Academic literature on the topic 'The Knowledge Machine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The Knowledge Machine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "The Knowledge Machine"

1

Zenkert, Johannes, Christian Weber, Mareike Dornhöfer, Hasan Abu-Rasheed, and Madjid Fathi. "Knowledge Integration in Smart Factories." Encyclopedia 1, no. 3 (August 16, 2021): 792–811. http://dx.doi.org/10.3390/encyclopedia1030061.

Full text
Abstract:
Knowledge integration is well explained by the human–organization–technology (HOT) approach known from knowledge management. This approach contains the horizontal and vertical interaction and communication between employees, human-to-machine, but also machine-to-machine. Different organizational structures and processes are supported with the help of appropriate technologies and suitable data processing and integration techniques. In a Smart Factory, manufacturing systems act largely autonomously on the basis of continuously collected data. The technical design concerns the networking of machines, their connectivity and the interaction between human and machine as well as machine-to-machine. Within a Smart Factory, machines can be considered as intelligent manufacturing systems. Such manufacturing systems can autonomously adapt to events through the ability to intelligently analyze data and act as adaptive manufacturing systems that consider changes in production, the supply chain and customer requirements. Inter-connected physical devices, sensors, actuators, and controllers form the building block of the Smart Factory, which is called the Internet of Things (IoT). IoT uses different data processing solutions, such as cloud computing, fog computing, or edge computing, to fuse and process data. This is accomplished in an integrated and cross-device manner.
APA, Harvard, Vancouver, ISO, and other styles
2

Nirenburg, Sergei. "Knowledge-based machine translation." Machine Translation 4, no. 1 (March 1989): 5–24. http://dx.doi.org/10.1007/bf00367750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walch, Michael, and Dimitris Karagiannis. "Design Thinking and Knowledge Engineering: A Machine Learning Case." International Journal of Machine Learning and Computing 10, no. 6 (December 2020): 765–70. http://dx.doi.org/10.18178/ijmlc.2020.10.6.1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Refenes, Apostolos N. "Parallelism in knowledge-based machines." Knowledge Engineering Review 4, no. 1 (March 1989): 53–71. http://dx.doi.org/10.1017/s0269888900004744.

Full text
Abstract:
AbstractThe application area of knowledge-based expert systems is currently providing the main stimulus for developing powerful, parallel computer architectures. Languages for programming knowledge-based applications divide into four broad classes: Functional languages (e.g. LISP), Logic languages (e.g. PROLOG), Rule-Based languages (e.g. OPS5), and, what we refer to as self-organizing networks (e.g. BOLTZMANN machines).Despite their many differences, a common problem for all language classes and their supporting machine architectures is parallelism: how to de-compose a single computation into a number of parallel tasks that can be distributed across an ensemble of processors. The aim of this paper is to review the four types of language for programming knowledge-based expert systems, and their supporting parallel machine architectures. In doing so we analyze the concepts and relationships that exist between the programming languages and their parallel machine architectures in terms of their strengths and limitations for exploiting parallelization.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Fashen, Lian Li, Jianping Yin, Liang Huang, Qingguo Zhou, Ning An, Yong Zhang, et al. "Machine knowledge and human cognition." Big Data Mining and Analytics 3, no. 4 (December 2020): 292–99. http://dx.doi.org/10.26599/bdma.2020.9020009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bergadano, F., Y. Kodratoff, and K. Morik. "Machine Learning and Knowledge Acquisition." AI Communications 5, no. 1 (1992): 19–24. http://dx.doi.org/10.3233/aic-1992-5102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tandon, Niket, Aparna S. Varde, and Gerard de Melo. "Commonsense Knowledge in Machine Intelligence." ACM SIGMOD Record 46, no. 4 (February 22, 2018): 49–52. http://dx.doi.org/10.1145/3186549.3186562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benker, H., J. M. Beacco, M. Dorochevsky, Th Jeffré, A. Pöhlmann, J. Noyé, B. Poterie, J. C. Syre, O. Thibault, and G. Watzlawik. "KCM: a knowledge crunching machine." ACM SIGARCH Computer Architecture News 17, no. 3 (June 1989): 186–94. http://dx.doi.org/10.1145/74926.74947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suer, Gursel A., and Cihan Dagli. "Knowledge-based single machine scheduling." Computers & Industrial Engineering 23, no. 1-4 (November 1992): 149–52. http://dx.doi.org/10.1016/0360-8352(92)90085-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Fashen, Lian Li, Jianping Yin, Yong Zhang, Qingguo Zhou, and Kun Kuang. "How to Interpret Machine Knowledge." Engineering 6, no. 3 (March 2020): 218–20. http://dx.doi.org/10.1016/j.eng.2019.11.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "The Knowledge Machine"

1

Ingevall, Markus. "Extending the Knowledge Machine." Thesis, Linköping University, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2427.

Full text
Abstract:

This master's thesis deals with a frame-based knowledge representa- tion language and system called The Knowledge Machine (KM), de- veloped by Peter Clark and Bruce Porter at the University of Texas at Austin. The purpose of the thesis is to show a number of ways of changing and extending KM to handle larger classes of reasoning tasks associated with reasoning about actions and change.

APA, Harvard, Vancouver, ISO, and other styles
2

Gispert, Ramis Adrià. "Introducing linguistic knowledge into statistical machine translation." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6902.

Full text
Abstract:
Aquesta tesi està dedicada a l'estudi de la utilització de informació morfosintàctica en el marc dels sistemes de traducció estocàstica, amb l'objectiu de millorar-ne la qualitat a través de la incorporació de informació lingüística més enllà del nivell simbòlic superficial de les paraules.



El sistema de traducció estocàstica utilitzat en aquest treball segueix un enfocament basat en tuples, unitats bilingües que permeten estimar un model de traducció de probabilitat conjunta per mitjà de la combinació, dins un entorn log-linial, de cadenes d'n-grames i funcions característiques addicionals. Es presenta un estudi detallat d'aquesta aproximació, que inclou la seva transformació des d'una implementació d'X-grames en autòmats d'estats finits, més orientada a la traducció de veu, cap a l'actual solució d'n-grames orientada a la traducció de text de gran vocabulari. La tesi estudia també les fases d'entrenament i decodificació, així com el rendiment per a diferents tasques (variant el tamany dels corpora o el parell d'idiomes) i els principals problemes reflectits en les anàlisis d'error.



La tesis també investiga la incorporació de informació lingüística específicament en aliniament per paraules. Es proposa l'extensió mitjançant classificació de formes verbals d'un algorisme d'aliniament paraula a paraula basat en co-ocurrències, amb resultats positius. Així mateix, s'avalua de forma empírica l'impacte en qualitat d'aliniament i de traducció que s'obté mitjançant l'etiquetatge morfològic, la lematització, la classificació de formes verbals i el truncament o stemming del text paral·lel.



Pel que fa al model de traducció, es proposa un model de tractament de les formes verbals per mitjà d'un model de instanciació addicional, i es realitzen experiments en la direcció d'anglès a castellà. La tesi també introdueix un model de llenguatge d'etiquetes morfològiques del destí per tal d'abordar problemes de concordança. Finalment, s'estudia l'impacte de la derivació morfològica en la formulació de la traducció estocàstica mitjançant n-grames, avaluant empíricament el possible guany derivat d'estratègies de reducció morfològica.
This Ph.D. thesis dissertation addresses the use of morphosyntactic information in order to improve the performance of Statistical Machine Translation (SMT) systems, providing them with additional linguistic information beyond the surface level of words from parallel corpora.
The statistical machine translation system in this work here follows a tuple-based approach, modelling joint-probability translation models via log-linear combination of bilingual n-grams with additional feature functions. A detailed study of the approach is conducted. This includes its initial development from a speech-oriented Finite-State Transducer architecture implementing X-grams towards a large-vocabulary text-oriented n-grams implementation, training and decoding particularities, portability across language pairs and tasks, and main difficulties as revealed in error analyses.

The use of linguistic knowledge to improve word alignment quality is also studied. A cooccurrence-based one-to-one word alignment algorithm is extended with verb form classification with successful results. Additionally, we evaluate the impact in word alignment and translation quality of Part-Of-Speech, base form, verb form classification and stemming on state-of-art word alignment tools.



Furthermore, the thesis proposes a translation model tackling verb form generation through an additional verb instance model, reporting experiments in English-to-Spanish tasks. Disagreement is addressed via incorporating a target Part-Of-Speech language model. Finally, we study the impact of morphology derivation on Ngram-based SMT formulation, empirically evaluating the quality gain that is to be gained via morphology reduction.
APA, Harvard, Vancouver, ISO, and other styles
3

Berry, David T. "A knowledge-based framework for machine vision." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zbib, Rabih M. (Rabih Mohamed) 1974. "Using linguistic knowledge in statistical machine translation." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62391.

Full text
Abstract:
Thesis (Ph. D. in Information Technology)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 153-162).
In this thesis, we present methods for using linguistically motivated information to enhance the performance of statistical machine translation (SMT). One of the advantages of the statistical approach to machine translation is that it is largely language-agnostic. Machine learning models are used to automatically learn translation patterns from data. SMT can, however, be improved by using linguistic knowledge to address specific areas of the translation process, where translations would be hard to learn fully automatically. We present methods that use linguistic knowledge at various levels to improve statistical machine translation, focusing on Arabic-English translation as a case study. In the first part, morphological information is used to preprocess the Arabic text for Arabic-to-English and English-to-Arabic translation, which reduces the gap in the complexity of the morphology between Arabic and English. The second method addresses the issue of long-distance reordering in translation to account for the difference in the syntax of the two languages. In the third part, we show how additional local context information on the source side is incorporated, which helps reduce lexical ambiguity. Two methods are proposed for using binary decision trees to control the amount of context information introduced. These methods are successfully applied to the use of diacritized Arabic source in Arabic-to-English translation. The final method combines the outputs of an SMT system and a Rule-based MT (RBMT) system, taking advantage of the flexibility of the statistical approach and the rich linguistic knowledge embedded in the rule-based MT system.
by Rabih M. Zbib.
Ph.D.in Information Technology
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, Joseph Alexander. "Machine learning for control : incorporating prior knowledge." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/283930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasan, Irfan. "Machine learning techniques for automated knowledge acquisition in intelligent knowledge-based systems." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1991. http://www.kutztown.edu/library/services/remote_access.asp.

Full text
Abstract:
Thesis (M.S.)--Kutztown University of Pennsylvania, 1991.
Source: Masters Abstracts International, Volume: 45-06, page: 3187. Abstract precedes thesis as [2] preliminary leaves. Typescript. Includes bibliographical references (leaves 102-104).
APA, Harvard, Vancouver, ISO, and other styles
7

Mallen, Jason. "Utilising incomplete domain knowledge in an information theoretic guided inductive knowledge discovery algorithm." Thesis, University of Portsmouth, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Snyders, Sean. "Inductive machine learning bias in knowledge-based neurocomputing." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53463.

Full text
Abstract:
Thesis (MSc) -- Stellenbosch University , 2003.
ENGLISH ABSTRACT: The integration of symbolic knowledge with artificial neural networks is becoming an increasingly popular paradigm for solving real-world problems. This paradigm named knowledge-based neurocomputing, provides means for using prior knowledge to determine the network architecture, to program a subset of weights to induce a learning bias which guides network training, and to extract refined knowledge from trained neural networks. The role of neural networks then becomes that of knowledge refinement. It thus provides a methodology for dealing with uncertainty in the initial domain theory. In this thesis, we address several advantages of this paradigm and propose a solution for the open question of determining the strength of this learning, or inductive, bias. We develop a heuristic for determining the strength of the inductive bias that takes the network architecture, the prior knowledge, the learning method, and the training data into consideration. We apply this heuristic to well-known synthetic problems as well as published difficult real-world problems in the domain of molecular biology and medical diagnoses. We found that, not only do the networks trained with this adaptive inductive bias show superior performance over networks trained with the standard method of determining the strength of the inductive bias, but that the extracted refined knowledge from these trained networks deliver more concise and accurate domain theories.
AFRIKAANSE OPSOMMING: Die integrasie van simboliese kennis met kunsmatige neurale netwerke word 'n toenemende gewilde paradigma om reelewereldse probleme op te los. Hierdie paradigma genoem, kennis-gebaseerde neurokomputasie, verskaf die vermoe om vooraf kennis te gebruik om die netwerkargitektuur te bepaal, om a subversameling van gewigte te programeer om 'n leersydigheid te induseer wat netwerkopleiding lei, en om verfynde kennis van geleerde netwerke te kan ontsluit. Die rol van neurale netwerke word dan die van kennisverfyning. Dit verskaf dus 'n metodologie vir die behandeling van onsekerheid in die aanvangsdomeinteorie. In hierdie tesis adresseer ons verskeie voordele wat bevat is in hierdie paradigma en stel ons 'n oplossing voor vir die oop vraag om die gewig van hierdie leer-, of induktiewe sydigheid te bepaal. Ons ontwikkel 'n heuristiek vir die bepaling van die induktiewe sydigheid wat die netwerkargitektuur, die aanvangskennis, die leermetode, en die data vir die leer proses in ag neem. Ons pas hierdie heuristiek toe op bekende sintetiese probleme so weI as op gepubliseerde moeilike reelewereldse probleme in die gebied van molekulere biologie en mediese diagnostiek. Ons bevind dat, nie alleenlik vertoon die netwerke wat geleer is met die adaptiewe induktiewe sydigheid superieure verrigting bo die netwerke wat geleer is met die standaardmetode om die gewig van die induktiewe sydigheid te bepaal nie, maar ook dat die verfynde kennis wat ontsluit is uit hierdie geleerde netwerke meer bondige en akkurate domeinteorie lewer.
APA, Harvard, Vancouver, ISO, and other styles
9

Lazzarini, Nicola. "Knowledge extraction from biomedical data using machine learning." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3839.

Full text
Abstract:
Thanks to the breakthroughs in biotechnologies that have occurred during the recent years, biomedical data is accumulating at a previously unseen pace. In the field of biomedicine, decades-old statistical methods are still commonly used to analyse such data. However, the simplicity of these approaches often limits the amount of useful information that can be extracted from the data. Machine learning methods represent an important alternative due to their ability to capture complex patterns, within the data, likely missed by simpler methods. This thesis focuses on the extraction of useful knowledge from biomedical data using machine learning. Within the biomedical context, the vast majority of machine learning applications focus their e↵ort on the generation and validation of prediction models. Rarely the inferred models are used to discover meaningful biomedical knowledge. The work presented in this thesis goes beyond this scenario and devises new methodologies to mine machine learning models for the extraction of useful knowledge. The thesis targets two important and challenging biomedical analytic tasks: (1) the inference of biological networks and (2) the discovery of biomarkers. The first task aims to identify associations between di↵erent biological entities, while the second one tries to discover sets of variables that are relevant for specific biomedical conditions. Successful solutions for both problems rely on the ability to recognise complex interactions within the data, hence the use of multivariate machine learning methods. The network inference problem is addressed with FuNeL: a protocol to generate networks based on the analysis of rule-based machine learning models. The second task, the biomarker discovery, is studied with RGIFE, a heuristic that exploits the information extracted from machine learning models to guide its search for minimal subsets of variables. The extensive analysis conducted for this dissertation shows that the networks inferred with FuNeL capture relevant knowledge complementary to that extracted by standard inference methods. Furthermore, the associations defined by FuNeL are discovered - 6 - more pertinent in a disease context. The biomarkers selected by RGIFE are found to be disease-relevant and to have a high predictive power. When applied to osteoarthritis data, RGIFE confirmed the importance of previously identified biomarkers, whilst also extracting novel biomarkers with possible future clinical applications. Overall, the thesis shows new e↵ective methods to leverage the information, often remaining buried, encapsulated within machine learning models and discover useful biomedical knowledge.
APA, Harvard, Vancouver, ISO, and other styles
10

Pickard, Nigel Brougham. "The development of fuzzy knowledge base for machine monitoring." Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/f4b76b81-7da1-494c-9cfa-3f21d62f9a48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "The Knowledge Machine"

1

Holzinger, Andreas, Peter Kieseberg, A. Min Tjoa, and Edgar Weippl, eds. Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66808-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holzinger, Andreas, Peter Kieseberg, A. Min Tjoa, and Edgar Weippl, eds. Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57321-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holzinger, Andreas, Peter Kieseberg, A. Min Tjoa, and Edgar Weippl, eds. Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29726-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holzinger, Andreas, Peter Kieseberg, A. Min Tjoa, and Edgar Weippl, eds. Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99740-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holzinger, Andreas, Peter Kieseberg, A. Min Tjoa, and Edgar Weippl, eds. Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84060-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kovalerchuk, Boris. Visual Knowledge Discovery and Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73040-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balcázar, José Luis, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, eds. Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15880-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balcázar, José Luis, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, eds. Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15883-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balcázar, José Luis, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, eds. Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15939-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holzinger, Andreas, Randy Goebel, Massimo Ferri, and Vasile Palade, eds. Towards Integrative Machine Learning and Knowledge Extraction. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69775-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "The Knowledge Machine"

1

Vermeulen, Andreas François. "Background Knowledge." In Industrial Machine Learning, 7–12. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5316-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mannor, Shie, Xin Jin, Jiawei Han, Xin Jin, Jiawei Han, Xin Jin, Jiawei Han, and Xinhua Zhang. "Knowledge Discovery." In Encyclopedia of Machine Learning, 570. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Camastra, Francesco, and Alessandro Vinciarelli. "Machine Learning." In Advanced Information and Knowledge Processing, 99–106. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6735-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shanahan, James G. "Machine Learning." In Soft Computing for Knowledge Discovery, 143–75. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4335-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johnson, Michael L. "Memory, Learning, Self-Knowledge." In Mind, Language, Machine, 232–41. London: Palgrave Macmillan UK, 1988. http://dx.doi.org/10.1007/978-1-349-19404-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gill, Satinder P. "Designing for Knowledge Transfer." In Human Machine Symbiosis, 313–60. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-3247-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoffmann, Achim, and Ashesh Mahidadia. "Machine Learning." In Scientific Data Mining and Knowledge Discovery, 7–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02788-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cios, Krzysztof J., Witold Pedrycz, and Roman W. Swiniarski. "Machine Learning." In Data Mining Methods for Knowledge Discovery, 229–308. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5589-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Béjar, Javier. "Improving Knowledge Discovery Using Domain Knowledge in Unsupervised Learning." In Machine Learning: ECML 2000, 47–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45164-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Żytkow, Jan M. "Creating a Discoverer: Autonomous Knowledge Seeking Agent." In Machine Discovery, 253–83. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-2124-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "The Knowledge Machine"

1

Tahir, Ghulam Rasool, Sohail Asghar, and Nayyer Masood. "Knowledge Based Machine Translation." In 2010 International Conference on Information and Emerging Technologies (ICIET). IEEE, 2010. http://dx.doi.org/10.1109/iciet.2010.5625695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunias, Par, Milan Hanajik, and N. Kouwenberg. "Knowledge-based machine vision." In Spatial Information from Digital Photogrammetry and Computer Vision: ISPRS Commission III Symposium, edited by Heinrich Ebner, Christian Heipke, and Konrad Eder. SPIE, 1994. http://dx.doi.org/10.1117/12.182828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hao, Xing-Wei, Xiang-Xu Meng, and Xu Cui. "A Knowledge Categorization Based Knowledge Ontology Metadata Model." In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Knowledge Distillation for Machine Translation." In 2018 2nd International Conference on Computer Science and Intelligent Communication. Clausius Scientific Press, 2018. http://dx.doi.org/10.23977/csic.2018.0933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benker, H., G. Watzlawik, J. M. Beacco, M. Dorochevsky, Th Jeffré, A. Pöhlmann, J. Noyé, B. Poterie, J. C. Syre, and O. Thibault. "KCM: a knowledge crunching machine." In the 16th annual international symposium. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/74925.74947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nirenburg, Sergei, Victor Raskin, and Allen Tucker. "On knowledge-based machine translation." In the 11th coference. Morristown, NJ, USA: Association for Computational Linguistics, 1986. http://dx.doi.org/10.3115/991365.991549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Shaogang, and Hilary Buxton. "From Contextual Knowledge to Computational Constraints." In British Machine Vision Conference 1993. British Machine Vision Association, 1993. http://dx.doi.org/10.5244/c.7.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Yi, Zhenhua Wang, and Fuchao Wu. "Exploring Prior Knowledge for Pedestrian Detection." In British Machine Vision Conference 2015. British Machine Vision Association, 2015. http://dx.doi.org/10.5244/c.29.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

YongYue, Chen, and Xia HuoSong. "Research on Knowledge Extraction and Visualization in Knowledge Retrieve." In 2009 International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE, 2009. http://dx.doi.org/10.1109/ihmsc.2009.142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tock, D., I. Craw, and R. Lishman. "A knowledge based system for measuring faces." In British Machine Vision Conference 1990. British Machine Vision Association, 1990. http://dx.doi.org/10.5244/c.4.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "The Knowledge Machine"

1

OREGON STATE UNIV CORVALLIS. Machine Learning for the Knowledge Plane. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada454287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carlson, Lynn, Elizabeth Cooper, Ronald Dolan, and Steve J. Maiorano. Representing Text Meaning for Multilingual Knowledge-Based Machine Translation. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada302333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koh, James. Machine Translation: A Key to Information Supremacy and Knowledge-Based Operations. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada414522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mayer, John H. Explanation-Based Knowledge Acquisition of Schemas in Practical Electronics: A Machine Learning Approach. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada229122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dwivedi, Dipankar, Grey Nearing, Hoshin Gupta, Alden Sampson, Laura Condon, Benjamin Ruddell, Daniel Klotz, et al. Knowledge-Guided Machine Learning (KGML) Platform to Predict Integrated Water Cycle and Associated extremes. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bringsjord, Selmer, Konstantine Arkoudas, and Yingrui Yang. New Architectures, Algorithms And Designs That Lead To Implemented Machine Reasoning Over Knowledge In Epistemic And Deontic Formats, In The Service Of Advanced Wargaming. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada456936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bednar, Amy. Topological data analysis : an overview. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40943.

Full text
Abstract:
A growing area of mathematics topological data analysis (TDA) uses fundamental concepts of topology to analyze complex, high-dimensional data. A topological network represents the data, and the TDA uses the network to analyze the shape of the data and identify features in the network that correspond to patterns in the data. These patterns extract knowledge from the data. TDA provides a framework to advance machine learning’s ability to understand and analyze large, complex data. This paper provides background information about TDA, TDA applications for large data sets, and details related to the investigation and implementation of existing tools and environments.
APA, Harvard, Vancouver, ISO, and other styles
8

Cordeiro de Amorim, Renato. A survey on feature weighting based K-Means algorithms. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ser.v1i2.79.

Full text
Abstract:
In a real-world data set there is always the possibility, rather high in our opinion, that different features may have different degrees of relevance. Most machine learning algorithms deal with this fact by either selecting or deselecting features in the data preprocessing phase. However, we maintain that even among relevant features there may be different degrees of relevance, and this should be taken into account during the clustering process. With over 50 years of history, K-Means is arguably the most popular partitional clustering algorithm there is. The first K-Means based clustering algorithm to compute feature weights was designed just over 30 years ago. Various such algorithms have been designed since but there has not been, to our knowledge, a survey integrating empirical evidence of cluster recovery ability, common flaws, and possible directions for future research. This paper elaborates on the concept of feature weighting and addresses these issues by critically analysing some of the most popular, or innovative, feature weighting mechanisms based in K-Means
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography