of (ethylenediammonium-N,N -di-3-propanoic acid) tetrachloropalladate(II) complex." Journal of Chemical Crystallography 34, no. 3 (2004): 185–89. http://dx.doi.org/10.1023/b:jocc.0000021562.41341.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hardacre, Christopher, John D. Holbrey, Paul B. McCormac, S. E. Jane McMath, Mark Nieuwenhuyzen, and Kenneth R. Seddon. "Crystal and liquid crystalline polymorphism in 1-alkyl-3-methylimidazolium tetrachloropalladate(ii) salts." Journal of Materials Chemistry 11, no. 2 (2001): 346–50. http://dx.doi.org/10.1039/b008091h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Asaji, Tetsuo, Keizo Horiuchi, Takehiko Chiba, Takashige Shimizu, and Ryuichi Ikeda. "NMR · NQR and DTA · DSC Studies of Phase Transitions in Pyridinium Tetrachloropalladate(II) and Pyridinium Tetrachloroplatinate(II)." Zeitschrift für Naturforschung A 53, no. 6-7 (1998): 419–26. http://dx.doi.org/10.1515/zna-1998-6-723.

Full text
Abstract:
Abstract From the measurements of DTA • DSC and the temperature dependences of 35Cl NQR frequencies, phase transitions were detected at 150 K, 168 K, and 172 K for (pyH)2 [PtCl4], and at 241 K for (PyH)2 [PdCl4]. In order to elucidate the motional state of the constituent ions in the crystals in connection with the structural phase transitions, the 35Cl NQR and 1H NMR spin-lattice relaxation times and the second moment of the 1H NMR line were measured as functions of temperature. For both compounds, the potential wells for the cationic reorientation are suggested to be highly nonequivalent at
APA, Harvard, Vancouver, ISO, and other styles
22

Smrečki, Neven, Igor Rončević, and Zora Popović. "Vibrational Spectroscopic Characterization and DFT Study of Palladium(II) Complexes with N-Benzyliminodiacetic Acid Derivatives." Australian Journal of Chemistry 69, no. 11 (2016): 1285. http://dx.doi.org/10.1071/ch16150.

Full text
Abstract:
The reactions of N-benzyliminodiacetic acid (BnidaH2) and its para-substituted derivatives, namely N-(p-chlorobenzyl)iminodiacetic acid (p-ClBnidaH2), N-(p-nitrobenzyl)iminodiacetic acid (p-NO2BnidaH2), and N-(p-methoxybenzyl)iminodiacetic acid (p-MeOBnidaH2) with sodium tetrachloropalladate(II) were performed in aqueous solutions. Three new complexes [Pd(p-ClBnidaH)2]·2H2O (2), [Pd(p-NO2BnidaH)2]·2H2O (3), and [Pd(p-MeOBnidaH)2] (4) were prepared and characterized by infrared spectroscopy and thermogravimetric and differential thermal analyses. The molecular geometry and infrared spectra of t
APA, Harvard, Vancouver, ISO, and other styles
23

Ivanova, B. B., M. G. Arnaudov, and H. Mayer-Figge. "Molecular spectral analysis and crystal structure of the 4-aminopyridinium tetrachloropalladate(II) complex salt." Polyhedron 24, no. 13 (2005): 1624–30. http://dx.doi.org/10.1016/j.poly.2005.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Duesler, E. N., R. E. Tapscott, M. Garcia-Basallote, and F. Gonzalez-Vílchez. "Dihydrogen (±)-trans-1,2-cyclohexanediaminetetraacetic acid tetrachloropalladate(II) and tetrachloroplatinate(II) pentahydrates, [C14H24N2O8][PdCl4].5H2O and [C14H24N2O8][PtCl4].5H2O." Acta Crystallographica Section C Crystal Structure Communications 41, no. 5 (1985): 678–81. http://dx.doi.org/10.1107/s010827018500508x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

IBRAHIM, Hosny, and Amal KHORSHID. "Modified Carbon Paste Sensor for Cetyltrimethylammonium Ion Based on Its Ion-associate with Tetrachloropalladate(II)." Analytical Sciences 23, no. 5 (2007): 573–79. http://dx.doi.org/10.2116/analsci.23.573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Badawi, A., A. Summan, M. Hannan, and Z. Abdeen. "Mutagenic Effects of Some Metal Complexes I. Cytotoxic Activity of Bis (L-glutaminato) Tetrachloropalladate (II)." International Research Journal of Pure and Applied Chemistry 7, no. 4 (2015): 203–6. http://dx.doi.org/10.9734/irjpac/2015/16772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zheng, Fulin, Tsz-Lung Kwong, and Ka-Fu Yung. "Surfactant-Free Monodispersed Pd Nanoparticles Template for Core-Shell Pd@PdPt Nanoparticles as Electrocatalyst towards Methanol Oxidation Reaction (MOR)." Nanomaterials 12, no. 2 (2022): 260. http://dx.doi.org/10.3390/nano12020260.

Full text
Abstract:
An eco-friendly two-step synthetic method for synthesizing Pd@PdPt/CNTs nanoparticles was introduced and studied for the methanol oxidation reaction. The Pd@PdPt alloy core-shell structure was synthesized by preparing a surfactant-free monodispersed Pd/CNTs precursor through the hydrolysis of tetrachloropalladate (II) ion ([PdCl4]2−) in the presence of carbon nanotubes (CNTs) and the subsequent hydrogen reduction and followed by a galvanic replacement reaction. This method opens up an eco-friendly, practical, and straightforward route for synthesizing monometallic or bimetallic nanoparticles w
APA, Harvard, Vancouver, ISO, and other styles
28

Patra, Debprasad, Poulami Pattanayak, Jahar Lal Pratihar, and Surajit Chattopadhyay. "Activation of ortho C–H bond by nickel(II) acetate or sodium tetrachloropalladate(II) in naphthyl imino derivatives of azobenzene." Polyhedron 51 (March 2013): 46–53. http://dx.doi.org/10.1016/j.poly.2012.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zaw, K., M. Lautens, and P. M. Henry. "Oxidation of olefins by palladium(II). 10. Products of the reaction of tetrachloropalladate(II) with allyl alcohol in aqueous solution." Organometallics 4, no. 7 (1985): 1286–91. http://dx.doi.org/10.1021/om00126a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Okitsu, Kenji, Yoshiteru Mizukoshi, Hiroshi Bandow, Takao A. Yamamoto, Yoshio Nagata, and Yasuaki Maeda. "Synthesis of Palladium Nanoparticles with Interstitial Carbon by Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous Solution." Journal of Physical Chemistry B 101, no. 28 (1997): 5470–72. http://dx.doi.org/10.1021/jp970415f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Santoveña, A., C. Rodriguez-Proenza, J. A. Maya-Cornejo, et al. "Characterization Microstructural and Electrochemical of AgPd Alloy Bimetallic Nanoparticles." MRS Advances 2, no. 50 (2017): 2857–63. http://dx.doi.org/10.1557/adv.2017.561.

Full text
Abstract:
ABSTRACTBimetallic nanoparticles are of special interest for their potential applications to fuel cells, among the bimetallic systems, AuPd bimetallic nanoparticles have received great interest as they can be widely used as effective catalysts for various electrochemical reactions. Monodisperse AgPd alloy nanoparticles were synthesized by polyol method using silver nitrate and potassium tetrachloropalladate(II) in ethylene glycol as the reducing agent at 160 °C. Structural, compositional and electrochemical characterizations of synthesized bimetallic nanoparticles were investigated. High-angle
APA, Harvard, Vancouver, ISO, and other styles
32

Antsyshkina, A. S., G. G. Sadikov, and V. D. Makhaev. "[H2OT][PdCl4], a salt of the protonated oxythiamine cation with the tetrachloropalladate(II) tetrachloride anion synthesis and crystal structure." Russian Journal of Inorganic Chemistry 53, no. 9 (2008): 1411–16. http://dx.doi.org/10.1134/s0036023608090118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Das, Asim Kumar, Soma Gangopadhyay, and Debabrata Banerjea. "Kinetics and mechanism of formation of tetrachloropalladate(II) in the reactions of bis(oxalato)- and bis(malonato) palladate(II) with chloride in acid media." Transition Metal Chemistry 14, no. 1 (1989): 73–75. http://dx.doi.org/10.1007/bf01129765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jevtić, Mirela, Marijana Stanojević Pirković, Teodora Komazec, et al. "A Comprehensive Evaluation of a Coumarin Derivative and Its Corresponding Palladium Complex as Potential Therapeutic Agents in the Treatment of Gynecological Cancers: Synthesis, Characterization, and Cytotoxicity." Pharmaceutics 16, no. 11 (2024): 1437. http://dx.doi.org/10.3390/pharmaceutics16111437.

Full text
Abstract:
Background: The aim of this research is the synthesis and characterization of coumarin-palladium complex and the investigation of the cytotoxicity of both the ligand and the complex. Methods: The palladium( II) complex (CC) was obtained in the reaction between (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl-acetate (CL) and potassium-tetrachloropalladate(II) and characterized using IR and NMR spectra, experimentally and theoretically. Cytotoxicity of CL and CC were determined for human cervical carcinoma HeLa, ovarian cancer A2780, hormone dependent breast cancer M
APA, Harvard, Vancouver, ISO, and other styles
35

Takazawa, H., S. Ohba, and Y. Saito. "Electron-density distribution in crystals of dipotassium tetrachloropalladate(II) and dipotassium hexachloropalladate(IV), K2[PdCl4] and K2[PdCl6] at 120 K." Acta Crystallographica Section B Structural Science 44, no. 6 (1988): 580–85. http://dx.doi.org/10.1107/s0108768188010031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Leniart, Andrzej, Barbara Burnat, Mariola Brycht, Maryia-Mazhena Dzemidovich, and Sławomira Skrzypek. "Fabrication and Characterization of an Electrochemical Platform for Formaldehyde Oxidation, Based on Glassy Carbon Modified with Multi-Walled Carbon Nanotubes and Electrochemically Generated Palladium Nanoparticles." Materials 17, no. 4 (2024): 841. http://dx.doi.org/10.3390/ma17040841.

Full text
Abstract:
This study outlines the fabrication process of an electrochemical platform utilizing glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and palladium nanoparticles (PdNPs). The MWCNTs were applied on the GCE surface using the drop-casting method and PdNPs were produced electrochemically by a potentiostatic method employing various programmed charges from an ammonium tetrachloropalladate(II) solution. The resulting GCEs modified with MWCNTs and PdNPs underwent comprehensive characterization for topographical and morphological attributes, utilizing atomic force mi
APA, Harvard, Vancouver, ISO, and other styles
37

Efimenko, S. G., та S. K. Efimenko. "An improved method for determining glucosinolate content in Brassicaceаe oil crops". Oil Crops 4, № 200 (2024): 45–51. https://doi.org/10.25230/2412-608x-2024-4-200-45-51.

Full text
Abstract:
For more than 40 years, at V.S. Pustovoit All-Russian Research Institute of Oil Crops there has been carried out extensive breeding work with winter and spring varieties of rapeseed and turnip rape with the aim of developing non-erucic and low-glucosinolate (“type 00”) varieties. For evaluation of breeding material for glucosinolate content in rapeseed seeds we used modified method of Osik N.S. The purpose of our research is comparative analysis of existing methods for determination of glucosinolate content in seeds and search for the most simple, precise and productive method allowing efficie
APA, Harvard, Vancouver, ISO, and other styles
38

Zaw, Kyaw, and Patrick M. Henry. "Oxidation of olefins by palladium(II). 12. Product distributions and kinetics of the oxidation of 3-buten-2-ol and 2-buten-1-ol by tetrachloropalladate (PdCl42-) in aqueous solution." Journal of Organic Chemistry 55, no. 6 (1990): 1842–47. http://dx.doi.org/10.1021/jo00293a031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Codina, Gemma, Amparo Caubet, Concepción López, Virtudes Moreno та Elies Molins. "Palladium(II) and Platinum(II) Polyamine Complexes: X-Ray Crystal Structures of (SP-4-2)-Chloro{N-[(3-amino-κN)propyl]propane-1,3-diamine-κN,κN′}palladium(1+) Tetrachloropalladate (2-) (2 : 1) and (R,S)-Tetrachloro[μ-(spermine)]dipalladium(II) (={μ-{N,N′-Bis[(3-amino-κN)propyl]butane-1,4-diamine-κN:κN′}}tetrachlorodipalladium)". Helvetica Chimica Acta 82, № 7 (1999): 1025–37. http://dx.doi.org/10.1002/(sici)1522-2675(19990707)82:7<1025::aid-hlca1025>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Watson, David F., Jennifer L. Willson, and Andrew B. Bocarsly. "Photochemical Image Generation in a Cyanogel System Synthesized from Tetrachloropalladate(II) and the Trimetallic Mixed-Valence Complex [(NC)5FeII−CN−PtIV(NH3)4−NC−FeII(CN)5]4-: Consideration of Photochemical and Dark Mechanistic Pathways of Prussian Blue Formation." Inorganic Chemistry 41, no. 9 (2002): 2408–16. http://dx.doi.org/10.1021/ic010710l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Valle, G., and R. Ettorre. "Crystal structure of bisimidazolium tetrachloropalladate(II), [C3H5N2]2[PdCl4]." Zeitschrift für Kristallographie - Crystalline Materials 212, no. 2 (1997). http://dx.doi.org/10.1524/zkri.1997.212.2.166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mansour, Ahmed, Rabaa M. Khaled, Krzysztof Radacki, et al. "Palladium(II) Complexes of 4‐Phenyl‐3‐thiosemicarbazone Ligands: Insights Into Cytotoxic Properties And Mode of Cell Death." Chemistry & Biodiversity, March 12, 2024. http://dx.doi.org/10.1002/cbdv.202400363.

Full text
Abstract:
Reactions between sodium tetrachloropalladate and 2‐ (or 4‐) substituted 4‐phenyl‐3‐thiosemicarbazone ligands (HLR), with various electron‐donating and electron‐withdrawing substituents (R = OCH3, NO2, and Cl), afford square‐planar complexes of the general formula [Pd(LR)2]. Ground‐state geometry optimization and the vibrational analysis of cis‐ and trans‐isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the typ
APA, Harvard, Vancouver, ISO, and other styles
43

Egan-Morriss, Christopher, Richard L. Kimber, Nigel A. Powell, and Jonathan R. Lloyd. "Impact of Solution Chemistry on the Biotechnological Synthesis and Properties of Palladium Nanoparticles." Johnson Matthey Technology Review, 2023. http://dx.doi.org/10.1595/205651323x16813753335431.

Full text
Abstract:
The biosynthesis of Pd nanoparticles supported on microbial cells (bio-Pd) has attracted much recent interest, but the effect of solution chemistry on the process remains poorly understood. Biological buffers can be used to maintain physiological pH during the bioreduction of Pd(II) to Pd(0) by microbial cells, however, buffer components have the potential to complex Pd(II), and this may affect the subsequent microbe-metal interaction. In this study, a range of Pd(II) salts and biological buffers were selected to assess the impact of the solution chemistry on the rate of bioreduction of Pd(II)
APA, Harvard, Vancouver, ISO, and other styles
44

Bocarsly, Andrew B., Gireesh Kumar, and Marija Heibel. "Novel Inorganic Hydrogels Based on The Polymerization of Cyanometalate Transition Metal Complexes With [PdCl4]2-: A New Approach To Ceramic And Alloy Precursors." MRS Proceedings 346 (1994). http://dx.doi.org/10.1557/proc-346-89.

Full text
Abstract:
ABSTRACTThe reaction of a wide variety of cyanometalate complexes of the general form [M(CN)x]n- (where M= a transition metal ion) with square planar [PdCl4]2- in aqueous solution leads to the formation of linear polymers. Polymerization occurs via substitution of chloride ligands on the Pd(II) centers, by the nitrogen end of the cyanide ligand to generate extended bridging cyanide structures. Upon generation at room temperature polymer solutions of this type under go a sol-gel transition to generate robust hydrogels having water content in excess of 95%. In the case of the cyanocobaltate/tetr
APA, Harvard, Vancouver, ISO, and other styles
45

Porter, Lon A., Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribbe, and Jillian M. Buriak. "New Pairs of Inks and Papers for Photolithography, Microcontact Printing, and Scanning Probe Nanolithography." MRS Proceedings 737 (2002). http://dx.doi.org/10.1557/proc-737-f3.2.

Full text
Abstract:
ABSTRACTCurrently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ultra large scale integration (ULSI) device fabrication, nanoelectromechanical systems (NEMS), and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. This method provides for the facile interfacing of metal nanoparticles with a group (IV) and III-IV compound semiconductor surfaces. M
APA, Harvard, Vancouver, ISO, and other styles
46

al Janabi, Basma, Francisco Reigosa, Juan M. Ortigueira, and José M. Vila. "Bidentate [C,N] and Tridentate [C,N,S] Palladium Cyclometallated Complexes as Pre‐Catalysts in Cross‐Coupling Reactions." ChemistryOpen, November 29, 2024. http://dx.doi.org/10.1002/open.202400253.

Full text
Abstract:
AbstractTreatment of halide substituted bidentate [C,N] and tridentate [C,N,S] Schiff base ligands with palladium(II) acetate or with lithium tetrachloropalladate, as appropriate, afforded through C−H activation of the organic ligand, the dinuclear (1 a, 1 b) and mononuclear (1 c, 1 d, 1 e) palladacycles, respectively. Reaction of the μ‐acetate dinuclear complexes with aqueous sodium chloride in a metathesis process, gave the μ‐chloride dinuclear complexes (2 a, 2 b). Treatment of the latter with triphenylphosphine or with bis(diphenylphosphino)methane (dppm)/ammonium hexafluorophosphate in co
APA, Harvard, Vancouver, ISO, and other styles
47

Porter, Lon A., Hee Cheul Choi, Alexander E. Ribbe, and Jillian M. Buriak. "Electroless Deposition and Patterning of Morphologically Complex Precious Metal Films on Semiconductor Surfaces." MRS Proceedings 737 (2002). http://dx.doi.org/10.1557/proc-737-f4.7.

Full text
Abstract:
ABSTRACTPrecious metals are choice materials for a myriad of applications due their high electrical conductivity, resistance to corrosion, and ligand binding specificity. Indispensable in modern electronics fabrication, precious metals also enjoy widespread use as catalysts, support substrates, and sensor elements. Recent progress towards metallization on diminishing size regimes has imposed increasingly stringent demands upon thin film preparation methodologies. Metallization techniques employed in ultra large scale integration (ULSI) device fabrication, nanoelectromechanical systems (NEMS),
APA, Harvard, Vancouver, ISO, and other styles
48

SAKODYNSKAYA, I. K., A. D. RYABOV, A. V. ELISEEV, et al. "ChemInform Abstract: Reaction of ortho-Palladinated N,N-Dimethylbenzylamines with Methyl Vinyl Ketone. Crystal Structure of 1-(Acetonyl)-2,2-dimethylisoindolinium Tetrachloropalladate(II)." ChemInform 18, no. 30 (1987). http://dx.doi.org/10.1002/chin.198730263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Joudeh, Nadeem, Athanasios Saragliadis, Christian Schulz, André Voigt, Eivind Almaas, and Dirk Linke. "Transcriptomic Response Analysis of Escherichia coli to Palladium Stress." Frontiers in Microbiology 12 (October 8, 2021). http://dx.doi.org/10.3389/fmicb.2021.741836.

Full text
Abstract:
Palladium (Pd), due to its unique catalytic properties, is an industrially important heavy metal especially in the form of nanoparticles. It has a wide range of applications from automobile catalytic converters to the pharmaceutical production of morphine. Bacteria have been used to biologically produce Pd nanoparticles as a new environmentally friendly alternative to the currently used energy-intensive and toxic physicochemical methods. Heavy metals, including Pd, are toxic to bacterial cells and cause general and oxidative stress that hinders the use of bacteria to produce Pd nanoparticles e
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!