Academic literature on the topic 'Text detection and recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Text detection and recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Text detection and recognition"
Pathak, Prakhar, Pulkit Gupta, Nishant Kishore, Nikhil Kumar Yadav, and Dr Himanshu Chaudhary. "Text Detection and Recognition: A Review." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 2733–40. http://dx.doi.org/10.22214/ijraset.2022.42932.
Full textBALAJI, P. "A Survey on Scene Text Detection and Text Recognition." International Journal for Research in Applied Science and Engineering Technology 6, no. 3 (March 31, 2018): 1676–84. http://dx.doi.org/10.22214/ijraset.2018.3260.
Full textNazari, Narges Honarvar, Tianxiang Tan, and Yao-Yi Chiang. "Integrating Text Recognition for Overlapping Text Detection in Maps." Electronic Imaging 2016, no. 17 (February 17, 2016): 1–8. http://dx.doi.org/10.2352/issn.2470-1173.2016.17.drr-061.
Full textMakhmudov, Fazliddin, Mukhriddin Mukhiddinov, Akmalbek Abdusalomov, Kuldoshbay Avazov, Utkir Khamdamov, and Young Im Cho. "Improvement of the end-to-end scene text recognition method for “text-to-speech” conversion." International Journal of Wavelets, Multiresolution and Information Processing 18, no. 06 (September 15, 2020): 2050052. http://dx.doi.org/10.1142/s0219691320500526.
Full textLin, Han, Peng Yang, and Fanlong Zhang. "Review of Scene Text Detection and Recognition." Archives of Computational Methods in Engineering 27, no. 2 (January 11, 2019): 433–54. http://dx.doi.org/10.1007/s11831-019-09315-1.
Full textZhang, Fan, Jiaxing Luan, Zhichao Xu, and Wei Chen. "DetReco: Object-Text Detection and Recognition Based on Deep Neural Network." Mathematical Problems in Engineering 2020 (July 14, 2020): 1–15. http://dx.doi.org/10.1155/2020/2365076.
Full textLokkondra, Chaitra Yuvaraj, Dinesh Ramegowda, Gopalakrishna Madigondanahalli Thimmaiah, and Ajay Prakash Bassappa Vijaya. "DEFUSE: Deep Fused End-to-End Video Text Detection and Recognition." Revue d'Intelligence Artificielle 36, no. 3 (June 30, 2022): 459–66. http://dx.doi.org/10.18280/ria.360314.
Full textCahyadi, Septian, Febri Damatraseta, and Lodryck Lodefikus S. "Comparative Analysis Of Efficient Image Segmentation Technique For Text Recognition And Human Skin Recognition." Jurnal Informatika Kesatuan 1, no. 1 (July 13, 2021): 81–90. http://dx.doi.org/10.37641/jikes.v1i1.775.
Full textLi, Chunlan. "Research on Methods of English Text Detection and Recognition Based on Neural Network Detection Model." Scientific Programming 2021 (December 13, 2021): 1–11. http://dx.doi.org/10.1155/2021/6406856.
Full textJose, John Anthony C., Allysa Kate M. Brillantes, Elmer P. Dadios, Edwin Sybingco, Laurence A. Gan Lim, Alexis M. Fillone, and Robert Kerwin C. Billones. "Recognition of Hybrid Graphic-Text License Plates." Journal of Advanced Computational Intelligence and Intelligent Informatics 25, no. 4 (July 20, 2021): 416–22. http://dx.doi.org/10.20965/jaciii.2021.p0416.
Full textDissertations / Theses on the topic "Text detection and recognition"
Brifkany, Jan, and Yasini Anass El. "Text Recognition in Natural Images : A study in Text Detection." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282935.
Full textUnder de senaste åren har en ökning av datorseende metoder och lösningar utvecklats för att lösa datorseende problemet. Genom att kombinera olika metoder från olika områden av datorseende har datavetare kunnat utveckla mer avancerade och komplexa modeller för att lösa dessa problem. Denna rapport kommer att omfatta två kategorier, textidentifiering och textigenkänning. Dessa områden kommer att definieras, beskrivas och analyseras i resultat- och diskussionskapitlet. Denna rapport kommer att omfatta ett mycket intressant och utmanande ämne, textigenkänning i naturliga bilder. Rapporten syftar till att bedöma förbättringen av OCR-resultatet efter det att tre bildsegmenteringsmetoder har tillämpats på bilder. Metoderna som har använts är ” Maximally stable extremal regions” och geometrisk filtrering baserad på geometriska egenskaper. Resultatet visade att hos OCR med segmenteringsmetoder hade en övergripande bättre resultat jämfört med OCR utan segmenteringsmetoder. Det visades också att bilder med horisontell textorientering hade bättre noggrannhet vid tillämpning av OCR med segmenteringsmetoder jämfört med bilder med flerorienterad textorientering.
Khiari, El Hebri. "Text Detection and Recognition in the Automotive Context." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32458.
Full textYousfi, Sonia. "Embedded Arabic text detection and recognition in videos." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI069/document.
Full textThis thesis focuses on Arabic embedded text detection and recognition in videos. Different approaches robust to Arabic text variability (fonts, scales, sizes, etc.) as well as to environmental and acquisition condition challenges (contrasts, degradation, complex background, etc.) are proposed. We introduce different machine learning-based solutions for robust text detection without relying on any pre-processing. The first method is based on Convolutional Neural Networks (ConvNet) while the others use a specific boosting cascade to select relevant hand-crafted text features. For the text recognition, our methodology is segmentation-free. Text images are transformed into sequences of features using a multi-scale scanning scheme. Standing out from the dominant methodology of hand-crafted features, we propose to learn relevant text representations from data using different deep learning methods, namely Deep Auto-Encoders, ConvNets and unsupervised learning models. Each one leads to a specific OCR (Optical Character Recognition) solution. Sequence labeling is performed without any prior segmentation using a recurrent connectionist learning model. Proposed solutions are compared to other methods based on non-connectionist and hand-crafted features. In addition, we propose to enhance the recognition results using Recurrent Neural Network-based language models that are able to capture long-range linguistic dependencies. Both OCR and language model probabilities are incorporated in a joint decoding scheme where additional hyper-parameters are introduced to boost recognition results and reduce the response time. Given the lack of public multimedia Arabic datasets, we propose novel annotated datasets issued from Arabic videos. The OCR dataset, called ALIF, is publicly available for research purposes. As the best of our knowledge, it is first public dataset dedicated for Arabic video OCR. Our proposed solutions were extensively evaluated. Obtained results highlight the genericity and the efficiency of our approaches, reaching a word recognition rate of 88.63% on the ALIF dataset and outperforming well-known commercial OCR engine by more than 36%
Olsson, Oskar, and Moa Eriksson. "Automated system tests with image recognition : focused on text detection and recognition." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160249.
Full textChen, Datong. "Text detection and recognition in images and video sequences /." [S.l.] : [s.n.], 2003. http://library.epfl.ch/theses/?display=detail&nr=2863.
Full textMešár, Marek. "Svět kolem nás jako hyperlink." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236204.
Full textFraz, Muhammad. "Video content analysis for intelligent forensics." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/18065.
Full textWigington, Curtis Michael. "End-to-End Full-Page Handwriting Recognition." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7099.
Full textJaderberg, Maxwell. "Deep learning for text spotting." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:e893c11e-6b6b-4d11-bb25-846bcef9b13e.
Full textLu, Hsin-Min. "SURVEILLANCE IN THE INFORMATION AGE: TEXT QUANTIFICATION, ANOMALY DETECTION, AND EMPIRICAL EVALUATION." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193893.
Full textBooks on the topic "Text detection and recognition"
Chen, Datong. Text detection and recognition in images and video sequences. Lausanne: EPFL, 2003.
Find full textRajalingam, Mallikka. Text Segmentation and Recognition for Enhanced Image Spam Detection. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-53047-1.
Full textSaleeb, Atef F. Defect localization capabilities of a global detection scheme: Spatial pattern recognition using full-field vibration test data in plates. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textLu, Tong, Shivakumara Palaiahnakote, Chew Lim Tan, and Wenyin Liu. Video Text Detection. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6515-6.
Full textCipolla, Roberto, Sebastiano Battiato, and Giovanni Maria Farinella. Computer vision: Detection, recognition and reconstruction. Berlin: Springer, 2010.
Find full textDrugs and the law: Detection, recognition & investigation. [Altamonte Springs, FL]: Gould Publications, 1992.
Find full textBogusław Cyganek. Object Detection and Recognition in Digital Images. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118618387.
Full textJiang, Xiaoyue, Abdenour Hadid, Yanwei Pang, Eric Granger, and Xiaoyi Feng, eds. Deep Learning in Object Detection and Recognition. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-5152-4.
Full textDrugs and the law: Detection, recognition & investigation. Charlottesville, VA: LexisNexis, 2014.
Find full text1950-, Srihari Sargur N., ed. Computer text recognition and error correction. Silver Spring, MD: IEEE Computer Society Press, 1985.
Find full textBook chapters on the topic "Text detection and recognition"
Lu, Tong, Shivakumara Palaiahnakote, Chew Lim Tan, and Wenyin Liu. "Character Segmentation and Recognition." In Video Text Detection, 145–68. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6515-6_6.
Full textHuang, Huijuan, Zhi Tian, Tong He, Weilin Huang, and Yu Qiao. "Orientation-Aware Text Proposals Network for Scene Text Detection." In Biometric Recognition, 739–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69923-3_79.
Full textRajalingam, Mallikka. "Character Recognition." In Text Segmentation and Recognition for Enhanced Image Spam Detection, 71–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53047-1_5.
Full textZhang, Wenqing, Yang Qiu, Minghui Liao, Rui Zhang, Xiaolin Wei, and Xiang Bai. "Scene Text Detection with Scribble Line." In Document Analysis and Recognition – ICDAR 2021, 79–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86337-1_6.
Full textSheng, Tao, and Zhouhui Lian. "Bidirectional Regression for Arbitrary-Shaped Text Detection." In Document Analysis and Recognition – ICDAR 2021, 187–201. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86337-1_13.
Full textMihelič, France, and Janez Žibert. "Robust Speech Detection Based on Phoneme Recognition Features." In Text, Speech and Dialogue, 455–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11846406_57.
Full textWang, Hsueh-Cheng, Yafim Landa, Maurice Fallon, and Seth Teller. "Spatially Prioritized and Persistent Text Detection and Decoding." In Camera-Based Document Analysis and Recognition, 3–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05167-3_1.
Full textGeorge, Sonia, and Noopa Jagadeesh. "Robust Text Detection and Recognition in Blurred Images." In Proceedings of the International Conference on Soft Computing Systems, 125–34. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2671-0_12.
Full textDarshan, H. Y., M. T. Gopalkrishna, and M. C. Hanumantharaju. "Text Detection and Recognition Using Camera Based Images." In Advances in Intelligent Systems and Computing, 573–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12012-6_63.
Full textKataria, Mahima, Prashansa Gupta, Shivani Singh, Vani Bansal, and M. Ravinder. "Review on text detection and recognition in images." In Artificial Intelligence and Speech Technology, 355–61. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003150664-39.
Full textConference papers on the topic "Text detection and recognition"
Hu, ZiLing, Xingiiao Wu, and Jing Yang. "TCATD: Text Contour Attention for Scene Text Detection." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412223.
Full textIlyasi, Pervez Shoaib, Gautam Gupta, M. Sravan Sai, K. Saatwik, B. Shiva Kumar, and Dinesh Vij. "Object-Text Detection and Recognition System." In 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART). IEEE, 2021. http://dx.doi.org/10.1109/smart52563.2021.9675310.
Full textPan, Runqiu, Zezhou Li, and Anna Zhu. "Find More Accurate Text Boundary for Scene Text Detection." In 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9956596.
Full textXiaoming Huang, Tao Shen, Run Wang, and Chenqiang Gao. "Text detection and recognition in natural scene images." In 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF). IEEE, 2015. http://dx.doi.org/10.1109/icedif.2015.7280160.
Full textZhu, Xiangyu, Yingying Jiang, Shuli Yang, Xiaobing Wang, Wei Li, Pei Fu, Hua Wang, and Zhenbo Luo. "Deep Residual Text Detection Network for Scene Text." In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2017. http://dx.doi.org/10.1109/icdar.2017.137.
Full textQin, Longfei, Palaiahnakote Shivakumara, Tong Lu, Umapada Pal, and Chew Lim Tan. "Video scene text frames categorization for text detection and recognition." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900241.
Full textDai, Yuchen, Zheng Huang, Yuting Gao, Youxuan Xu, Kai Chen, Jie Guo, and Weidong Qiu. "Fused Text Segmentation Networks for Multi-oriented Scene Text Detection." In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8546066.
Full textZongyi Liu and Sudeep Sarkar. "Robust outdoor text detection using text intensity and shape features." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761432.
Full textHu, Ping, Weiqiang Wang, and Ke Lu. "Video text detection with text edges and convolutional neural network." In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2015. http://dx.doi.org/10.1109/acpr.2015.7486588.
Full textXylogiannopoulos, Konstantinos, Panagiotis Karampelas, and Reda Alhajj. "Text Mining for Plagiarism Detection: Multivariate Pattern Detection for Recognition of Text Similarities." In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2018. http://dx.doi.org/10.1109/asonam.2018.8508265.
Full textReports on the topic "Text detection and recognition"
Godil, Afzal, Patrick Grother, and Mei Ngan. The text recognition algorithm independent evaluation (TRAIT). Gaithersburg, MD: National Institute of Standards and Technology, December 2017. http://dx.doi.org/10.6028/nist.ir.8199.
Full textSeo, Young-Woo, and Katia Sycara. Text Clustering for Topic Detection. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada599196.
Full textMouroulis, P. Visual target detection and recognition. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5087944.
Full textKarakowski, Joseph A., and Hai H. Phu. Text Independent Speaker Recognition Using A Fuzzy Hypercube Classifier. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada354792.
Full textGrenander, Ulf. Foundations of Object Detection and Recognition,. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada352287.
Full textLi, Huiping, David Doermann, and Omid Kia. Automatic Text Detection and Tracking in Digital Video. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada458675.
Full textDittmar, George. Object Detection and Recognition in Natural Settings. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.926.
Full textChun, Cornell S., and Firooz A. Sadjadi. Polarimetric Imaging System for Automatic Target Detection and Recognition. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada395219.
Full textDevaney, A. J., R. Raghavan, H. Lev-Ari, E. Manolakos, and M. Kokar. Automatic Target Detection And Recognition: A Wavelet Based Approach. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada329696.
Full textHupp, N. A. Detection of Prosodics by Using a Speech Recognition System. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada242432.
Full text