Academic literature on the topic 'Text summarization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Text summarization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Text summarization"
Sirohi, Neeraj Kumar, Dr Mamta Bansal, and Dr S. N. Rajan Rajan. "Text Summarization Approaches Using Machine Learning & LSTM." Revista Gestão Inovação e Tecnologias 11, no. 4 (September 1, 2021): 5010–26. http://dx.doi.org/10.47059/revistageintec.v11i4.2526.
Full textD, Manju, Radhamani V, Dhanush Kannan A, Kavya B, Sangavi S, and Swetha Srinivasan. "TEXT SUMMARIZATION." YMER Digital 21, no. 07 (July 7, 2022): 173–82. http://dx.doi.org/10.37896/ymer21.07/13.
Full textVikas, A., Pradyumna G.V.N, and Tahir Ahmed Shaik. "Text Summarization." International Journal of Engineering and Computer Science 9, no. 2 (February 3, 2020): 24940–45. http://dx.doi.org/10.18535/ijecs/v9i2.4437.
Full textParimoo, Rohit, Rohit Sharma, Naleen Gaur, Nimish Jain, and Sweeta Bansal. "Applying Text Rank to Build an Automatic Text Summarization Web Application." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 865–67. http://dx.doi.org/10.22214/ijraset.2022.40766.
Full textJawale, Sakshi, Pranit Londhe, Prajwali Kadam, Sarika Jadhav, and Rushikesh Kolekar. "Automatic Text Summarization." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 1842–46. http://dx.doi.org/10.22214/ijraset.2023.51815.
Full textChettri, Roshna, and Udit Kr. "Automatic Text Summarization." International Journal of Computer Applications 161, no. 1 (March 15, 2017): 5–7. http://dx.doi.org/10.5120/ijca2017912326.
Full textPatil, Aarti, Komal Pharande, Dipali Nale, and Roshani Agrawal. "Automatic Text Summarization." International Journal of Computer Applications 109, no. 17 (January 16, 2015): 18–19. http://dx.doi.org/10.5120/19418-0910.
Full textLeiva, Luis A. "Responsive text summarization." Information Processing Letters 130 (February 2018): 52–57. http://dx.doi.org/10.1016/j.ipl.2017.10.007.
Full textBichi, Abdulkadir Abubakar, Ruhaidah Samsudin, Rohayanti Hassan, Layla Rasheed Abdallah Hasan, and Abubakar Ado Rogo. "Graph-based extractive text summarization method for Hausa text." PLOS ONE 18, no. 5 (May 9, 2023): e0285376. http://dx.doi.org/10.1371/journal.pone.0285376.
Full textOkumura, Manabu, Takahiro Fukusima, Hidetsugu Nanba, and Tsutomu Hirao. "Text Summarization Challenge 2 text summarization evaluation at NTCIR workshop 3." ACM SIGIR Forum 38, no. 1 (July 2004): 29–38. http://dx.doi.org/10.1145/986278.986284.
Full textDissertations / Theses on the topic "Text summarization"
Branavan, Satchuthananthavale Rasiah Kuhan. "High compression rate text summarization." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44368.
Full textIncludes bibliographical references (p. 95-97).
This thesis focuses on methods for condensing large documents into highly concise summaries, achieving compression rates on par with human writers. While the need for such summaries in the current age of information overload is increasing, the desired compression rate has thus far been beyond the reach of automatic summarization systems. The potency of our summarization methods is due to their in-depth modelling of document content in a probabilistic framework. We explore two types of document representation that capture orthogonal aspects of text content. The first represents the semantic properties mentioned in a document in a hierarchical Bayesian model. This method is used to summarize thousands of consumer reviews by identifying the product properties mentioned by multiple reviewers. The second representation captures discourse properties, modelling the connections between different segments of a document. This discriminatively trained model is employed to generate tables of contents for books and lecture transcripts. The summarization methods presented here have been incorporated into large-scale practical systems that help users effectively access information online.
by Satchuthananthavale Rasiah Kuhan Branavan.
S.M.
Linhares, Pontes Elvys. "Compressive Cross-Language Text Summarization." Thesis, Avignon, 2018. http://www.theses.fr/2018AVIG0232/document.
Full textThe popularization of social networks and digital documents increased quickly the informationavailable on the Internet. However, this huge amount of data cannot be analyzedmanually. Natural Language Processing (NLP) analyzes the interactions betweencomputers and human languages in order to process and to analyze natural languagedata. NLP techniques incorporate a variety of methods, including linguistics, semanticsand statistics to extract entities, relationships and understand a document. Amongseveral NLP applications, we are interested, in this thesis, in the cross-language textsummarization which produces a summary in a language different from the languageof the source documents. We also analyzed other NLP tasks (word encoding representation,semantic similarity, sentence and multi-sentence compression) to generate morestable and informative cross-lingual summaries.Most of NLP applications (including all types of text summarization) use a kind ofsimilarity measure to analyze and to compare the meaning of words, chunks, sentencesand texts in their approaches. A way to analyze this similarity is to generate a representationfor these sentences that contains the meaning of them. The meaning of sentencesis defined by several elements, such as the context of words and expressions, the orderof words and the previous information. Simple metrics, such as cosine metric andEuclidean distance, provide a measure of similarity between two sentences; however,they do not analyze the order of words or multi-words. Analyzing these problems,we propose a neural network model that combines recurrent and convolutional neuralnetworks to estimate the semantic similarity of a pair of sentences (or texts) based onthe local and general contexts of words. Our model predicted better similarity scoresthan baselines by analyzing better the local and the general meanings of words andmulti-word expressions.In order to remove redundancies and non-relevant information of similar sentences,we propose a multi-sentence compression method that compresses similar sentencesby fusing them in correct and short compressions that contain the main information ofthese similar sentences. We model clusters of similar sentences as word graphs. Then,we apply an integer linear programming model that guides the compression of theseclusters based on a list of keywords. We look for a path in the word graph that has goodcohesion and contains the maximum of keywords. Our approach outperformed baselinesby generating more informative and correct compressions for French, Portugueseand Spanish languages. Finally, we combine these previous methods to build a cross-language text summarizationsystem. Our system is an {English, French, Portuguese, Spanish}-to-{English,French} cross-language text summarization framework that analyzes the informationin both languages to identify the most relevant sentences. Inspired by the compressivetext summarization methods in monolingual analysis, we adapt our multi-sentencecompression method for this problem to just keep the main information. Our systemproves to be a good alternative to compress redundant information and to preserve relevantinformation. Our system improves informativeness scores without losing grammaticalquality for French-to-English cross-lingual summaries. Analyzing {English,French, Portuguese, Spanish}-to-{English, French} cross-lingual summaries, our systemsignificantly outperforms extractive baselines in the state of the art for all these languages.In addition, we analyze the cross-language text summarization of transcriptdocuments. Our approach achieved better and more stable scores even for these documentsthat have grammatical errors and missing information
Ozsoy, Makbule Gulcin. "Text Summarization Using Latent Semantic Analysis." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612988/index.pdf.
Full textMlynarski, Angela, and University of Lethbridge Faculty of Arts and Science. "Automatic text summarization in digital libraries." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, 2006. http://hdl.handle.net/10133/270.
Full textxiii, 142 leaves ; 28 cm.
Singi, Reddy Dinesh Reddy. "Comparative text summarization of product reviews." Thesis, Kansas State University, 2010. http://hdl.handle.net/2097/7031.
Full textDepartment of Computing and Information Sciences
William H. Hsu
This thesis presents an approach towards summarizing product reviews using comparative sentences by sentiment analysis. Specifically, we consider the problem of extracting and scoring features from natural language text for qualitative reviews in a particular domain. When shopping for a product, customers do not find sufficient time to learn about all products on the market. Similarly, manufacturers do not have proper written sources from which to learn about customer opinions. The only available techniques involve gathering customer opinions, often in text form, from e-commerce and social networking web sites and analyzing them, which is a costly and time-consuming process. In this work I address these issues by applying sentiment analysis, an automated method of finding the opinion stated by an author about some entity in a text document. Here I first gather information about smart phones from many e-commerce web sites. I then present a method to differentiate comparative sentences from normal sentences, form feature sets for each domain, and assign a numerical score to each feature of a product and a weight coefficient obtained by statistical machine learning, to be used as a weight for that feature in ranking various products by linear combinations of their weighted feature scores. In this thesis I also explain what role comparative sentences play in summarizing the product. In order to find the polarity of each feature a statistical algorithm is defined using a small-to-medium sized data set. Then I present my experimental environment and results, and conclude with a review of claims and hypotheses stated at the outset. The approach specified in this thesis is evaluated using manual annotated trained data and also using data from domain experts. I also demonstrate empirically how different algorithms on this summarization can be derived from the technique provided by an annotator. Finally, I review diversified options for customers such as providing alternate products for each feature, top features of a product, and overall rankings for products.
AGUIAR, C. Z. "Concept Maps Mining for Text Summarization." Universidade Federal do Espírito Santo, 2017. http://repositorio.ufes.br/handle/10/9846.
Full text8 Resumo Os mapas conceituais são ferramentas gráficas para a representação e construção do conhecimento. Conceitos e relações formam a base para o aprendizado e, portanto, os mapas conceituais têm sido amplamente utilizados em diferentes situações e para diferentes propósitos na educação, sendo uma delas a represent ação do texto escrito. Mes mo um gramá tico e complexo texto pode ser representado por um mapa conceitual contendo apenas conceitos e relações que represente m o que foi expresso de uma forma mais complicada. No entanto, a construção manual de um mapa conceit ual exige bastante tempo e esforço na identificação e estruturação do conhecimento, especialmente quando o mapa não deve representar os conceitos da estrutura cognitiva do autor. Em vez disso, o mapa deve representar os conceitos expressos em um texto. Ass im, várias abordagens tecnológicas foram propostas para facilitar o processo de construção de mapas conceituais a partir de textos. Portanto, esta dissertação propõe uma nova abordagem para a construção automática de mapas conceituais como sumarização de t extos científicos. A sumarização pretende produzir um mapa conceitual como uma representação resumida do texto, mantendo suas diversas e mais importantes características. A sumarização pode facilitar a compreensão dos textos, uma vez que os alunos estão te ntando lidar com a sobrecarga cognitiva causada pela crescente quantidade de informação textual disponível atualmente. Este crescimento também pode ser prejudicial à construção do conhecimento. Assim, consideramos a hipótese de que a sumarização de um text o representado por um mapa conceitual pode atribuir características importantes para assimilar o conhecimento do texto, bem como diminuir a sua complexidade e o tempo necessário para processá - lo. Neste contexto, realizamos uma revisão da literatura entre o s anos de 1994 e 2016 sobre as abordagens que visam a construção automática de mapas conceituais a partir de textos. A partir disso, construímos uma categorização para melhor identificar e analisar os recursos e as características dessas abordagens tecnoló gicas. Além disso, buscamos identificar as limitações e reunir as melhores características dos trabalhos relacionados para propor nossa abordagem. 9 Ademais, apresentamos um processo Concept Map Mining elaborado seguindo quatro dimensões : Descrição da Fonte de Dados, Definição do Domínio, Identificação de Elementos e Visualização do Mapa. Com o intuito de desenvolver uma arquitetura computacional para construir automaticamente mapas conceituais como sumarização de textos acadêmicos, esta pesquisa resultou na ferramenta pública CMBuilder , uma ferramenta online para a construção automática de mapas conceituais a partir de textos, bem como uma api java chamada ExtroutNLP , que contém bibliotecas para extração de informações e serviços públicos. Para alcançar o objetivo proposto, direcionados esforços para áreas de processamento de linguagem natural e recuperação de informação. Ressaltamos que a principal tarefa para alcançar nosso objetivo é extrair do texto as proposições do tipo ( conceito, rela ção, conceito ). Sob essa premissa, a pesquisa introduz um pipeline que compreende: regras gramaticais e busca em profundidade para a extração de conceitos e relações a partir do texto; mapeamento de preposição, resolução de anáforas e exploração de entidad es nomeadas para a rotulação de conceitos; ranking de conceitos baseado na análise de frequência de elementos e na topologia do mapa; e sumarização de proposição baseada na topologia do grafo. Além disso, a abordagem também propõe o uso de técnicas de apre ndizagem supervisionada de clusterização e classificação associadas ao uso de um tesauro para a definição do domínio do texto e construção de um vocabulário conceitual de domínios. Finalmente, uma análise objetiva para validar a exatidão da biblioteca Extr outNLP é executada e apresenta 0.65 precision sobre o corpus . Além disso, uma análise subjetiva para validar a qualidade do mapa conceitual construído pela ferramenta CMBuilder é realizada , apresentando 0.75/0.45 para precision / recall de conceitos e 0.57/ 0.23 para precision/ recall de relações em idioma inglês e apresenta ndo 0.68/ 0.38 para precision/ recall de conceitos e 0.41/ 0.19 para precision/ recall de relações em idioma português. Ademais , um experimento para verificar se o mapa conceitual sumarizado pe lo CMBuilder tem influência para a compreensão do assunto abordado em um texto é realizado , atingindo 60% de acertos para mapas extraídos de pequenos textos com questões de múltipla escolha e 77% de acertos para m apas extraídos de textos extensos com quest ões discursivas
Casamayor, Gerard. "Semantically-oriented text planning for automatic summarization." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/671530.
Full textEl resum automàtic de textos és una tasca dins del camp d'estudi de processament del llenguatge natural que versa sobre la creació automàtica de resums d'un o més documents, ja sigui extraient fragments del text d'entrada or generant un resum des de zero. La recerca recent en aquesta tasca ha estat dominada per un nou paradigma on el resum és abordat com un mapeig d'una seqüència de paraules en el document d'entrada a una nova seqüència de paraules que resumeixen el document. Els treballs que segueixen aquest paradigma apliquen mètodes d'aprenentatge supervisat profund per tal d'aprendre model seqüència a seqüència a partir d'un gran corpus de documents emparellats amb resums escrits a mà. Tot i els resultats impressionants en avaluacions quantitatives automàtiques, aquesta aproximació al resum automàtic també té alguns inconvenients. Un primer problema és que els models entrenats tendeixen a operar com una caixa negra que impedeix obtenir coneixements o resultats de representacions intermèdies i que puguin ser aplicat a altres tasques. Aquest és un problema important en situacions del món real on els resums no son l'única sortida que s'espera d'un sistema de processament de llenguatge natural. Un altre inconvenient significatiu és que els mètodes d'aprenentatge profund estan limitats a idiomes i tipus de resum pels que existeixen grans corpus amb resums escrits per humans. Tot i que els investigadors experimenten amb mètodes de transferència del coneixement per a superar aquest problema, encara ens trobem lluny de saber com d'efectius son aquests mètodes i com aplicar-los a situacions on els resums s'han d'adaptar a consultes o preferències formulades per l'usuari. En aquells casos en que no és pràctic aprendre models de seqüència a seqüència, convé tornar a una formulació més tradicional del resum automàtic on els documents d'entrada s'analitzen en primer lloc, es planifica el resum tot seleccionant i organitzant continguts i el resum final es genera per extracció o abstracció, fent servir mètodes de generació de llenguatge natural en aquest últim cas. Separar l'anàlisi lingüístic, la planificació i la generació permet aplicar estratègies diferents a cada tasca. Aquesta tesi tracta el pas central de planificació del resum. Inspirant-nos en recerca existent en desambiguació de sentits de mots, resum automàtic de textos i generació de llenguatge natural, aquesta tesi presenta una estratègia no supervisada per a la creació de resums. Seguim l'observació de que el rànquing d'ítems (significats o fragments de text) és un mètode comú per a tasques desambiguació i de resum, i proposem un mètode central per a la nostra estratègia que ordena significats lèxics i paraules d'un text. L'ordre resultant contribueix a la creació d'una representació semàntica en forma de graf des de la que seleccionem continguts no redundants i els organitzem per a la seva inclusió en el resum. L'estratègia general es fonamenta en bases de dades lexicogràfiques que proporcionen coneixement creuat entre múltiples idiomes i àrees temàtiques, i per mètodes de càlcul de similitud entre texts que fem servir per comparar significats entre sí i amb el text. Els mètodes que es presenten en aquesta tesi son posats a prova en dues tasques separades, la desambiguació de sentits de paraula i d'entitats amb nom, i el resum extractiu de documents en anglès. L'avaluació de la desambiguació mostra que la nostra estratègia produeix resultats útils per a tasques més enllà del resum automàtic, mentre que l'avaluació del resum extractiu ens permet comparar el nostre enfocament a sistemes existents de resum automàtic. Tot i que els nostres resultats no representen un avenç significatiu respecte a l'estat de la qüestió en desambiguació i resum automàtic, suggereixen que l'estratègia té un gran potencial.
Reeve, Lawrence H. Han Hyoil. "Semantic annotation and summarization of biomedical text /." Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1779.
Full textHassel, Martin. "Resource Lean and Portable Automatic Text Summarization." Doctoral thesis, Stockholm : Numerisk analys och datalogi Numerical Analysis and Computer Science, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4414.
Full textLehto, Niko, and Mikael Sjödin. "Automatic text summarization of Swedish news articles." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159972.
Full textBooks on the topic "Text summarization"
Torres-Moreno, Juan-Manuel. Automatic Text Summarization. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004752.
Full textInderjeet, Mani, and Maybury Mark T, eds. Advances in automatic text summarization. Cambridge, Mass: MIT Press, 1999.
Find full textKedzie, Christopher. Salience Estimation and Faithful Generation: Modeling Methods for Text Summarization and Generation. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textH, Hovy Eduard, Radev Dragomir, and AAAI Symposium (1998 : Stanford, California), eds. Intelligent text summarization: Papers from the 1998 AAAI Symposium, March 23-25, Stanford, California. Menlo Park, Calif: AAAI Press, 1998.
Find full textMarcu, Constantin Daniel. The rhetorical parsing, summarization, and generation of natural language texts. Toronto: University of Toronto, Dept. of Computer Science, 1998.
Find full textHovy, Eduard. Text Summarization. Edited by Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0032.
Full textTorres-Moreno, Juan Manuel. Automatic Text Summarization. Wiley & Sons, Incorporated, John, 2014.
Find full textTorres-Moreno, Juan-Manuel. Automatic Text Summarization. Wiley & Sons, Incorporated, John, 2014.
Find full textTorres-Moreno, Juan-Manuel. Automatic Text Summarization. Wiley-Interscience, 2014.
Find full textTorres-Moreno, Juan-Manuel. Automatic Text Summarization. Wiley & Sons, Incorporated, John, 2014.
Find full textBook chapters on the topic "Text summarization"
Shen, Dou. "Text Summarization." In Encyclopedia of Database Systems, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_424-2.
Full textShen, Dou. "Text Summarization." In Encyclopedia of Database Systems, 1–5. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_424-3.
Full textSarbo, Janos J., Jozsef I. Farkas, and Auke J. J. van Breemen. "Text summarization." In Knowledge in Formation, 151–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17089-8_9.
Full textJo, Taeho. "Text Summarization." In Studies in Big Data, 271–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91815-0_13.
Full textSarkar, Dipanjan. "Text Summarization." In Text Analytics with Python, 217–63. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2388-8_5.
Full textShen, Dou. "Text Summarization." In Encyclopedia of Database Systems, 3079–83. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_424.
Full textSahin, Özgür. "Text Summarization." In Develop Intelligent iOS Apps with Swift, 121–35. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6421-8_6.
Full textAggarwal, Charu C. "Text Summarization." In Machine Learning for Text, 361–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73531-3_11.
Full textShen, Dou. "Text Summarization." In Encyclopedia of Database Systems, 4113–17. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_424.
Full textAggarwal, Charu C. "Text Summarization." In Machine Learning for Text, 393–418. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96623-2_12.
Full textConference papers on the topic "Text summarization"
Kianmehr, Keivan, Shang Gao, Jawad Attari, M. Mushfiqur Rahman, Kofi Akomeah, Reda Alhajj, Jon Rokne, and Ken Barker. "Text summarization techniques." In the 11th International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1806338.1806429.
Full textKaddour, Abdelkader, Nassim Zellal, and Lamri Sayad. "Improving text classification using text summarization." In 2022 2nd International Conference on New Technologies of Information and Communication (NTIC). IEEE, 2022. http://dx.doi.org/10.1109/ntic55069.2022.10100492.
Full textAl-Taani, Ahmad T. "Automatic text summarization approaches." In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). IEEE, 2017. http://dx.doi.org/10.1109/ictus.2017.8285983.
Full textBiswas, Sreyasi, Rasmita Rautray, Rasmita Dash, and Rajashree Dash. "Text Summarization: A Review." In 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA). IEEE, 2018. http://dx.doi.org/10.1109/icdsba.2018.00048.
Full textBinwahlan, Mohammed Salem, Naomie Salim, and Ladda Suanmali. "Swarm Based Text Summarization." In 2009 International Association of Computer Science and Information Technology - Spring Conference. IEEE, 2009. http://dx.doi.org/10.1109/iacsit-sc.2009.61.
Full textOkumura, Manabu, Takahiro Fukusima, and Hidetsugu Nanba. "Text summarization challenge 2." In the HLT-NAACL 03. Morristown, NJ, USA: Association for Computational Linguistics, 2003. http://dx.doi.org/10.3115/1119467.1119474.
Full textSeid, Ahmed Iman, Abdiqani Abdullahi Abdisalan, Mustafe Mohamed Abdulahi, Shantipriya Parida, and Satya Ranjan Dash. "Somali Extractive Text Summarization." In 2022 OITS International Conference on Information Technology (OCIT). IEEE, 2022. http://dx.doi.org/10.1109/ocit56763.2022.00063.
Full textDivya, S., and N. Sripriya. "Unsupervised hierarchical text summarization." In 2ND INTERNATIONAL CONFERENCE ON ENERGETICS, CIVIL AND AGRICULTURAL ENGINEERING 2021 (ICECAE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0116918.
Full textKhor, Yuen Kei, Chi Wee Tan, and Tong Ming Lim. "Text Summarization on Amazon Food Reviews using TextRank." In International Conference on Digital Transformation and Applications (ICDXA 2021). Tunku Abdul Rahman University College, 2021. http://dx.doi.org/10.56453/icdxa.2021.1011.
Full textAgrawal, Kanika. "Legal Case Summarization: An Application for Text Summarization." In 2020 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2020. http://dx.doi.org/10.1109/iccci48352.2020.9104093.
Full textReports on the topic "Text summarization"
Firmin, Therese, and Inderjeet Mani. Automatic Text Summarization in Tipster. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada632154.
Full textPresident, Stacy F., and Bonnie J. Dorr. Text Summarization Evaluation: Correlating Human Performance on an Extrinsic Task with Automatic Intrinsic Metrics. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada455670.
Full text