Academic literature on the topic 'The CBOE Volatility Index'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The CBOE Volatility Index.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "The CBOE Volatility Index"
Mariničevaitė, Tamara, and Jovita Ražauskaitė. "The Relevance of Cboe Volatility Index to Stock Markets in Emerging Economies." Organizations and Markets in Emerging Economies 6, no. 1 (May 29, 2015): 93–106. http://dx.doi.org/10.15388/omee.2015.6.1.14229.
Full textFernandes, Marcelo, Marcelo C. Medeiros, and Marcel Scharth. "Modeling and predicting the CBOE market volatility index." Journal of Banking & Finance 40 (March 2014): 1–10. http://dx.doi.org/10.1016/j.jbankfin.2013.11.004.
Full textChen, Hongtao, Li Liu, and Xiaolei Li. "The predictive content of CBOE crude oil volatility index." Physica A: Statistical Mechanics and its Applications 492 (February 2018): 837–50. http://dx.doi.org/10.1016/j.physa.2017.11.014.
Full textHu, Wenbin. "Volatility Forecasting of China Silver Futures: the Contributions of Chinese Investor Sentiment and CBOE Gold and Silver ETF Volatility Indices." E3S Web of Conferences 253 (2021): 02023. http://dx.doi.org/10.1051/e3sconf/202125302023.
Full textFUKASAWA, M., I. ISHIDA, N. MAGHREBI, K. OYA, M. UBUKATA, and K. YAMAZAKI. "MODEL-FREE IMPLIED VOLATILITY: FROM SURFACE TO INDEX." International Journal of Theoretical and Applied Finance 14, no. 04 (June 2011): 433–63. http://dx.doi.org/10.1142/s0219024911006681.
Full textCary, Dayne, Gary van Vuuren, and David McMillan. "Replicating the CBOE VIX using a synthetic volatility index trading algorithm." Cogent Economics & Finance 7, no. 1 (January 1, 2019): 1641063. http://dx.doi.org/10.1080/23322039.2019.1641063.
Full textOROSI, GREG. "A NOVEL METHOD FOR ARBITRAGE-FREE OPTION SURFACE CONSTRUCTION." Annals of Financial Economics 14, no. 04 (December 2019): 1950021. http://dx.doi.org/10.1142/s2010495219500210.
Full textMin-Yuh Day, Min-Yuh Day, Paoyu Huang Min-Yuh Day, and Yensen Ni Paoyu Huang. "Does CBOE Volatility Index Jumped or Located at a Higher Level Matter for Evaluating DJ 30, NASDAQ, and S&P500 Index Subsequent Performance." 電腦學刊 32, no. 4 (August 2021): 057–66. http://dx.doi.org/10.53106/199115992021083204005.
Full textTsuji, Chikashi. "Does the CBOE Volatility Index Predict Downside Risk at the Tokyo Stock Exchange?" International Business Research 10, no. 3 (January 10, 2016): 1. http://dx.doi.org/10.5539/ibr.v10n3p1.
Full textDr. Avijit Sikdar. "Study of Association between Volatility Index and Nifty using VECM." International Journal of Engineering and Management Research 11, no. 1 (February 27, 2021): 200–204. http://dx.doi.org/10.31033/ijemr.11.1.27.
Full textDissertations / Theses on the topic "The CBOE Volatility Index"
Kozyreva, Maria. "How reliable is implied volatility A comparison between implied and actual volatility on an index at the Nordic Market." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1635.
Full textVolatility forecast plays a central role in the financial decision making process. An intrinsic purpose of any investor is profit earning. For that purpose investors need to estimate the risk. One of the most efficient
methods to this end is the volatility estimation. In this theses I compare the CBOE Volatility Index, (VIX) with the actual volatility on an index at the Nordic Market. The actual volatility is defined as the one-day-ahead prediction as calculated by using the GARCH(1,1) model. By using the VIX model I performed consecutive predictions 30 days ahead between February the 2nd, 2007 to March
the 6th, 2007. These predictions were compared with the GARCH(1,1) one-day-ahead predictions for the same period. To my knowledge, such comparisons have not been performed earlier on the Nordic Market. The conclusion of the study was that the VIX predictions tends to higher values then the GARCH(1,1) predictions except for large prices upward jumps, which indicates that the VIX is not able to predict future shocks.
Except from these jumps, the VIX more often shows larger value than the GARCH(1,1). This is interpreted as an uncertainly of the prediction. However, the VIX predictions follows the actual volatility reasonable
well. I conclude that the VIX estimation can be used as a reliable estimator of market volatility.
Xin, Mao. "The VIX Volatility Index." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-153705.
Full textOlofsson, Isak. "@TheRealDonaldTrump’s tweets correlation with stock market volatility." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275683.
Full textSyftet med denna studie är att analysera om det finns några specifika egenskaper i de tweets publicerade av Donald Trump som har en korrelation med volatiliteten på aktiemarknaden. Om egenskaper kring president Trumps tweets visar ett samband med volatiliteten är målet att hitta en delmängd av regressorer med för att beskriva sambandet med så hög signifikans som möjligt. Innehållet i tweets har varit i fokus använts som regressorer. Metoden som har använts är en multipel linjär regression med tweet och volatilitetsdata som sträcker sig från 2010 till 2020. Som ett mått på volatilitet har Cboe VIX använts, och regressorerna i modellen har fokuserat på innehållet i tweets där TF-IDF har använts för att transformera ord till numeriska värden. Resultaten från studien visar att de valda regressorerna uppvisar en liten men signifikant korrelation med en justerad R2 = 0,4501 mellan Trumps tweets och marknadens volatilitet. Resultaten inkluderar 78 ord som de när en är en del av president Trumps tweets visar en signifikant korrelation till volatiliteten på börsen. Börsen är ett stort och komplext system av många okända, som försvårar processen att förenkla och kvantifiera data från endast en källa till en regressionsmodell med hög förutsägbarhet.
Vikberg, Sara, and Julia Björkman. "How Well Does Implied Volatility Predict Future Stock Index Returns and Volatility? : A Study of Option-Implied Volatility Derived from OMXS30 Index Options." Thesis, Stockholms universitet, Företagsekonomiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-187552.
Full textLu, Yu Hang. "Hedging and volatility of Hang Seng Index." Thesis, University of Macau, 2006. http://umaclib3.umac.mo/record=b1676381.
Full textReuterhäll, Fredrik. "Forecast quality of the Swedish Volatility Index." Thesis, Stockholm University, School of Business, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6007.
Full textIn this paper, I investigate the forecasting power of implied volatility via a new volatility index for the Swedish stock market (SVIX). By implementing the same methodology as the new VIX index originated from CBOE, I examine the information content of implied volatility and appraise the forecast quality of SVIX using two methods. Firstly, I use option valuation to evaluate the information content of implied volatility. I use four different volatilities and the evidence is clear. Using historical volatility or lagged one day at-the-money implied volatility generates poor results. Evaluating the quality of the Swedish volatility index SVIX and the average between the implied volatility lagged one day of one at-the-money call and one at-the-money put option (AIV), the results are diverted and there is no clear evidence whether to use AIV or the SVIX. Secondly, I evaluate the forecasting performance of the GARCH (1,1) model, SVIX and the AIV. Evidence point in the directions that SVIX and AIV forecasts is of higher quality than the GARCH (1,1) model, which uses historical information to produce volatility forecasts.
Blair, Bevan John. "Modelling Standard and Poors 100 index volatility." Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340564.
Full textNilsson, Oscar, and Okumu Emmanuel Latim. "Does Implied Volatility Predict Realized Volatility? : An Examination of Market Expectations." Thesis, Uppsala universitet, Nationalekonomiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-218792.
Full textPachentseva, Marina, and Anna Bronskaya. "On Stock Index Volatility With Respect to Capitalization." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1189.
Full textCondfidence in the future is a signicant factor for business development. However frequently, accurate and specific purposes are spread over the market environment influence.Thus,it is necessary to make an appropriate consideration of instability, which is peculiar to the dynamic development. Volatility, variance and standard deviation are used to
characterize the deviation of the investigated quantity from mean value.
Volatility is one of the main instruments to measure the risk of the asset.
The increasing availability of financial market data has enlarged volatility research potential but has also encouraged research into longer horizon volatility forecasts.
In this paper we investigate stock index volatility with respect to capitalization with help of GARCH-modelling.
There are chosen three indexes of OMX Nordic Exchange for our research. The Nordic list segment indexes comprising Nordic Large Cap,
Mid Cap and Small Cap are based on the three market capitalization groups.
We implement GARCH-modeling for considering indexes and compare our results in order to conclude which ones of the indexes is more volatile.
The OMX Nordic list indexis quiet new(2002)and reorganized as late as October 2006. The current value is now about 300 and no options do exist. In current work we are also interested in estimation of the Heston
model(SVmodel), which is popular in financial world and can be used in option pricing in the future.
The results of our investigations show that Large Cap Index is more volatile then Middle and Small Cap Indexes.
Süss, Stephan. "Volatility indices and their derivatives /." [S.l.] : [s.n.], 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=018685872&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textBooks on the topic "The CBOE Volatility Index"
Cassese, Gianluca. Modelling the MIB30 implied volatility surface: Does efficiency matter? [St. Louis, Mo.]: Federal Reserve Bank of St. Louis, 2005.
Find full textGonçalves, Silva. Predictable dynamics in the S&P 500 index options implied volatility surface. [St. Louis, Mo.]: Federal Reserve Bank of St. Louis, 2005.
Find full textEngle, R. F. Index-option pricing with stochastic volatility and the value of accurate variance forecasts. Cambridge, MA: National Bureau of Economic Research, 1993.
Find full textSchwert, G. William. Stock volatility in the new millennium: How wacky is Nasdaq? Cambridge, MA: National Bureau of Economic Research, 2001.
Find full textMacDonald, Ronald. Stock prices, dividends, efficiency and excessive volatility: Some evidence for the FT ordinary share index. Aberdeen: University of Aberdeen. Department of Economics, 1987.
Find full textThosar, Satish. Increased stock volatility and excess returns in the index futures trading era: New evidence from additions to the S&P500 index. Boston, MA: Boston University, School of Management, 1992.
Find full textAugen, Jeffrey. The volatility edge in options trading: New technical strategies for trading equity and index options in unstable markets. Upper Saddle River, N.J: FT Press, 2008.
Find full textGiblin, Paul R. The impact of volatility on the levels of basis, open interest and volume in the FTSE 100 index futures market. Dublin: Universitry College Dublin, 1995.
Find full textUnited States. Congress. House. Committee on Agriculture. Subcommittee on Conservation, Credit, and Rural Development. Review of recent volatility in the stock market and the stock index futures markets: Hearing before the Subcommittee on Conservation, Credit, and Rural Development of the Committee on Agriculture, House of Representatives, One Hundredth Congress, first session, November 4, 1987. Washington: U.S. G.P.O., 1988.
Find full textBook chapters on the topic "The CBOE Volatility Index"
Dierckx, Thomas, Jesse Davis, and Wim Schoutens. "Quantifying News Narratives to Predict Movements in Market Risk." In Data Science for Economics and Finance, 265–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_12.
Full textAuinger, Florian. "Financial Market Volatility." In The Causal Relationship between the S&P 500 and the VIX Index, 19–32. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08969-6_4.
Full textRoh, Tae Hyup. "Forecasting the Volatility of Stock Price Index." In Advanced Data Mining and Applications, 424–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11811305_47.
Full textHol, Eugenie M. J. H. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility." In Dynamic Modeling and Econometrics in Economics and Finance, 71–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-5129-1_6.
Full textHol, Eugenie M. J. H. "Stock Index Volatility Forecasting with High Frequency Data." In Dynamic Modeling and Econometrics in Economics and Finance, 99–127. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-5129-1_7.
Full textThomakos, Dimitrios D., and Tao Wang. "Volatility Timing and Portfolio Construction Using Realized Volatility for the S&P500 Futures Index." In Handbook of Portfolio Construction, 711–32. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-77439-8_28.
Full textYue, Zhenzhen. "Correlation Analysis for CSI300 Index Return and Realized Volatility." In Advances in Intelligent Systems and Computing, 131–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9330-3_12.
Full textYu, ShuiLing, and Zhe Li. "Forecasting Stock Price Index Volatility with LSTM Deep Neural Network." In Recent Developments in Data Science and Business Analytics, 265–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72745-5_29.
Full textMaréchal, Frédéric, Daniel Stamate, Rapheal Olaniyan, and Jiri Marek. "On XLE Index Constituents’ Social Media Based Sentiment Informing the Index Trend and Volatility Prediction." In Computational Collective Intelligence, 366–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98446-9_34.
Full textFloros, Christas, and Dimitrios V. Vougas. "Index Futures Trading, Information and Stock Market Volatility: The Case of Greece." In Derivatives and Hedge Funds, 118–39. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/9781137554178_6.
Full textConference papers on the topic "The CBOE Volatility Index"
Kyung, Richard, and Minjun Kye. "Study on the CBOE Volatility Data Forecast Using Statistical and Computational Simulations." In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). IEEE, 2020. http://dx.doi.org/10.1109/iemtronics51293.2020.9216432.
Full text"Sudden Changes in Global Volatility Index." In International Conference on Trends in Economics, Humanities and Management. International Centre of Economics, Humanities and Management, 2014. http://dx.doi.org/10.15242/icehm.ed0814046.
Full textZhu, Huiming, and Keming Yu. "Bayesian Analysis of Stock Index Return Volatility." In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2008. http://dx.doi.org/10.1109/wicom.2008.2302.
Full textPranesh, K. Kiran, P. Balasubramanian, and Deepti Mohan. "The determinants of India's implied volatility index." In 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). IEEE, 2017. http://dx.doi.org/10.1109/icdmai.2017.8073532.
Full textGuo, Xicai. "Index Futures and Spot Index Volatility: Evidence from China Stock Market." In 2011 Fourth International Conference on Business Intelligence and Financial Engineering (BIFE). IEEE, 2011. http://dx.doi.org/10.1109/bife.2011.69.
Full textHanyu Zhang, Fang Wei, and Zhonghan Zhang. "Modeling volatility of Baltic dry bulk freight index." In 2008 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2008. http://dx.doi.org/10.1109/ical.2008.4636313.
Full textJie Wei and Liyan Han. "Volatility transmission between Hangseng index futures and option markets." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691598.
Full textMuzzioli, Silvia, Luca Gambarelli, and Bernard De Baets. "Towards a fuzzy volatility index for the Italian market." In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2017. http://dx.doi.org/10.1109/fuzz-ieee.2017.8015446.
Full textHe, Yichen, Yijun Mao, Xianfen Xie, Wanrong Gu, and Ziye Zhang. "Multi-factor Data Mining Analysis of Stock Index Volatility." In ICAIIS 2021: 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469213.3470231.
Full textXu, Xu, Zuoliang Xu, and Jun Suo. "Volatility Inversion and Empirical Analysis on Hang Seng Index Option." In 2019 6th International Conference on Systems and Informatics (ICSAI). IEEE, 2019. http://dx.doi.org/10.1109/icsai48974.2019.9010444.
Full textReports on the topic "The CBOE Volatility Index"
Goncalves, Silvia, and Massimo Guidolin. Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface. Federal Reserve Bank of St. Louis, 2005. http://dx.doi.org/10.20955/wp.2005.010.
Full textEngle, Robert, Alex Kane, and Jaesun Noh. Index-Option Pricing with Stochastic Volatility and the Value of Accurate Variance Forecasts. Cambridge, MA: National Bureau of Economic Research, November 1993. http://dx.doi.org/10.3386/w4519.
Full textResearch Institute (IFPRI), International Food Policy. 2011 Global Hunger Index The Challenge of Hunger: Taming price spikes and excessive food price volatility. Washington, DC: International Food Policy Research Institute, 2011. http://dx.doi.org/10.2499/9780896299344enghi2011.
Full text