To see the other types of publications on this topic, follow the link: ThCr2Si2 structure.

Journal articles on the topic 'ThCr2Si2 structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'ThCr2Si2 structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shatruk, Michael. "ThCr2Si2 structure type: The “perovskite” of intermetallics." Journal of Solid State Chemistry 272 (April 2019): 198–209. http://dx.doi.org/10.1016/j.jssc.2019.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ying, J. J., Y. J. Yan, R. H. Liu, et al. "Isotropic superconductivity in LaRu2P2with the ThCr2Si2-type structure." Superconductor Science and Technology 23, no. 11 (2010): 115009. http://dx.doi.org/10.1088/0953-2048/23/11/115009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Esmailzadeh, Saeid, Rolf-Dieter Hoffmann, and Rainer Pöttgen. "The Modulated Structure of SrAuSn2." Zeitschrift für Naturforschung B 59, no. 11-12 (2004): 1451–57. http://dx.doi.org/10.1515/znb-2004-11-1213.

Full text
Abstract:
The ternary stannide SrAuSn2 was synthesized by induction melting of the elements under an argon atmosphere in a sealed niobium ampoule in a water-cooled sample chamber of a high-frequency furnace. The structure of SrAuSn2 was investigated by X-ray powder and single crystal diffraction. It was found to be favourable to describe as a commensurately modulated structure. The 3+1 dimensional superspace group symmetry P : Cmcm(α, 0, 0) : 0s0 with the unit cell dimensions a = 460.20(14), b = 2038.8(8), c = 460.34(19) pm and the modulation wave vector q =¼ [100]*. The Sn1 atoms were those with the st
APA, Harvard, Vancouver, ISO, and other styles
4

Newmark, A. R., G. Huan, M. Greenblatt, and M. Croft. "Magnetic ordering in TlCo2-xNixSe2 with the ThCr2Si2 structure." Solid State Communications 71, no. 11 (1989): 1025–32. http://dx.doi.org/10.1016/0038-1098(89)90584-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horvath, C., and P. Rogl. "Refinement of the crystal structure of HoRu2Si2 (ThCr2Si2-type)." Materials Research Bulletin 20, no. 1 (1985): 35–40. http://dx.doi.org/10.1016/0025-5408(85)90024-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roy, S. B., A. K. Pradhan, and P. Chaddah. "Metastable magnetic response in UT2X2 compounds with ThCr2Si2 structure." Physica B: Condensed Matter 223-224 (June 1996): 198–200. http://dx.doi.org/10.1016/0921-4526(96)00076-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Okeeffe, M. "Self-Dual Plane Nets in Crystal Chemistry." Australian Journal of Chemistry 45, no. 9 (1992): 1489. http://dx.doi.org/10.1071/ch9921489.

Full text
Abstract:
A self-dual net is one that is identical to its dual. It is shown that some of the more commonly occurring binary and ternary intermetallic crystal structure types can be very simply described as a stacking of self-dual nets. Common structure types discussed include those of CrB , Cu2Sb (= PbClF ), BaAl4 (=ThCr2Si2) and CoSi2 (= SrMgSi ).
APA, Harvard, Vancouver, ISO, and other styles
8

Pfannenschmidt, Ulrike, Ute Ch Rodewald, and Rainer Pöttgen. "Ce13Ir34.4P24– An intergrowth structure of ThCr2Si2, SrPtSb, and CeMg2Si2related slabs." Zeitschrift für Kristallographie 226, no. 3 (2011): 229–35. http://dx.doi.org/10.1524/zkri.2011.1355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Johrendt, Dirk, Claudia Felser, Ove Jepsen, Ole Krogh Andersen, Albrecht Mewis, and Jean Rouxel. "LMTO Band Structure Calculations of ThCr2Si2-Type Transition Metal Compounds." Journal of Solid State Chemistry 130, no. 2 (1997): 254–65. http://dx.doi.org/10.1006/jssc.1997.7300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qiao, Lei, Jian Chen, Baijiang Lv, et al. "Antiferromagnetic Kondo lattice compound Ce2O2Bi with anti-ThCr2Si2-type structure." Journal of Alloys and Compounds 836 (September 2020): 155229. http://dx.doi.org/10.1016/j.jallcom.2020.155229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jiao, W. H., I. Felner, I. Nowik, and G. H. Cao. "EuRu2As2: A New Ferromagnetic Metal with Collapsed ThCr2Si2-Type Structure." Journal of Superconductivity and Novel Magnetism 25, no. 2 (2011): 441–45. http://dx.doi.org/10.1007/s10948-011-1287-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sikolenko, V. V., E. V. Pomjakushina, V. Yu Pomjakushin, et al. "Modulated spin-density waves in uranium intermetallic compounds with ThCr2Si2 structure." Physica B: Condensed Matter 350, no. 1-3 (2004): E163—E166. http://dx.doi.org/10.1016/j.physb.2004.03.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hoffmann, Roald, and Chong Zheng. "Making and Breaking Bonds in the Solid State: The ThCr2Si2 Structure." Journal of Physical Chemistry 89, no. 20 (1985): 4175–81. http://dx.doi.org/10.1021/j100266a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kase, Naoki, Hironaga Sasaki, Hiroki Hayamizu, and Jun Akimitsu. "Superconducting State in the Ternary Germanide Y2AlGe3with Related ThCr2Si2-Type Structure." Journal of the Physical Society of Japan 80, no. 1 (2011): 014716. http://dx.doi.org/10.1143/jpsj.80.014716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gadjiev, B. R. "Structure genesis and magnetic orderings in compounds of the ThCr2Si2 type." Low Temperature Physics 26, no. 12 (2000): 874–80. http://dx.doi.org/10.1063/1.1334437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kadir, K., and D. Noréus. "Structural determination of NaAl2Ga2 intermetallic compound having the ThCr2Si2 type structure." Journal of Alloys and Compounds 477, no. 1-2 (2009): 149–51. http://dx.doi.org/10.1016/j.jallcom.2008.10.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dirken, M. W., R. C. Thiel, and K. H. J. Buschow. "Crystal-field effects in rare earth compounds with the ThCr2Si2 structure." Journal of the Less Common Metals 147, no. 1 (1989): 97–104. http://dx.doi.org/10.1016/0022-5088(89)90152-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Greaney, Mark, Guohe Huan, K. V. Ramanujachary, Zeri Teweldemedhin, and Martha Greenblatt. "Antiferro-to-ferromagnetic transition in metallic with the ThCr2Si2 type structure." Solid State Communications 79, no. 10 (1991): 803–10. http://dx.doi.org/10.1016/0038-1098(91)90309-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kunioka, Haruno, Kunihiro Kihou, Daichi Kato, et al. "Thermoelectric Properties of (Ba,K)Zn2As2 Crystallized in the ThCr2Si2-type Structure." Inorganic Chemistry 59, no. 9 (2020): 5828–34. http://dx.doi.org/10.1021/acs.inorgchem.9b02680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wenski, Guido, and Albrecht Mewis. "BaAl4-Strukturvarianten bei ARu2X2(A = Ca, Sr, Ba, Eu; X = P, As) und APt2P2—x (A = Ca, Eu) / BaAl4-Denvative Structures of ARu2X2 (A = Ca, Sr, Ba. Eu; X = P, As) and of APt2P2-x (A = Ca, Eu)." Zeitschrift für Naturforschung B 41, no. 1 (1986): 38–43. http://dx.doi.org/10.1515/znb-1986-0108.

Full text
Abstract:
Compounds ARu2P(As)2 (A = Ca, Sr. Ba. Eu) were found to have the ThCr2Si2-type structure (14/mmm). Single crystals of CaRu2P2 (a = 404.6 pm, c = 977.1 pm) and EuRu2P2 (a = 402.9 pm, c = 1077.2 pm) were obtained using tin as a flux. In the case of the Pt compounds, single crystals could be isolated from powder samples. Ca(Eu)Pt2P2-x crystallizes isotypically in a new structure type which can be described as a stacking variation of the CaBe2Ge2-type structure (14/mmm; CaPt2P1.43: a = 409.9 pm, c = 1895.1 pm; EuPt2P1.62: a = 414.3 pm; c = 1912.0 pm). The crystal structures of Ca(Eu)Ru2P2 and Ca(E
APA, Harvard, Vancouver, ISO, and other styles
21

Pöttgen, Rainer. "Dy3Co6Sn5 – a New Stannide with an Ordered La3Al11 Type Structure." Zeitschrift für Naturforschung B 50, no. 2 (1995): 175–79. http://dx.doi.org/10.1515/znb-1995-0203.

Full text
Abstract:
The title compound has been obtained by arc-melting of the elemental components and subsequent annealing at 800 °C. It crystallizes in the orthorhombic space group Immm, a = 430.3(1), b = 1235.0(2), c = 967.6(3) pm, V = 0.5142(2) nm3, Z = 2. The structure has been determined from single-crystal X-ray data and refined to R = 0.0181 for 747 F2 values and 28 variables. It is of a new type and can be described as a ternary ordered version of the binary La3Al11-type structure. Dy3Co6Sn5 is built up from DyCo2Sn2 and DyCo2Sn slabs with ThCr2Si2 and Cu3Au-like atomic arrangements, respectively. Its c
APA, Harvard, Vancouver, ISO, and other styles
22

Pohlkamp, Marc W., and Wolfgang Jeitschko. "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr2Si2C (R = Y, La - Nd, Sm, Gd - Ho)." Zeitschrift für Naturforschung B 56, no. 11 (2001): 1143–48. http://dx.doi.org/10.1515/znb-2001-1108.

Full text
Abstract:
The title compounds were prepared by arc-melting cold-pressed pellets of the elemental components. They crystallize with a tetragonal structure already reported for CeCr2Si2C. It was refined from single-crystal X-ray data of PrCr2S2C: P4/mmm, a - 402.2( 1) pm, c = 535.2(1) pm, Z = 1, R = 0.012 for 252 structure factors and 10 variable parameters. Magnetic susceptibility measurements with a SQUID magnetometer indicate Pauli paramagnetism for YCr2Si2C, while CeC2Si2C shows mixed valent behavior. The carbon atoms in the structure of these compounds are isolated from each other. The silicon atoms
APA, Harvard, Vancouver, ISO, and other styles
23

Moze, O., M. Hofmann, and K. H. J. Buschow. "Chromium sublattice magnetic ordering in a compound of the ThCr2Si2 type structure: HoCr2Si2." Journal of Alloys and Compounds 308, no. 1-2 (2000): 60–63. http://dx.doi.org/10.1016/s0925-8388(00)00985-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huan, Guohe, Martha Greenblatt, and K. V. Ramanujachary. "Magnetic ordering in metallic TlCo2−xNixS2 (0 ⪕ x ⪕ 2.0) with the ThCr2Si2 structure." Solid State Communications 71, no. 3 (1989): 221–28. http://dx.doi.org/10.1016/0038-1098(89)90406-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Brylak, Markus, and Wolfgang Jeitschko. "Ternary Antimonides LnTSb3 with Ln = La-Nd, Sm and T = V, Cr." Zeitschrift für Naturforschung B 50, no. 6 (1995): 899–904. http://dx.doi.org/10.1515/znb-1995-0611.

Full text
Abstract:
The title compounds were prepared by reaction of the elemental components. They crystallize in a new structure type, which was determined from single-crystal X -ray data of CeCrSb3: Pbcm, a = 1310.8(3), b = 618.4(1), c = 607.9(1) pm, Z = 4, R = 0.029 for 648 structure factors and 32 variable parameters. The structure of the antimonide CeVSb3 is isotypic: a = 1319.0(2), b = 623.92(8), c = 603.03(8) pm , R = 0.041 for 477 structure factors and 32 variables. The transition metal site and one of the three antimony sites were found to have partial occupancies resulting in the exact compositions CeV
APA, Harvard, Vancouver, ISO, and other styles
26

Voßwinkel, Daniel, and Rainer Pöttgen. "Synthesis of Ce2Rh3Ge5 Crystals from a Bismuth Flux." Zeitschrift für Naturforschung B 68, no. 3 (2013): 301–5. http://dx.doi.org/10.5560/znb.2013-3015.

Full text
Abstract:
The germanide Ce2Rh3Ge5 was synthesized from the elements in a bismuth flux, and the structure was refined from single-crystal X-ray diffractometer data: U2Co3Si5 type, Ibam, a = 1010:1(2), b = 1210:4(2), c = 599:1(1) pm, wR=0.0596, 760 structure factors, 31 variables. The rhodium and germanium atoms build up a three-dimensional [Rh3Ge5] network (242 - 269 pm Rh-Ge; 300 pm Rh-Rh; 266 pm Ge-Ge) in which the cerium atoms fill cavities. Each cerium atom has coordination number 17 by ten germanium (302 - 331 pm) and seven rhodium (320 - 355 pm) neighbors. The crystal-chemical relation of the Ce2Rh
APA, Harvard, Vancouver, ISO, and other styles
27

Reehuis, M., T. Vomhof, and W. Jeitschko. "Magnetic properties of UCo2P2 with CaBe2Ge2 type structure and LnNi2P2 (Ln ≡ Gd-Tb) with ThCr2Si2 type structure." Journal of the Less Common Metals 169, no. 1 (1991): 139–45. http://dx.doi.org/10.1016/0022-5088(91)90242-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Han Yuan, Li Fu, and Yong Quan Guo. "Structural, Magnetic and Electrical Transport Properties of Ternary Compound LaCo2Ge2." Applied Mechanics and Materials 455 (November 2013): 148–53. http://dx.doi.org/10.4028/www.scientific.net/amm.455.148.

Full text
Abstract:
Ternary compound LaCo2Ge2 was synthesized and characterized by means of XRD, magnetic and electrical measurements. Rietveld structure refinements of powder XRD patterns confirm that LaCo2Ge2 compound crystallizes with a body-centered tetragonal structure of ThCr2Si2-type (space group I4/mmm) with the unit lattice parameters a=4.105(6) Å and c=10.264(7) Å. Nd, Co and Ge occupy 2a, 4d and 4e crystal positions, respectively. Magnetism measurements show that LaCo2Ge2 is nearly temperature-impendent Pauli paramagnetic down to 100 K, whereas orders diamagnetic at elevated temperatures. The (T) mea
APA, Harvard, Vancouver, ISO, and other styles
29

Seidel, Stefan, and Rainer Pöttgen. "SrPdGa3 type gallides RERhGa3 with RE=La, Ce and Pr." Zeitschrift für Kristallographie - Crystalline Materials 235, no. 3 (2020): 53–57. http://dx.doi.org/10.1515/zkri-2019-0059.

Full text
Abstract:
AbstractThe ternary rare earth gallides RERhGa3 with RE = La, Ce and Pr were synthesized by arc-melting and subsequent annealing in a muffle furnace. The gallides were characterized through Guinier powder patterns and the structure of LaRhGa3 was refined from single-crystal X-ray diffraction data: SrPdGa3 type, Cmcm, a = 639.2(2), b = 1030.9(2), c = 589.3(2) pm, wR2 = 0.0964, 416 F2 values and 19 variables. The rhodium and gallium atoms build up a three-dimensional polyanionic network [RhGa3] which is stabilized through Rh–Ga (245–251 pm) and Ga–Ga (267–295 pm) bonds and filled by the lanthanu
APA, Harvard, Vancouver, ISO, and other styles
30

Huhnt, C., W. Schlabitz, A. Wurth, A. Mewis, and M. Reehuis. "First- and second-order phase transitions in ternary europium phosphides with ThCr2Si2-type structure." Physica B: Condensed Matter 252, no. 1-2 (1998): 44–54. http://dx.doi.org/10.1016/s0921-4526(97)00904-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhao, J. T., and E. Parthé. "Sc3Ni2Si3 with Hf3Ni2Si3-type structure, an intergrowth of CrB-, ThCr2Si2- and W-type slabs." Acta Crystallographica Section C Crystal Structure Communications 45, no. 12 (1989): 1853–56. http://dx.doi.org/10.1107/s0108270189002490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jeitschko, W., and M. Reehuis. "Magnetic properties of CaNi2P2 and the corresponding lanthanoid nickel phosphides with ThCr2Si2 type structure." Journal of Physics and Chemistry of Solids 48, no. 7 (1987): 667–73. http://dx.doi.org/10.1016/0022-3697(87)90157-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Albering, Jörg H., and Wolfgang Jeitschko. "Quaternary Thorium Transition Metal Pnictide Oxides: ThCu1-xPO, ThCuAsO, and Th2Ni3-xP3O." Zeitschrift für Naturforschung B 51, no. 2 (1996): 257–62. http://dx.doi.org/10.1515/znb-1996-0215.

Full text
Abstract:
Abstract The new compounds ThCu1-xPO and ThCuAsO with ZrCuSiAs-type structure were pre­pared in well crystallized form by chemical vapor transport reactions. Th2Ni3-xP3O with a new structure type was obtained by reaction of ThO2 with the other elemental components in an alumina crucible at high temperatures. The crystal structures of the three compounds were determined from single-crystal X-ray data. ThCu1-xPO: P4/nmm, a = 389.43(4), c -828.3(1) pm, R = 0.024 for 13 variable parameters and 338 structure factors; ThCuAsO: P4/ nmm, a = 396.14(5), c = 844.0(1) pm, R = 0.028 (13 variables and 379
APA, Harvard, Vancouver, ISO, and other styles
34

Quebe, Peter, and Wolfgang Jeitschko. "The Arsenides LnPd3As2 (Ln = La-Nd, Sm, Gd) and Structure Refinement of CePd2-xAs2 with the ThCr2Si2 Structure." Journal of Solid State Chemistry 115, no. 1 (1995): 37–42. http://dx.doi.org/10.1006/jssc.1995.1099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Stüβer, N., Z. Zolnierek, and X. Hu. "Magnetic neutron powder diffraction on some UCu2-xGa2+y ternaries of the ThCr2Si2-type structure." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 815–16. http://dx.doi.org/10.1016/s0304-8853(97)00723-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Moze, O., M. Hofmann, and K. H. J. Buschow. "ChemInform Abstract: Chromium Sublattice Magnetic Ordering in a Compound of the ThCr2Si2 Type Structure: HoCr2Si2." ChemInform 31, no. 49 (2000): no. http://dx.doi.org/10.1002/chin.200049010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huan, Guohe, and Martha Greenblatt. "Antiferromagnetic-to-ferromagnetic transition in metallic Tl1−xKxCo2Se2 (0 ⩽ x ⩽ 1.0) with ThCr2Si2-type structure." Journal of the Less Common Metals 156, no. 1-2 (1989): 247–57. http://dx.doi.org/10.1016/0022-5088(89)90423-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kranenberg, Christian, Dirk Johrendt, Albrecht Mewis, et al. "New Compounds of the ThCr2Si2-Type and the Electronic Structure of CaM2Ge2 (M: Mn–Zn)." Journal of Solid State Chemistry 167, no. 1 (2002): 107–12. http://dx.doi.org/10.1006/jssc.2002.9626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

REEHUIS, M., T. VOMHOF, and W. JEITSCHKO. "ChemInform Abstract: Magnetic Properties of UCo2P2 with CaBe2Ge2 Type Structure and LnNi2P2 (Ln: Gd-Tm) with ThCr2Si2 Type Structure." ChemInform 22, no. 28 (2010): no. http://dx.doi.org/10.1002/chin.199128018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Imre, Anette, and Albrecht Mewis. "Synthese und Kristallstrukturen von Seltenerdmetall-Antimoniden des Palladiums / Synthesis and Crystal Structures of Antimonides of Rare-Earth Metals and Palladium." Zeitschrift für Naturforschung B 61, no. 1 (2006): 17–22. http://dx.doi.org/10.1515/znb-2006-0104.

Full text
Abstract:
The new compounds Pr3Pd6Sb5 (a = 13.442(3), b = 4.442(1), c = 9.994(2) Å ), Nd3Pd6Sb5 (a = 13.412(3), b = 4.431(1), c = 9.962(2) Å), and Gd3Pd6Sb5 (a = 13.293(2), b = 4.397(1), c = 9.881(2) Å) are isotypic and crystallize with the Ce3Pd6Sb5 type structure (Pmmn; Z = 2). The rare-earth metal atoms are arranged in form of three pseudo-body-centered subcells, whereas Pd and Sb atoms form a three-dimensional arrangement derived from the well-known ThCr2Si2 and CaBe2Ge2 structures. GdPdSb (a = 4.566(1), c = 7.444(1) Å) and DyPdSb (a = 4.545(1), c = 7.354(1) Å) crystallize with an ordered variant of
APA, Harvard, Vancouver, ISO, and other styles
41

Oledzka, M., K. V. Ramanujachary, and M. Greenblatt. "Synthesis and Characterization of New Quaternary Selenides with ThCr2Si2-Type Structure: ACuMnSe2 (A = K, Rb, Cs)." Materials Research Bulletin 33, no. 6 (1998): 855–66. http://dx.doi.org/10.1016/s0025-5408(98)00066-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kiselyova, N. N., O. V. Sen’ko, D. A. Kropotov, and A. A. Dokukin. "Computer-aided design of AD 2 X 2 intermetallics with a ThCr2Si2-type of crystal structure." Russian Metallurgy (Metally) 2012, no. 7 (2012): 644–53. http://dx.doi.org/10.1134/s0036029512070087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Dünner, J., and A. Mewis. "BaCu6P2 and BaCu6As2 — two compounds with a periodic intergrowth of ThCr2Si2 and Cu structure-type segments." Journal of Alloys and Compounds 221, no. 1-2 (1995): 65–69. http://dx.doi.org/10.1016/0925-8388(94)01431-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pfannenschmidt, Ulrike, Ute Ch Rodewald, and Rainer Pöttgen. "The Metal-rich Phosphide Ce4Ir13.55P9." Zeitschrift für Naturforschung B 66, no. 1 (2011): 7–13. http://dx.doi.org/10.1515/znb-2011-0102.

Full text
Abstract:
Needle-shaped crystals of the metal-rich phosphide Ce4Ir13.55P9 were synthesized from the elements in a lead flux (starting composition 1 : 2 : 2 : 60) at 1370 K followed by slow cooling. Ce4Ir13.55P9 crystallizes with a new orthorhombic structure type: Pnma, a = 1269.1(2), b = 399.1(1), c = 3349.9(7) pm, wR2 = 0.0722, 2025 F2 values and 139 variables. Two of the 14 crystallographic iridium sites show small defects. All phosphorus atoms have slightly distorted tricapped trigonal prismatic metal coordination by cerium and iridium. The iridium and phosphorus atoms build up a threedimensional [Ir
APA, Harvard, Vancouver, ISO, and other styles
45

Reehuis, Manfred, and Wolfgang Jeitschko. "Structure and magnetic properties of the phosphides CaCo2P2 and LnT2P2 with ThCr2Si2 structure and LnTP with PbFCl structure (Ln = Lanthanoids, T = Fe, Co, Ni)†." Journal of Physics and Chemistry of Solids 51, no. 8 (1990): 961–68. http://dx.doi.org/10.1016/0022-3697(90)90039-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kawasoko, Hideyuki, Kenji Ohoyama, Ryosuke Sei, et al. "Investigation of magnetism and magnetic structure of anti-ThCr2Si2-type Tb2O2Bi by magnetization and neutron diffraction measurements." AIP Advances 9, no. 11 (2019): 115301. http://dx.doi.org/10.1063/1.5126399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mörsen, E., B. D. Mosel, W. Müller-Warmuth, M. Reehuis, and W. Jeitschko. "Mössbauer and magnetic susceptibility investigations of strontium, lanthanum and europium transition metal phosphides with ThCr2Si2 type structure." Journal of Physics and Chemistry of Solids 49, no. 7 (1988): 785–95. http://dx.doi.org/10.1016/0022-3697(88)90030-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lin, Shi Dong, Xiao Long Chen, Jiang Wang, et al. "Magnetic Properties and Magnetocaloric Effect of Nd0.7Gd0.3Mn2Si2 Alloy." Advanced Materials Research 1142 (January 2017): 47–52. http://dx.doi.org/10.4028/www.scientific.net/amr.1142.47.

Full text
Abstract:
In this work, crystal structure, magnetic properties and magnetocaloric effect of Nd0.7Gd0.3Mn2Si2 alloy were studied by X-ray diffraction (XRD), Physical Property Measurement System (PPMS) and Differential Scanning Calorimetry (DSC). Nd0.7Gd0.3Mn2Si2 crystallizes in ThCr2Si2-typed structure with space group I4/mmm, in which the Nd, Gd, Mn and Si atoms occupy 2a (0, 0, 0), 2a (0, 0, 0), 4d (0, 1/2, 1/4) and 4e (0, 0, 0.38261) position, respectively. The Curie temperature (Tc) of Nd0.7Gd0.3Mn2Si2 alloy is 42 K, while the spin reorientation temperature (TSR) is 26 K and the Nel temperature (TN)
APA, Harvard, Vancouver, ISO, and other styles
49

DUENNER, J., and A. MEWIS. "ChemInform Abstract: BaCu6P2 and BaCu6As2, Two Compounds with a Periodic Intergrowth of ThCr2Si2 and Cu Structure-Type Segments." ChemInform 26, no. 39 (2010): no. http://dx.doi.org/10.1002/chin.199539014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vinokur, Anastasiya, and Daniel Fredrickson. "The new phase GdFe0690Si1940as a structural intermediate of GdSi2and GdFe2Si2." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1776. http://dx.doi.org/10.1107/s2053273314082230.

Full text
Abstract:
Intermetallic phases are solid state compounds formed between metals that exhibit a wide structural variety and a myriad of important properties such as magnetism, catalysis, and superconductivity. Developing their properties requires an ability to control or guide their crystal structures, which can be wildly elaborate, involving thousands of atoms per unit cell. One principle for approaching this problem is the recognition that many of the most complex phases encountered in intermetallics can be understood in terms of fragments of simpler structures. The challenge of tailoring of intermetall
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!