Journal articles on the topic 'The Kantorovich duality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 journal articles for your research on the topic 'The Kantorovich duality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ramachandran, Doraiswamy, Doraiswamy Ramachandran, Ludger Ruschendorf, and Ludger Ruschendorf. "On the Monge - Kantorovich duality theorem." Teoriya Veroyatnostei i ee Primeneniya 45, no. 2 (2000): 403–9. http://dx.doi.org/10.4213/tvp474.
Full textZhang, Xicheng. "Stochastic Monge–Kantorovich problem and its duality." Stochastics 85, no. 1 (November 17, 2011): 71–84. http://dx.doi.org/10.1080/17442508.2011.624627.
Full textEdwards, D. A. "A simple proof in Monge–Kantorovich duality theory." Studia Mathematica 200, no. 1 (2010): 67–77. http://dx.doi.org/10.4064/sm200-1-4.
Full textLevin, V. L. "Best approximation problems relating to Monge-Kantorovich duality." Sbornik: Mathematics 197, no. 9 (October 31, 2006): 1353–64. http://dx.doi.org/10.1070/sm2006v197n09abeh003802.
Full textGozlan, Nathael, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali. "Kantorovich duality for general transport costs and applications." Journal of Functional Analysis 273, no. 11 (December 2017): 3327–405. http://dx.doi.org/10.1016/j.jfa.2017.08.015.
Full textOlubummo, Yewande. "On duality for a generalized Monge–Kantorovich problem." Journal of Functional Analysis 207, no. 2 (February 2004): 253–63. http://dx.doi.org/10.1016/j.jfa.2003.10.006.
Full textDaryaei, M. H., and A. R. Doagooei. "Topical functions: Hermite-Hadamard type inequalities and Kantorovich duality." Mathematical Inequalities & Applications, no. 3 (2018): 779–93. http://dx.doi.org/10.7153/mia-2018-21-56.
Full textCHEN, YONGXIN, WILFRID GANGBO, TRYPHON T. GEORGIOU, and ALLEN TANNENBAUM. "On the matrix Monge–Kantorovich problem." European Journal of Applied Mathematics 31, no. 4 (August 5, 2019): 574–600. http://dx.doi.org/10.1017/s0956792519000172.
Full textBOUSCH, THIERRY. "La distance de réarrangement, duale de la fonctionnelle de Bowen." Ergodic Theory and Dynamical Systems 32, no. 3 (April 5, 2011): 845–68. http://dx.doi.org/10.1017/s014338571000088x.
Full textMikami, Toshio. "A simple proof of duality theorem for Monge-Kantorovich problem." Kodai Mathematical Journal 29, no. 1 (March 2006): 1–4. http://dx.doi.org/10.2996/kmj/1143122381.
Full textBeiglböck, Mathias, Christian Léonard, and Walter Schachermayer. "A general duality theorem for the Monge–Kantorovich transport problem." Studia Mathematica 209, no. 2 (2012): 151–67. http://dx.doi.org/10.4064/sm209-2-4.
Full textHernández-Lerma, Onésimo, and J. Rigoberto Gabriel. "Strong duality of the Monge-Kantorovich mass transfer problem in metric spaces." Mathematische Zeitschrift 239, no. 3 (March 1, 2002): 579–91. http://dx.doi.org/10.1007/s002090100325.
Full textMengue, Jairo K., and Elismar R. Oliveira. "Duality results for iterated function systems with a general family of branches." Stochastics and Dynamics 17, no. 03 (March 26, 2017): 1750021. http://dx.doi.org/10.1142/s0219493717500216.
Full textALIBERT, J. J., G. BOUCHITTÉ, and T. CHAMPION. "A new class of costs for optimal transport planning." European Journal of Applied Mathematics 30, no. 6 (November 29, 2018): 1229–63. http://dx.doi.org/10.1017/s0956792518000669.
Full textPOWELL, S. "Kantorovich's hidden duality." IMA Journal of Management Mathematics 8, no. 3 (1997): 195–201. http://dx.doi.org/10.1093/imaman/8.3.195.
Full textRamachandran, D., and L. Rüschendorf. "On the Monge-Kantorovitch Duality Theorem." Theory of Probability & Its Applications 45, no. 2 (January 2001): 350–56. http://dx.doi.org/10.1137/s0040585x97978300.
Full textChung, Nhan-Phu, and Thanh-Son Trinh. "Unbalanced optimal total variation transport problems and generalized Wasserstein barycenters." Proceedings of the Royal Society of Edinburgh: Section A Mathematics, June 4, 2021, 1–27. http://dx.doi.org/10.1017/prm.2021.27.
Full textCiosmak, Krzysztof J. "Optimal transport of vector measures." Calculus of Variations and Partial Differential Equations 60, no. 6 (September 19, 2021). http://dx.doi.org/10.1007/s00526-021-02095-2.
Full text