Journal articles on the topic 'The Cox-Ross-Rubinstein model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 journal articles for your research on the topic 'The Cox-Ross-Rubinstein model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Motoczyński, Michał, and Łukasz Stettner. "On option pricing in the multidimensional Cox-Ross-Rubinstein model." Applicationes Mathematicae 25, no. 1 (1998): 55–72. http://dx.doi.org/10.4064/am-25-1-55-72.
Full textWrede, Marcus, and Norbert Schmitz. "Variations of the Cox-Ross-Rubinstein model - conservative pricing strategies." Mathematical Methods of Operations Research (ZOR) 53, no. 3 (2001): 505–15. http://dx.doi.org/10.1007/s001860100126.
Full textCarassus, Laurence, and Tiziano Vargiolu. "Super-replication price: it can be ok." ESAIM: Proceedings and Surveys 64 (2018): 54–64. http://dx.doi.org/10.1051/proc/201864054.
Full textHunzinger, Chadd B., and Coenraad C. A. Labuschagne. "The Cox, Ross and Rubinstein tree model which includes counterparty credit risk and funding costs." North American Journal of Economics and Finance 29 (July 2014): 200–217. http://dx.doi.org/10.1016/j.najef.2014.06.002.
Full textWolczyńska, Grażyna. "An Explicit Formula for Option Pricing in Discrete Incomplete Markets." International Journal of Theoretical and Applied Finance 01, no. 02 (1998): 283–88. http://dx.doi.org/10.1142/s0219024998000151.
Full textLINARAS, CHARILAOS E., and GEORGE SKIADOPOULOS. "IMPLIED VOLATILITY TREES AND PRICING PERFORMANCE: EVIDENCE FROM THE S&P 100 OPTIONS." International Journal of Theoretical and Applied Finance 08, no. 08 (2005): 1085–106. http://dx.doi.org/10.1142/s0219024905003359.
Full textCastro, Isabel, and Carlos G. Pacheco. "Modeling and pricing with a random walk in random environment." International Journal of Financial Engineering 07, no. 04 (2020): 2050053. http://dx.doi.org/10.1142/s242478632050053x.
Full textLlemit, Dennis G. "On a recursive algorithm for pricing discrete barrier options." International Journal of Financial Engineering 02, no. 04 (2015): 1550047. http://dx.doi.org/10.1142/s2424786315500474.
Full textHEUWELYCKX, FABIEN. "CONVERGENCE OF EUROPEAN LOOKBACK OPTIONS WITH FLOATING STRIKE IN THE BINOMIAL MODEL." International Journal of Theoretical and Applied Finance 17, no. 04 (2014): 1450025. http://dx.doi.org/10.1142/s0219024914500253.
Full textTehranchi, Michael R. "On the Uniqueness of Martingales with Certain Prescribed Marginals." Journal of Applied Probability 50, no. 2 (2013): 557–75. http://dx.doi.org/10.1239/jap/1371648961.
Full textTehranchi, Michael R. "On the Uniqueness of Martingales with Certain Prescribed Marginals." Journal of Applied Probability 50, no. 02 (2013): 557–75. http://dx.doi.org/10.1017/s0021900200013565.
Full textLEDUC, GUILLAUME, and KENNETH PALMER. "WHAT A DIFFERENCE ONE PROBABILITY MAKES IN THE CONVERGENCE OF BINOMIAL TREES." International Journal of Theoretical and Applied Finance 23, no. 06 (2020): 2050040. http://dx.doi.org/10.1142/s0219024920500405.
Full textNika, Zsolt, and Tamás Szabados. "Strong approximation of Black-Scholes theory based on simple random walks." Studia Scientiarum Mathematicarum Hungarica 53, no. 1 (2016): 93–129. http://dx.doi.org/10.1556/012.2016.53.1.1331.
Full textPrabowo, Agung, Zulfatul Mukarromah, Lisnawati Lisnawati, and Pramono Sidi. "PENENTUAN HARGA OPSI BELI ATAS SAHAM PT. ANTAM (PERSERO) MENGGUNAKAN MODEL BINOMIAL FUZZY." Jurnal Matematika Sains dan Teknologi 19, no. 1 (2018): 8–24. http://dx.doi.org/10.33830/jmst.v19i1.124.2018.
Full textNAYMAN, NIV. "SHORTFALL RISK MINIMIZATION UNDER FIXED TRANSACTION COSTS." International Journal of Theoretical and Applied Finance 21, no. 05 (2018): 1850034. http://dx.doi.org/10.1142/s0219024918500346.
Full textChang, Carolyn W., and Jack S. K. Chang. "Doubly-Binomial Option Pricing with Application to Insurance Derivatives." Review of Pacific Basin Financial Markets and Policies 08, no. 03 (2005): 501–23. http://dx.doi.org/10.1142/s0219091505000439.
Full textKHALIQ, A. Q. M., and R. H. LIU. "NEW NUMERICAL SCHEME FOR PRICING AMERICAN OPTION WITH REGIME-SWITCHING." International Journal of Theoretical and Applied Finance 12, no. 03 (2009): 319–40. http://dx.doi.org/10.1142/s0219024909005245.
Full textYam, S. C. P., S. P. Yung, and W. Zhou. "Two Rationales Behind the ‘Buy-And-Hold or Sell-At-Once’ Strategy." Journal of Applied Probability 46, no. 03 (2009): 651–68. http://dx.doi.org/10.1017/s0021900200005805.
Full textYam, S. C. P., S. P. Yung, and W. Zhou. "Two Rationales Behind the ‘Buy-And-Hold or Sell-At-Once’ Strategy." Journal of Applied Probability 46, no. 3 (2009): 651–68. http://dx.doi.org/10.1239/jap/1253279844.
Full textChung, San-Lin, and Pai-Ta Shih. "Generalized Cox-Ross-Rubinstein Binomial Models." Management Science 53, no. 3 (2007): 508–20. http://dx.doi.org/10.1287/mnsc.1060.0652.
Full textBaidya, Tara Keshar Nanda, and Alessandro de Lima Castro. "CONVERGÊNCIA DOS MODELOS DE ÁRVORES BINOMIAIS PARA AVALIAÇÃO DE OPÇÕES." Pesquisa Operacional 21, no. 1 (2001): 17–30. http://dx.doi.org/10.1590/s0101-74382001000100002.
Full textMendoza Jaimes, Sergio Andrés. "Consideraciones sobre los efectos de incorporar costos de transacción fijos y proporcionales en la valoración de opciones financieras por el modelo Cox, Ross, Rubinstein." ODEON, no. 15 (May 13, 2019): 7–52. http://dx.doi.org/10.18601/17941113.n15.02.
Full textCastellanos Orejuela, José Mauricio. "Implicaciones de asumir constante la tasa libre de riesgo y la volatilidad en el modelo binomial para valoración de opciones." ODEON, no. 11 (May 18, 2017): 67. http://dx.doi.org/10.18601/17941113.n11.04.
Full textJabbour, George M., Marat V. Kramin, and Stephen D. Young. "A Generalization Of Lattice Specifications For Currency Options." Journal of Business & Economics Research (JBER) 1, no. 5 (2011). http://dx.doi.org/10.19030/jber.v1i5.3013.
Full text"Computing Risk Measures of Life Insurance Policies through the Cox–Ross–Rubinstein Model." Journal of Derivatives, December 1, 2018. http://dx.doi.org/10.3905/jod.2018.26.2.086.
Full textTalponen, Jarno, and Minna Turunen. "Option pricing: a yet simpler approach." Decisions in Economics and Finance, June 16, 2021. http://dx.doi.org/10.1007/s10203-021-00338-7.
Full textAttalienti, Antonio, and Michele Bufalo. "Expected vs. real transaction costs in European option pricing." Discrete & Continuous Dynamical Systems - S, 2022, 0. http://dx.doi.org/10.3934/dcdss.2022063.
Full textMarques, Naielly Lopes, Carlos de Lamare Bastian-Pinto, and Luiz Eduardo Teixeira Brandão. "A Tutorial for Modeling Real Options Lattices from Project Cash Flows." Revista de Administração Contemporânea 25, no. 1 (2021). http://dx.doi.org/10.1590/1982-7849rac2021200093.
Full text