Dissertations / Theses on the topic 'Text summarization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Text summarization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Branavan, Satchuthananthavale Rasiah Kuhan. "High compression rate text summarization." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44368.
Full textIncludes bibliographical references (p. 95-97).
This thesis focuses on methods for condensing large documents into highly concise summaries, achieving compression rates on par with human writers. While the need for such summaries in the current age of information overload is increasing, the desired compression rate has thus far been beyond the reach of automatic summarization systems. The potency of our summarization methods is due to their in-depth modelling of document content in a probabilistic framework. We explore two types of document representation that capture orthogonal aspects of text content. The first represents the semantic properties mentioned in a document in a hierarchical Bayesian model. This method is used to summarize thousands of consumer reviews by identifying the product properties mentioned by multiple reviewers. The second representation captures discourse properties, modelling the connections between different segments of a document. This discriminatively trained model is employed to generate tables of contents for books and lecture transcripts. The summarization methods presented here have been incorporated into large-scale practical systems that help users effectively access information online.
by Satchuthananthavale Rasiah Kuhan Branavan.
S.M.
Linhares, Pontes Elvys. "Compressive Cross-Language Text Summarization." Thesis, Avignon, 2018. http://www.theses.fr/2018AVIG0232/document.
Full textThe popularization of social networks and digital documents increased quickly the informationavailable on the Internet. However, this huge amount of data cannot be analyzedmanually. Natural Language Processing (NLP) analyzes the interactions betweencomputers and human languages in order to process and to analyze natural languagedata. NLP techniques incorporate a variety of methods, including linguistics, semanticsand statistics to extract entities, relationships and understand a document. Amongseveral NLP applications, we are interested, in this thesis, in the cross-language textsummarization which produces a summary in a language different from the languageof the source documents. We also analyzed other NLP tasks (word encoding representation,semantic similarity, sentence and multi-sentence compression) to generate morestable and informative cross-lingual summaries.Most of NLP applications (including all types of text summarization) use a kind ofsimilarity measure to analyze and to compare the meaning of words, chunks, sentencesand texts in their approaches. A way to analyze this similarity is to generate a representationfor these sentences that contains the meaning of them. The meaning of sentencesis defined by several elements, such as the context of words and expressions, the orderof words and the previous information. Simple metrics, such as cosine metric andEuclidean distance, provide a measure of similarity between two sentences; however,they do not analyze the order of words or multi-words. Analyzing these problems,we propose a neural network model that combines recurrent and convolutional neuralnetworks to estimate the semantic similarity of a pair of sentences (or texts) based onthe local and general contexts of words. Our model predicted better similarity scoresthan baselines by analyzing better the local and the general meanings of words andmulti-word expressions.In order to remove redundancies and non-relevant information of similar sentences,we propose a multi-sentence compression method that compresses similar sentencesby fusing them in correct and short compressions that contain the main information ofthese similar sentences. We model clusters of similar sentences as word graphs. Then,we apply an integer linear programming model that guides the compression of theseclusters based on a list of keywords. We look for a path in the word graph that has goodcohesion and contains the maximum of keywords. Our approach outperformed baselinesby generating more informative and correct compressions for French, Portugueseand Spanish languages. Finally, we combine these previous methods to build a cross-language text summarizationsystem. Our system is an {English, French, Portuguese, Spanish}-to-{English,French} cross-language text summarization framework that analyzes the informationin both languages to identify the most relevant sentences. Inspired by the compressivetext summarization methods in monolingual analysis, we adapt our multi-sentencecompression method for this problem to just keep the main information. Our systemproves to be a good alternative to compress redundant information and to preserve relevantinformation. Our system improves informativeness scores without losing grammaticalquality for French-to-English cross-lingual summaries. Analyzing {English,French, Portuguese, Spanish}-to-{English, French} cross-lingual summaries, our systemsignificantly outperforms extractive baselines in the state of the art for all these languages.In addition, we analyze the cross-language text summarization of transcriptdocuments. Our approach achieved better and more stable scores even for these documentsthat have grammatical errors and missing information
Ozsoy, Makbule Gulcin. "Text Summarization Using Latent Semantic Analysis." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612988/index.pdf.
Full textMlynarski, Angela, and University of Lethbridge Faculty of Arts and Science. "Automatic text summarization in digital libraries." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, 2006. http://hdl.handle.net/10133/270.
Full textxiii, 142 leaves ; 28 cm.
Singi, Reddy Dinesh Reddy. "Comparative text summarization of product reviews." Thesis, Kansas State University, 2010. http://hdl.handle.net/2097/7031.
Full textDepartment of Computing and Information Sciences
William H. Hsu
This thesis presents an approach towards summarizing product reviews using comparative sentences by sentiment analysis. Specifically, we consider the problem of extracting and scoring features from natural language text for qualitative reviews in a particular domain. When shopping for a product, customers do not find sufficient time to learn about all products on the market. Similarly, manufacturers do not have proper written sources from which to learn about customer opinions. The only available techniques involve gathering customer opinions, often in text form, from e-commerce and social networking web sites and analyzing them, which is a costly and time-consuming process. In this work I address these issues by applying sentiment analysis, an automated method of finding the opinion stated by an author about some entity in a text document. Here I first gather information about smart phones from many e-commerce web sites. I then present a method to differentiate comparative sentences from normal sentences, form feature sets for each domain, and assign a numerical score to each feature of a product and a weight coefficient obtained by statistical machine learning, to be used as a weight for that feature in ranking various products by linear combinations of their weighted feature scores. In this thesis I also explain what role comparative sentences play in summarizing the product. In order to find the polarity of each feature a statistical algorithm is defined using a small-to-medium sized data set. Then I present my experimental environment and results, and conclude with a review of claims and hypotheses stated at the outset. The approach specified in this thesis is evaluated using manual annotated trained data and also using data from domain experts. I also demonstrate empirically how different algorithms on this summarization can be derived from the technique provided by an annotator. Finally, I review diversified options for customers such as providing alternate products for each feature, top features of a product, and overall rankings for products.
AGUIAR, C. Z. "Concept Maps Mining for Text Summarization." Universidade Federal do Espírito Santo, 2017. http://repositorio.ufes.br/handle/10/9846.
Full text8 Resumo Os mapas conceituais são ferramentas gráficas para a representação e construção do conhecimento. Conceitos e relações formam a base para o aprendizado e, portanto, os mapas conceituais têm sido amplamente utilizados em diferentes situações e para diferentes propósitos na educação, sendo uma delas a represent ação do texto escrito. Mes mo um gramá tico e complexo texto pode ser representado por um mapa conceitual contendo apenas conceitos e relações que represente m o que foi expresso de uma forma mais complicada. No entanto, a construção manual de um mapa conceit ual exige bastante tempo e esforço na identificação e estruturação do conhecimento, especialmente quando o mapa não deve representar os conceitos da estrutura cognitiva do autor. Em vez disso, o mapa deve representar os conceitos expressos em um texto. Ass im, várias abordagens tecnológicas foram propostas para facilitar o processo de construção de mapas conceituais a partir de textos. Portanto, esta dissertação propõe uma nova abordagem para a construção automática de mapas conceituais como sumarização de t extos científicos. A sumarização pretende produzir um mapa conceitual como uma representação resumida do texto, mantendo suas diversas e mais importantes características. A sumarização pode facilitar a compreensão dos textos, uma vez que os alunos estão te ntando lidar com a sobrecarga cognitiva causada pela crescente quantidade de informação textual disponível atualmente. Este crescimento também pode ser prejudicial à construção do conhecimento. Assim, consideramos a hipótese de que a sumarização de um text o representado por um mapa conceitual pode atribuir características importantes para assimilar o conhecimento do texto, bem como diminuir a sua complexidade e o tempo necessário para processá - lo. Neste contexto, realizamos uma revisão da literatura entre o s anos de 1994 e 2016 sobre as abordagens que visam a construção automática de mapas conceituais a partir de textos. A partir disso, construímos uma categorização para melhor identificar e analisar os recursos e as características dessas abordagens tecnoló gicas. Além disso, buscamos identificar as limitações e reunir as melhores características dos trabalhos relacionados para propor nossa abordagem. 9 Ademais, apresentamos um processo Concept Map Mining elaborado seguindo quatro dimensões : Descrição da Fonte de Dados, Definição do Domínio, Identificação de Elementos e Visualização do Mapa. Com o intuito de desenvolver uma arquitetura computacional para construir automaticamente mapas conceituais como sumarização de textos acadêmicos, esta pesquisa resultou na ferramenta pública CMBuilder , uma ferramenta online para a construção automática de mapas conceituais a partir de textos, bem como uma api java chamada ExtroutNLP , que contém bibliotecas para extração de informações e serviços públicos. Para alcançar o objetivo proposto, direcionados esforços para áreas de processamento de linguagem natural e recuperação de informação. Ressaltamos que a principal tarefa para alcançar nosso objetivo é extrair do texto as proposições do tipo ( conceito, rela ção, conceito ). Sob essa premissa, a pesquisa introduz um pipeline que compreende: regras gramaticais e busca em profundidade para a extração de conceitos e relações a partir do texto; mapeamento de preposição, resolução de anáforas e exploração de entidad es nomeadas para a rotulação de conceitos; ranking de conceitos baseado na análise de frequência de elementos e na topologia do mapa; e sumarização de proposição baseada na topologia do grafo. Além disso, a abordagem também propõe o uso de técnicas de apre ndizagem supervisionada de clusterização e classificação associadas ao uso de um tesauro para a definição do domínio do texto e construção de um vocabulário conceitual de domínios. Finalmente, uma análise objetiva para validar a exatidão da biblioteca Extr outNLP é executada e apresenta 0.65 precision sobre o corpus . Além disso, uma análise subjetiva para validar a qualidade do mapa conceitual construído pela ferramenta CMBuilder é realizada , apresentando 0.75/0.45 para precision / recall de conceitos e 0.57/ 0.23 para precision/ recall de relações em idioma inglês e apresenta ndo 0.68/ 0.38 para precision/ recall de conceitos e 0.41/ 0.19 para precision/ recall de relações em idioma português. Ademais , um experimento para verificar se o mapa conceitual sumarizado pe lo CMBuilder tem influência para a compreensão do assunto abordado em um texto é realizado , atingindo 60% de acertos para mapas extraídos de pequenos textos com questões de múltipla escolha e 77% de acertos para m apas extraídos de textos extensos com quest ões discursivas
Casamayor, Gerard. "Semantically-oriented text planning for automatic summarization." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/671530.
Full textEl resum automàtic de textos és una tasca dins del camp d'estudi de processament del llenguatge natural que versa sobre la creació automàtica de resums d'un o més documents, ja sigui extraient fragments del text d'entrada or generant un resum des de zero. La recerca recent en aquesta tasca ha estat dominada per un nou paradigma on el resum és abordat com un mapeig d'una seqüència de paraules en el document d'entrada a una nova seqüència de paraules que resumeixen el document. Els treballs que segueixen aquest paradigma apliquen mètodes d'aprenentatge supervisat profund per tal d'aprendre model seqüència a seqüència a partir d'un gran corpus de documents emparellats amb resums escrits a mà. Tot i els resultats impressionants en avaluacions quantitatives automàtiques, aquesta aproximació al resum automàtic també té alguns inconvenients. Un primer problema és que els models entrenats tendeixen a operar com una caixa negra que impedeix obtenir coneixements o resultats de representacions intermèdies i que puguin ser aplicat a altres tasques. Aquest és un problema important en situacions del món real on els resums no son l'única sortida que s'espera d'un sistema de processament de llenguatge natural. Un altre inconvenient significatiu és que els mètodes d'aprenentatge profund estan limitats a idiomes i tipus de resum pels que existeixen grans corpus amb resums escrits per humans. Tot i que els investigadors experimenten amb mètodes de transferència del coneixement per a superar aquest problema, encara ens trobem lluny de saber com d'efectius son aquests mètodes i com aplicar-los a situacions on els resums s'han d'adaptar a consultes o preferències formulades per l'usuari. En aquells casos en que no és pràctic aprendre models de seqüència a seqüència, convé tornar a una formulació més tradicional del resum automàtic on els documents d'entrada s'analitzen en primer lloc, es planifica el resum tot seleccionant i organitzant continguts i el resum final es genera per extracció o abstracció, fent servir mètodes de generació de llenguatge natural en aquest últim cas. Separar l'anàlisi lingüístic, la planificació i la generació permet aplicar estratègies diferents a cada tasca. Aquesta tesi tracta el pas central de planificació del resum. Inspirant-nos en recerca existent en desambiguació de sentits de mots, resum automàtic de textos i generació de llenguatge natural, aquesta tesi presenta una estratègia no supervisada per a la creació de resums. Seguim l'observació de que el rànquing d'ítems (significats o fragments de text) és un mètode comú per a tasques desambiguació i de resum, i proposem un mètode central per a la nostra estratègia que ordena significats lèxics i paraules d'un text. L'ordre resultant contribueix a la creació d'una representació semàntica en forma de graf des de la que seleccionem continguts no redundants i els organitzem per a la seva inclusió en el resum. L'estratègia general es fonamenta en bases de dades lexicogràfiques que proporcionen coneixement creuat entre múltiples idiomes i àrees temàtiques, i per mètodes de càlcul de similitud entre texts que fem servir per comparar significats entre sí i amb el text. Els mètodes que es presenten en aquesta tesi son posats a prova en dues tasques separades, la desambiguació de sentits de paraula i d'entitats amb nom, i el resum extractiu de documents en anglès. L'avaluació de la desambiguació mostra que la nostra estratègia produeix resultats útils per a tasques més enllà del resum automàtic, mentre que l'avaluació del resum extractiu ens permet comparar el nostre enfocament a sistemes existents de resum automàtic. Tot i que els nostres resultats no representen un avenç significatiu respecte a l'estat de la qüestió en desambiguació i resum automàtic, suggereixen que l'estratègia té un gran potencial.
Reeve, Lawrence H. Han Hyoil. "Semantic annotation and summarization of biomedical text /." Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1779.
Full textHassel, Martin. "Resource Lean and Portable Automatic Text Summarization." Doctoral thesis, Stockholm : Numerisk analys och datalogi Numerical Analysis and Computer Science, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4414.
Full textLehto, Niko, and Mikael Sjödin. "Automatic text summarization of Swedish news articles." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159972.
Full textKryściński, Wojciech. "Training Neural Models for Abstractive Text Summarization." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236973.
Full textAbstraktiv textsammanfattning syftar på att korta ner långa textdokument till en förkortad, mänskligt läsbar form, samtidigt som den viktigaste informationen i källdokumentet bevaras. Ett vanligt tillvägagångssätt för att träna sammanfattningsmodeller är att använda maximum likelihood-estimering med teacher-forcing-strategin. Trots dess popularitet har denna metod visat sig ge modeller med suboptimal prestanda vid inferens. I det här arbetet undersöks hur användningen av alternativa, uppgiftsspecifika träningssignaler påverkar sammanfattningsmodellens prestanda. Två nya träningssignaler föreslås och utvärderas som en del av detta arbete. Den första, vilket är en ny metrik, mäter överlappningen mellan n-gram i sammanfattningen och den sammanfattade artikeln. Den andra använder en diskrimineringsmodell för att skilja mänskliga skriftliga sammanfattningar från genererade på ordnivå. Empiriska resultat visar att användandet av de nämnda mätvärdena som belöningar för policygradient-träning ger betydande prestationsvinster mätt med ROUGE-score, novelty score och mänsklig utvärdering.
Le, Thien-Hoa. "Neural Methods for Sentiment Analysis and Text Summarization." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0037.
Full textThis thesis focuses on two Natural Language Processing tasks that require to extract semantic information from raw texts: Sentiment Analysis and Text Summarization. This dissertation discusses issues and seeks to improve neural models on both tasks, which have become the dominant paradigm in the past several years. Accordingly, this dissertation is composed of two parts: the first part (Neural Sentiment Analysis) deals with the computational study of people's opinions, sentiments, and the second part (Neural Text Summarization) tries to extract salient information from a complex sentence and rewrites it in a human-readable form. Neural Sentiment Analysis. Similar to computer vision, numerous deep convolutional neural networks have been adapted to sentiment analysis and text classification tasks. However, unlike the image domain, these studies are carried on different input data types and on different datasets, which makes it hard to know if a deep network is truly needed. In this thesis, we seek to find elements to address this question, i.e. whether neural networks must compute deep hierarchies of features for textual data in the same way as they do in vision. We thus propose a new adaptation of the deepest convolutional architecture (DenseNet) for text classification and study the importance of depth in convolutional models with different atom-levels (word or character) of input. We show that deep models indeed give better performances than shallow networks when the text input is represented as a sequence of characters. However, a simple shallow-and-wide network outperforms the deep DenseNet models with word inputs. Besides, to further improve sentiment classifiers and contextualize them, we propose to model them jointly with dialog acts, which are a factor of explanation and correlate with sentiments but are nevertheless often ignored. We have manually annotated both dialogues and sentiments on a Twitter-like social medium, and train a multi-task hierarchical recurrent network on joint sentiment and dialog act recognition. We show that transfer learning may be efficiently achieved between both tasks, and further analyze some specific correlations between sentiments and dialogues on social media. Neural Text Summarization. Detecting sentiments and opinions from large digital documents does not always enable users of such systems to take informed decisions, as other important semantic information is missing. People also need the main arguments and supporting reasons from the source documents to truly understand and interpret the document. To capture such information, we aim at making the neural text summarization models more explainable. We propose a model that has better explainability properties and is flexible enough to support various shallow syntactic parsing modules. More specifically, we linearize the syntactic tree into the form of overlapping text segments, which are then selected with reinforcement learning (RL) and regenerated into a compressed form. Hence, the proposed model is able to handle both extractive and abstractive summarization. Further, we observe that RL-based models are becoming increasingly ubiquitous for many text summarization tasks. We are interested in better understanding what types of information is taken into account by such models, and we propose to study this question from the syntactic perspective. We thus provide a detailed comparison of both RL-based and syntax-aware approaches and of their combination along several dimensions that relate to the perceived quality of the generated summaries such as number of repetitions, sentence length, distribution of part-of-speech tags, relevance and grammaticality. We show that when there is a resource constraint (computation and memory), it is wise to only train models with RL and without any syntactic information, as they provide nearly as good results as syntax-aware models with less parameters and faster training convergence
Ceylan, Hakan. "Investigating the Extractive Summarization of Literary Novels." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103298/.
Full textWu, Jiewen. "WHISK: Web Hosted Information into Summarized Knowledge." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1633.
Full textMastronardo, Claudio. "Integrating Deep Contextualized Word Embeddings into Text Summarization Systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18468/.
Full textKolla, Maheedhar, and University of Lethbridge Faculty of Arts and Science. "Automatic text summarization using lexical chains : algorithms and experiments." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2004, 2004. http://hdl.handle.net/10133/226.
Full textviii, 80 leaves : ill. ; 29 cm.
Biniam, Thomas Indrias, and Adam Morén. "Extractive Text Summarization of Norwegian News Articles Using BERT." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176598.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Jonsson, Fredrik. "Evaluation of the Transformer Model for Abstractive Text Summarization." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263325.
Full textAtt automatiskt kunna generera sammanfattningar ökar möjligheten att snabbt kunna sprida och ta del av information vilket potentiellt kan leda till produktivitetsökningar inom en mängd fält. RNN-baserade enkoder-dekodermodeller med attention har visat sig vara effektiva inom många språkrelaterade områden såsom automatiskt genererade sammanfattningar men också inom exempelvis automatisk översättning. På senare tid har Transformermodellen överträffat RNN-baserade enkoderdekodermodeller med attention inom det närliggande området automatiska översättningar. Denna uppsats jämför Transformermodellen med en LSTMbaserad enkoder-dekodermodell med attention både genom att använda det automatiska måttet ROUGE, men också genom att jämföra läsbarhet och grammatik i de automatgenererade sammanfattningarna med hjälp av mänskliga utvärderare. Resultaten visar att Transformermodellen genererar bättre sammanfattningar både utvärderat med ROUGE och när de mänskliga utvärderarna används.
Kipp, Darren. "Shallow semantics for topic-oriented multi-document automatic text summarization." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27772.
Full textLyons, Seamus. "Extraction and summarization of units of information from web text." Thesis, University of East Anglia, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493011.
Full textMast, Cynda Overton. "The Effects of Cognitive Styles on Summarization of Expository Text." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc332362/.
Full textDemirtas, Kezban. "Automatic Video Categorization And Summarization." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611113/index.pdf.
Full textLyngbaek, Steffen slyngbae. "SPORK: A SUMMARIZATION PIPELINE FOR ONLINE REPOSITORIES OF KNOWLEDGE." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1036.
Full textLA, QUATRA MORENO. "Deep Learning for Natural Language Understanding and Summarization." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972201.
Full textGeiss, Johanna. "Latent semantic sentence clustering for multi-document summarization." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609761.
Full textShen, Chao. "Text Analytics of Social Media: Sentiment Analysis, Event Detection and Summarization." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1739.
Full textRigouste, Lois. "Evolution of a text summarization system in an automatic evaluation framework." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26535.
Full textKantzola, Evangelia. "Extractive Text Summarization of Greek News Articles Based on Sentence-Clusters." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420291.
Full textGrant, Harald. "Extractive Multi-document Summarization of News Articles." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158275.
Full textGonzález, Barba José Ángel. "Attention-based Approaches for Text Analytics in Social Media and Automatic Summarization." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172245.
Full text[CA] Avui en dia, la societat té accés i possibilitat de contribuir a grans quantitats de continguts presents a Internet, com xarxes socials, diaris online, fòrums, blocs o plataformes de contingut multimèdia. Tot aquest tipus de mitjans han tingut, durant els darrers anys, un impacte aclaparador en el dia a dia d'individus i organitzacions, sent actualment mitjans predominants per compartir, debatre i analitzar continguts en línia. Per aquest motiu, resulta d'interès treballar sobre aquest tipus de plataformes, des de diferents punts de vista, sota el paraigua de l'Processament de el Llenguatge Natural. En aquesta tesi ens centrem en dues àrees àmplies dins d'aquest camp, aplicades a l'anàlisi de contingut en línia: anàlisi de text en xarxes socials i resum automàtic. En paral·lel, les xarxes neuronals també són un tema central d'aquesta tesi, on tota l'experimentació s'ha realitzat utilitzant enfocaments d'aprenentatge profund, principalment basats en mecanismes d'atenció. A més, treballem majoritàriament amb l'idioma espanyol, per ser un idioma poc explorat i de gran interès per als projectes de recerca en els que participem. D'una banda, per a l'anàlisi de text en xarxes socials, ens enfoquem en tasques d'anàlisi afectiu, incloent anàlisi de sentiments i detecció d'emocions, juntament amb l'anàlisi de la ironia. En aquest sentit, es presenta una aproximació basada en Transformer Encoders, que consisteix en contextualitzar \textit{word embeddings} pre-entrenats amb tweets en espanyol, per abordar tasques d'anàlisi de sentiment i detecció d'ironia. També proposem l'ús de mètriques d'avaluació com a funcions de pèrdua, per tal d'entrenar xarxes neuronals, per reduir l'impacte de l'desequilibri de classes en tasques \textit{multi-class} i \textit{multi-label} de detecció d'emocions. Addicionalment, es presenta una especialització de BERT tant per l'idioma espanyol com per al domini de Twitter, que té en compte la coherència entre tweets en converses de Twitter. El comportament de tots aquests enfocaments s'ha provat amb diferents corpus, a partir de diversos \textit{benchmarks} de referència, mostrant resultats molt competitius en totes les tasques abordades. D'altra banda, ens centrem en el resum extractiu d'articles periodístics i de programes televisius de debat. Pel que fa a l'resum d'articles, es presenta un marc teòric per al resum extractiu, basat en xarxes jeràrquiques siameses amb mecanismes d'atenció. També presentem dues instàncies d'aquest marc: \textit{Siamese Hierarchical Attention Networks} i \textit{Siamese Hierarchical Transformer Encoders}. Aquests sistemes s'han avaluat en els corpora CNN/DailyMail i Newsroom, obtenint resultats competitius en comparació amb altres enfocaments extractius coetanis. Pel que fa als programes de debat, s'ha proposat una tasca que consisteix a resumir les intervencions transcrites dels ponents, sobre un tema determinat, al programa "La Noche en 24 Horas". A més, es proposa un corpus d'articles periodístics, recollits de diversos diaris espanyols en línia, per tal d'estudiar la transferibilitat dels enfocaments proposats, entre articles i intervencions dels participants en els debats. Aquesta aproximació mostra millors resultats que altres tècniques extractives, juntament amb una transferibilitat de domini molt prometedora.
[EN] Nowadays, society has access, and the possibility to contribute, to large amounts of the content present on the internet, such as social networks, online newspapers, forums, blogs, or multimedia content platforms. These platforms have had, during the last years, an overwhelming impact on the daily life of individuals and organizations, becoming the predominant ways for sharing, discussing, and analyzing online content. Therefore, it is very interesting to work with these platforms, from different points of view, under the umbrella of Natural Language Processing. In this thesis, we focus on two broad areas inside this field, applied to analyze online content: text analytics in social media and automatic summarization. Neural networks are also a central topic in this thesis, where all the experimentation has been performed by using deep learning approaches, mainly based on attention mechanisms. Besides, we mostly work with the Spanish language, due to it is an interesting and underexplored language with a great interest in the research projects we participated in. On the one hand, for text analytics in social media, we focused on affective analysis tasks, including sentiment analysis and emotion detection, along with the analysis of the irony. In this regard, an approach based on Transformer Encoders, based on contextualizing pretrained Spanish word embeddings from Twitter, to address sentiment analysis and irony detection tasks, is presented. We also propose the use of evaluation metrics as loss functions, in order to train neural networks for reducing the impact of the class imbalance in multi-class and multi-label emotion detection tasks. Additionally, a specialization of BERT both for the Spanish language and the Twitter domain, that takes into account inter-sentence coherence in Twitter conversation flows, is presented. The performance of all these approaches has been tested with different corpora, from several reference evaluation benchmarks, showing very competitive results in all the tasks addressed. On the other hand, we focused on extractive summarization of news articles and TV talk shows. Regarding the summarization of news articles, a theoretical framework for extractive summarization, based on siamese hierarchical networks with attention mechanisms, is presented. Also, we present two instantiations of this framework: Siamese Hierarchical Attention Networks and Siamese Hierarchical Transformer Encoders. These systems were evaluated on the CNN/DailyMail and the NewsRoom corpora, obtaining competitive results in comparison to other contemporary extractive approaches. Concerning the TV talk shows, we proposed a text summarization task, for summarizing the transcribed interventions of the speakers, about a given topic, in the Spanish TV talk shows of the ``La Noche en 24 Horas" program. In addition, a corpus of news articles, collected from several Spanish online newspapers, is proposed, in order to study the domain transferability of siamese hierarchical approaches, between news articles and interventions of debate participants. This approach shows better results than other extractive techniques, along with a very promising domain transferability.
González Barba, JÁ. (2021). Attention-based Approaches for Text Analytics in Social Media and Automatic Summarization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172245
TESIS
Lindström, Marcus. "The Impact of Scaling Down a Language Model Used for Text Summarization." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283117.
Full textSpråkmodeller baserade på maskininlärning har nått toppmoderna resultat i en mängd olika uppgifter, dock börjar deras applicerbarhet bli svår att motivera i komerciella användingsområden i och med hur stora de börjar bli. Avvägningen mellan prestanda och tränings/ inferens-tid är det vanligaste problemet, vilket ofta leder till användning av mindre sofistikerade lösningar. Den här avhandlingen undersöker hur en redan tränad Transformer-baserad språkmodell specialicerad på att generera meningsinbäddningar kan bli nerskalad med hjälp av en teknik känd som Kunskapsdestillering. Jag evaluerar både ogrinalmodellen samt dess destillerade motsvarighet på SentEval’s STSbenchmarks, och även genom en mänsklig evaluering av extraktiva summeringar genererade av bägge genom en klustringsmetod av deras inbäddningar. Mina resultat visar att en 7:5 gånger mindre modell arbetar över dubbelt så snabbt, och även når nästan 98% av orginalmodellens medelresultat på STS-uppgifterna. Den mänskliga evalueringen indikerar även en signifikant (subjektiv) skillnad hos modellernas summeringar till den mindres favör.
Nishino, Masaaki. "Numerical Optimization Methods based on Discrete Structure for Text Summarization and Relational Learning." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/192213.
Full textFalke, Tobias [Verfasser], Iryna [Akademischer Betreuer] Gurevych, and Ido [Akademischer Betreuer] Dagan. "Automatic Structured Text Summarization with Concept Maps / Tobias Falke ; Iryna Gurevych, Ido Dagan." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1183911491/34.
Full textGoyal, Pawan. "Analytic knowledge discovery techniques for ad-hoc information retrieval and automatic text summarization." Thesis, Ulster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543897.
Full textPeyrard, Maxime [Verfasser], Iryna [Akademischer Betreuer] Gurevych, Johannes [Akademischer Betreuer] Fürnkranz, and Ani [Akademischer Betreuer] Nenkova. "Principled Approaches to Automatic Text Summarization / Maxime Peyrard ; Iryna Gurevych, Johannes Fürnkranz, Ani Nenkova." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1198403241/34.
Full textPeyrard, Maxime [Verfasser], Iryna Akademischer Betreuer] Gurevych, Johannes [Akademischer Betreuer] Fürnkranz, and Ani [Akademischer Betreuer] [Nenkova. "Principled Approaches to Automatic Text Summarization / Maxime Peyrard ; Iryna Gurevych, Johannes Fürnkranz, Ani Nenkova." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1198403241/34.
Full textHobson, Stacy F. "Text summarization evaluation correlating human performance on an extrinsic task with automatic intrinsic metrics /." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7623.
Full textThesis research directed by: Dept. of Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Duan, Yijun. "History-related Knowledge Extraction from Temporal Text Collections." Kyoto University, 2020. http://hdl.handle.net/2433/253410.
Full text0048
新制・課程博士
博士(情報学)
甲第22574号
情博第711号
新制||情||122(附属図書館)
京都大学大学院情報学研究科社会情報学専攻
(主査)教授 吉川 正俊, 教授 鹿島 久嗣, 教授 田島 敬史, 特定准教授 JATOWT Adam Wladyslaw
学位規則第4条第1項該当
Fang, Yimai. "Proposition-based summarization with a coherence-driven incremental model." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287468.
Full textMeechan-Maddon, Ailsa. "The effect of noise in the training of convolutional neural networks for text summarisation." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384607.
Full textKan'an, Tarek Ghaze. "Arabic News Text Classification and Summarization: A Case of the Electronic Library Institute SeerQ (ELISQ)." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74272.
Full textPh. D.
El, Aouad Sara. "Personalized, Aspect-based Summarization of Movie Reviews." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS019.pdf.
Full textOnline reviewing websites help users decide what to buy or places to go. These platforms allow users to express their opinions using numerical ratings as well as textual comments. The numerical ratings give a coarse idea of the service. On the other hand, textual comments give full details which is tedious for users to read. In this dissertation, we develop novel methods and algorithms to generate personalized, aspect-based summaries of movie reviews for a given user. The first problem we tackle is extracting a set of related words to an aspect from movie reviews. Our evaluation shows that our method is able to extract even unpopular terms that represent an aspect, such as compound terms or abbreviations, as opposed to the methods from the related work. We then study the problem of annotating sentences with aspects, and propose a new method that annotates sentences based on a similarity between the aspect signature and the terms in the sentence. The third problem we tackle is the generation of personalized, aspect-based summaries. We propose an optimization algorithm to maximize the coverage of the aspects the user is interested in and the representativeness of sentences in the summary subject to a length and similarity constraints. Finally, we perform three user studies that show that the approach we propose outperforms the state of art method for generating summaries
Škurla, Ján. "Sumarizace dokumentů na webu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236504.
Full textRennes, Evelina. "Keeping an Eye on the Context : An Eye Tracking Study of Cohesion Errors in Automatic Text Summarization." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95527.
Full textMonsen, Julius. "Building high-quality datasets for abstractive text summarization : A filtering‐based method applied on Swedish news articles." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176352.
Full textFolin, Veronika. "Abstractive Long Document Summarization: Studio e Sperimentazione di Modelli Generativi Retrieval-Augmented." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24283/.
Full textKeneshloo, Yaser. "Addressing Challenges of Modern News Agencies via Predictive Modeling, Deep Learning, and Transfer Learning." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/91910.
Full textDoctor of Philosophy
Nowadays, each person is exposed to an immense amount of information from social media, blog posts, and online news portals. Among these sources, news agencies are one of the main content providers for each person around the world. Contemporary news agencies are moving from traditional journalism to modern techniques from different angles. This is achieved either by building smart tools to track the behaviour of readers’ reaction around a specific news article or providing automated tools to facilitate the editor’s job in providing higher quality content to readers. These systems should not only be able to scale well with the growth of readers but also they have to be able to process ad-hoc requests, precisely since most of the policies and decisions in these agencies are taken around the result of these analytical tools. As part of this new movement towards adapting new technologies for smart journalism, we have worked on various problems with The Washington Post news agency on building tools for predicting the popularity of a news article and automated text summarization model. We develop a model that monitors each news article after its publication and provide prediction over the number of views that this article will receive within the next 24 hours. This model will help the content creator to not only promote potential viral article in the main page of the web portal or social media, but also provide intuition for editors on potential poorly performing articles so that they can edit the content of those articles for better exposure. On the other hand, current news agencies are generating more than a thousands news articles per day and generating three to four summary sentences for each of these news pieces not only become infeasible in the near future but also very expensive and time-consuming. Therefore, we also develop a separate model for automated text summarization which generates summary sentences for a news article. Our model will generate summaries by selecting the most salient sentence in the news article and paraphrase them to shorter sentences that could represent as a summary sentence for the entire document.
Venkatachalam, Ramiya. "Surfacing Personas from Enterprise Social Media to Enhance Engagement Visibility." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1370882249.
Full textKumar, Trun. "Automaic Text Summarization." Thesis, 2014. http://ethesis.nitrkl.ac.in/5619/1/110CS0127.pdf.
Full textKumar, T. "Automatic text summarization." Thesis, 2014. http://ethesis.nitrkl.ac.in/5617/1/E-65.pdf.
Full text