Dissertations / Theses on the topic 'The Knowledge Machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'The Knowledge Machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ingevall, Markus. "Extending the Knowledge Machine." Thesis, Linköping University, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2427.
Full textThis master's thesis deals with a frame-based knowledge representa- tion language and system called The Knowledge Machine (KM), de- veloped by Peter Clark and Bruce Porter at the University of Texas at Austin. The purpose of the thesis is to show a number of ways of changing and extending KM to handle larger classes of reasoning tasks associated with reasoning about actions and change.
Gispert, Ramis Adrià. "Introducing linguistic knowledge into statistical machine translation." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6902.
Full textEl sistema de traducció estocàstica utilitzat en aquest treball segueix un enfocament basat en tuples, unitats bilingües que permeten estimar un model de traducció de probabilitat conjunta per mitjà de la combinació, dins un entorn log-linial, de cadenes d'n-grames i funcions característiques addicionals. Es presenta un estudi detallat d'aquesta aproximació, que inclou la seva transformació des d'una implementació d'X-grames en autòmats d'estats finits, més orientada a la traducció de veu, cap a l'actual solució d'n-grames orientada a la traducció de text de gran vocabulari. La tesi estudia també les fases d'entrenament i decodificació, així com el rendiment per a diferents tasques (variant el tamany dels corpora o el parell d'idiomes) i els principals problemes reflectits en les anàlisis d'error.
La tesis també investiga la incorporació de informació lingüística específicament en aliniament per paraules. Es proposa l'extensió mitjançant classificació de formes verbals d'un algorisme d'aliniament paraula a paraula basat en co-ocurrències, amb resultats positius. Així mateix, s'avalua de forma empírica l'impacte en qualitat d'aliniament i de traducció que s'obté mitjançant l'etiquetatge morfològic, la lematització, la classificació de formes verbals i el truncament o stemming del text paral·lel.
Pel que fa al model de traducció, es proposa un model de tractament de les formes verbals per mitjà d'un model de instanciació addicional, i es realitzen experiments en la direcció d'anglès a castellà. La tesi també introdueix un model de llenguatge d'etiquetes morfològiques del destí per tal d'abordar problemes de concordança. Finalment, s'estudia l'impacte de la derivació morfològica en la formulació de la traducció estocàstica mitjançant n-grames, avaluant empíricament el possible guany derivat d'estratègies de reducció morfològica.
This Ph.D. thesis dissertation addresses the use of morphosyntactic information in order to improve the performance of Statistical Machine Translation (SMT) systems, providing them with additional linguistic information beyond the surface level of words from parallel corpora.
The statistical machine translation system in this work here follows a tuple-based approach, modelling joint-probability translation models via log-linear combination of bilingual n-grams with additional feature functions. A detailed study of the approach is conducted. This includes its initial development from a speech-oriented Finite-State Transducer architecture implementing X-grams towards a large-vocabulary text-oriented n-grams implementation, training and decoding particularities, portability across language pairs and tasks, and main difficulties as revealed in error analyses.
The use of linguistic knowledge to improve word alignment quality is also studied. A cooccurrence-based one-to-one word alignment algorithm is extended with verb form classification with successful results. Additionally, we evaluate the impact in word alignment and translation quality of Part-Of-Speech, base form, verb form classification and stemming on state-of-art word alignment tools.
Furthermore, the thesis proposes a translation model tackling verb form generation through an additional verb instance model, reporting experiments in English-to-Spanish tasks. Disagreement is addressed via incorporating a target Part-Of-Speech language model. Finally, we study the impact of morphology derivation on Ngram-based SMT formulation, empirically evaluating the quality gain that is to be gained via morphology reduction.
Berry, David T. "A knowledge-based framework for machine vision." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1022.
Full textZbib, Rabih M. (Rabih Mohamed) 1974. "Using linguistic knowledge in statistical machine translation." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62391.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 153-162).
In this thesis, we present methods for using linguistically motivated information to enhance the performance of statistical machine translation (SMT). One of the advantages of the statistical approach to machine translation is that it is largely language-agnostic. Machine learning models are used to automatically learn translation patterns from data. SMT can, however, be improved by using linguistic knowledge to address specific areas of the translation process, where translations would be hard to learn fully automatically. We present methods that use linguistic knowledge at various levels to improve statistical machine translation, focusing on Arabic-English translation as a case study. In the first part, morphological information is used to preprocess the Arabic text for Arabic-to-English and English-to-Arabic translation, which reduces the gap in the complexity of the morphology between Arabic and English. The second method addresses the issue of long-distance reordering in translation to account for the difference in the syntax of the two languages. In the third part, we show how additional local context information on the source side is incorporated, which helps reduce lexical ambiguity. Two methods are proposed for using binary decision trees to control the amount of context information introduced. These methods are successfully applied to the use of diacritized Arabic source in Arabic-to-English translation. The final method combines the outputs of an SMT system and a Rule-based MT (RBMT) system, taking advantage of the flexibility of the statistical approach and the rich linguistic knowledge embedded in the rule-based MT system.
by Rabih M. Zbib.
Ph.D.in Information Technology
Hall, Joseph Alexander. "Machine learning for control : incorporating prior knowledge." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/283930.
Full textHasan, Irfan. "Machine learning techniques for automated knowledge acquisition in intelligent knowledge-based systems." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1991. http://www.kutztown.edu/library/services/remote_access.asp.
Full textSource: Masters Abstracts International, Volume: 45-06, page: 3187. Abstract precedes thesis as [2] preliminary leaves. Typescript. Includes bibliographical references (leaves 102-104).
Mallen, Jason. "Utilising incomplete domain knowledge in an information theoretic guided inductive knowledge discovery algorithm." Thesis, University of Portsmouth, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295773.
Full textSnyders, Sean. "Inductive machine learning bias in knowledge-based neurocomputing." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53463.
Full textENGLISH ABSTRACT: The integration of symbolic knowledge with artificial neural networks is becoming an increasingly popular paradigm for solving real-world problems. This paradigm named knowledge-based neurocomputing, provides means for using prior knowledge to determine the network architecture, to program a subset of weights to induce a learning bias which guides network training, and to extract refined knowledge from trained neural networks. The role of neural networks then becomes that of knowledge refinement. It thus provides a methodology for dealing with uncertainty in the initial domain theory. In this thesis, we address several advantages of this paradigm and propose a solution for the open question of determining the strength of this learning, or inductive, bias. We develop a heuristic for determining the strength of the inductive bias that takes the network architecture, the prior knowledge, the learning method, and the training data into consideration. We apply this heuristic to well-known synthetic problems as well as published difficult real-world problems in the domain of molecular biology and medical diagnoses. We found that, not only do the networks trained with this adaptive inductive bias show superior performance over networks trained with the standard method of determining the strength of the inductive bias, but that the extracted refined knowledge from these trained networks deliver more concise and accurate domain theories.
AFRIKAANSE OPSOMMING: Die integrasie van simboliese kennis met kunsmatige neurale netwerke word 'n toenemende gewilde paradigma om reelewereldse probleme op te los. Hierdie paradigma genoem, kennis-gebaseerde neurokomputasie, verskaf die vermoe om vooraf kennis te gebruik om die netwerkargitektuur te bepaal, om a subversameling van gewigte te programeer om 'n leersydigheid te induseer wat netwerkopleiding lei, en om verfynde kennis van geleerde netwerke te kan ontsluit. Die rol van neurale netwerke word dan die van kennisverfyning. Dit verskaf dus 'n metodologie vir die behandeling van onsekerheid in die aanvangsdomeinteorie. In hierdie tesis adresseer ons verskeie voordele wat bevat is in hierdie paradigma en stel ons 'n oplossing voor vir die oop vraag om die gewig van hierdie leer-, of induktiewe sydigheid te bepaal. Ons ontwikkel 'n heuristiek vir die bepaling van die induktiewe sydigheid wat die netwerkargitektuur, die aanvangskennis, die leermetode, en die data vir die leer proses in ag neem. Ons pas hierdie heuristiek toe op bekende sintetiese probleme so weI as op gepubliseerde moeilike reelewereldse probleme in die gebied van molekulere biologie en mediese diagnostiek. Ons bevind dat, nie alleenlik vertoon die netwerke wat geleer is met die adaptiewe induktiewe sydigheid superieure verrigting bo die netwerke wat geleer is met die standaardmetode om die gewig van die induktiewe sydigheid te bepaal nie, maar ook dat die verfynde kennis wat ontsluit is uit hierdie geleerde netwerke meer bondige en akkurate domeinteorie lewer.
Lazzarini, Nicola. "Knowledge extraction from biomedical data using machine learning." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3839.
Full textPickard, Nigel Brougham. "The development of fuzzy knowledge base for machine monitoring." Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/f4b76b81-7da1-494c-9cfa-3f21d62f9a48.
Full textCrouch, Ingrid W. M. "A knowledge-based simulation optimization system with machine learning." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/37245.
Full textHassani, Kaveh. "Commonsense Knowledge for 3D Modeling: A Machine Learning Approach." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36165.
Full textWusteman, Judith. "EBKAT : an explanation-based knowledge acquisition tool." Thesis, University of Exeter, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280682.
Full textYoun, Bong-Soo. "Intelligent knowledge acquisition system /." Online version of thesis, 1989. http://hdl.handle.net/1850/10444.
Full textDesimone, Roberto V. "Learning control knowledge within an explanation-based learning framework." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/18827.
Full textMao, Yi. "Domain knowledge, uncertainty, and parameter constraints." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37295.
Full textTang, Qiao. "Knowledge management using machine learning, natural language processing and ontology." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56067/.
Full textFarrash, Majed. "Machine learning ensemble method for discovering knowledge from big data." Thesis, University of East Anglia, 2016. https://ueaeprints.uea.ac.uk/59367/.
Full textGoebel, Randy. "A logic data model for the machine representation of knowledge." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25799.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Khalili, K. "Enhancing vision data using prior knowledge for assembly applications." Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360432.
Full textKulkarni, Praveen. "Knowledge transfer for image understanding." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC207/document.
Full textKnowledge transfer is a promising solution for the difficult problem of training deep convolutional neural nets (CNNs) using only small size training datasets with a high intra-class visual variability. In this thesis work, we explore this paradigm to extend the ability of state-of-the-art CNNs for image classification.First, we propose several effective techniques to reduce the training and test-time computational burden associated to CNNs:(i) Using a hybrid method to combine conventional, unsupervised aggregators such as Bag-of-Words (BoW) with CNNs;(ii) Introducing a novel pooling methods within a CNN framework along with non-linear part-based models. The key contribution lies in a technique able to discover useful regions per image involved in the pooling of local representations;In addition, we also propose a novel method to learn the structure of weights in deep neural networks. Experiments are run on challenging datasets with comparisons against state-of-the-art methods. The methods proposed are shown to generalize to different visual recognition tasks, such as object, scene or action classification
Pipe, Anthony Graham. "Reinforcement learning and knowledge transformation in mobile robotics." Thesis, University of the West of England, Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364077.
Full textSuryanto, Hendra Computer Science & Engineering Faculty of Engineering UNSW. "Learning and discovery in incremental knowledge acquisition." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/20744.
Full textRichardson, Matthew. "Learning and inference in collective knowledge bases /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/6926.
Full textBollacker, Kurt Dewitt. "A supra-classifier framework for knowledge reuse /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textCho, Tai-Hoon. "A knowledge-based machine vision system for automated industrial web inspection." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134615/.
Full textAl-Awadhi, Waleed. "Integrating machine grouping and layout by using knowledge based system approach." Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242982.
Full textTuovinen, L. (Lauri). "From machine learning to learning with machines:remodeling the knowledge discovery process." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526205243.
Full textTiivistelmä Tiedonlouhintateknologialla etsitään automoidusti tietoa suurista määristä digitaalista dataa. Vakiintunut prosessimalli kuvaa tiedonlouhintaprosessia lineaarisesti ja teknologiakeskeisesti sarjana muunnoksia, jotka jalostavat raakadataa yhä abstraktimpiin ja tiivistetympiin esitysmuotoihin. Todellisissa tiedonlouhintaprosesseissa on kuitenkin aina osa-alueita, joita tällainen malli ei kata riittävän hyvin. Erityisesti on huomattava, että eräät prosessin tärkeimmistä toimijoista ovat ihmisiä, eivät teknologiaa, ja että heidän toimintansa prosessissa on luonteeltaan vuorovaikutteista eikä sarjallista. Tässä väitöskirjassa ehdotetaan vakiintuneen mallin täydentämistä siten, että tämä tiedonlouhintaprosessin laiminlyöty ulottuvuus otetaan huomioon. Ehdotettu prosessimalli koostuu kolmesta osamallista, jotka ovat tietomalli, työnkulkumalli ja arkkitehtuurimalli. Kukin osamalli tarkastelee tiedonlouhintaprosessia eri näkökulmasta: tietomallin näkökulma käsittää tiedon eri olomuodot sekä muunnokset olomuotojen välillä, työnkulkumalli kuvaa prosessin toimijat sekä niiden väliset vuorovaikutukset, ja arkkitehtuurimalli ohjaa prosessin suorittamista tukevien ohjelmistojen suunnittelua. Väitöskirjassa määritellään aluksi kullekin osamallille joukko vaatimuksia, minkä jälkeen esitetään vaatimusten täyttämiseksi suunniteltu ratkaisu. Lopuksi palataan tarkastelemaan vaatimuksia ja osoitetaan, kuinka ne on otettu ratkaisussa huomioon. Väitöskirjan pääasiallinen kontribuutio on se, että se avaa tiedonlouhintaprosessiin valtavirran käsityksiä laajemman tarkastelukulman. Väitöskirjan sisältämä täydennetty prosessimalli hyödyntää vakiintunutta mallia, mutta laajentaa sitä kokoamalla tiedonhallinnan ja tietämyksen esittämisen, tiedon louhinnan työnkulun sekä ohjelmistoarkkitehtuurin osatekijöiksi yhdistettyyn malliin. Lisäksi malli kattaa aiheita, joita tavallisesti ei oteta huomioon tai joiden ei katsota kuuluvan osaksi tiedonlouhintaprosessia; tällaisia ovat esimerkiksi tiedon louhintaan liittyvät filosofiset kysymykset. Väitöskirjassa käsitellään myös kahta ohjelmistokehystä ja neljää tapaustutkimuksena esiteltävää sovellusta, jotka edustavat teknisiä ratkaisuja eräisiin yksittäisiin tiedonlouhintaprosessin osaongelmiin. Kehykset ja sovellukset toteuttavat ja havainnollistavat useita ehdotetun prosessimallin merkittävimpiä ominaisuuksia
Ewert, Kevin. "An Adaptive Machine Learning Approach to Knowledge Discovery in Large Datasets." NSUWorks, 2006. http://nsuworks.nova.edu/gscis_etd/510.
Full textCarbonara, Leonardo. "Improving the effectiveness and the efficiency of Knowledge Base Refinement." Thesis, University of Aberdeen, 1996. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602039.
Full textBhandari, Archna. "Enhancements to the frame virtual machine /." Online version of thesis, 1989. http://hdl.handle.net/1850/10581.
Full textHutchinson, Ben. "The automatic acquisition of knowledge about discourse connectives." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/852.
Full textPietersma, Diederik. "Machine-learning assisted development of a knowledge-based system in dairy farming." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38257.
Full textTodd, Martin. "Combining knowledge based systems and machine learning for turbine generator condition monitoring." Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=17839.
Full textGheyas, Iffat A. "Novel computationally intelligent machine learning algorithms for data mining and knowledge discovery." Thesis, University of Stirling, 2009. http://hdl.handle.net/1893/2152.
Full textLucas, Yvan. "Credit card fraud detection using machine learning with integration of contextual knowledge." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI110.
Full textThe detection of credit card fraud has several features that make it a difficult task. First, attributes describing a transaction ignore sequential information. Secondly, purchasing behavior and fraud strategies can change over time, gradually making a decision function learned by an irrelevant classifier. We performed an exploratory analysis to quantify the day-by-day shift dataset and identified calendar periods that have different properties within the dataset. The main strategy for integrating sequential information is to create a set of attributes that are descriptive statistics obtained by aggregating cardholder transaction sequences. We used this method as a reference method for detecting credit card fraud. We have proposed a strategy for creating attributes based on Hidden Markov Models (HMMs) characterizing the transaction from different viewpoints in order to integrate a broad spectrum of sequential information within transactions. In fact, we model the authentic and fraudulent behaviors of merchants and cardholders according to two univariate characteristics: the date and the amount of transactions. Our multi-perspective approach based on HMM allows automated preprocessing of data to model temporal correlations. Experiments conducted on a large set of data from real-world credit card transactions (46 million transactions carried out by Belgian cardholders between March and May 2015) have shown that the proposed strategy for pre-processing data based on HMMs can detect more fraudulent transactions when combined with the Aggregate Data Pre-Processing strategy
Schra-Martin, Nicole. "Improving Machine Changeover/Setup Times by Increasing U.S. Manufacturers' Knowledge of 5S." ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/2883.
Full textAlirezaie, Marjan. "Semantic Analysis Of Multi Meaning Words Using Machine Learning And Knowledge Representation." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70086.
Full textLynch, Paul Kieran. "The generation of knowledge based systems for interactive nonlinear constrained optimisation." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388221.
Full textPatterson, William Robert David. "Introspective techniques for maintaining retrieval knowledge in case-base reasoning." Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365937.
Full textXu, Jian. "Iterative Aggregation of Bayesian Networks Incorporating Prior Knowledge." Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1105563019.
Full textShanahan, James Gerard. "Cartesian granule features : knowledge discovery for classification and prediction." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245529.
Full textScaiano, Martin. "An Automatically Generated Lexical Knowledge Base with Soft Definitions." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34606.
Full textSedighian, Kamran. "A user interface builder/manager for knowledge craft /." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64008.
Full textYu, Ting. "Incorporating prior domain knowledge into inductive machine learning: its implementation in contemporary capital markets." University of Technology, Sydney. Faculty of Information Technology, 2007. http://hdl.handle.net/2100/385.
Full textMestres, Sugrañes Albert. "Knowledge-defined networking : a machine learning based approach for network and traffic modeling." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461831.
Full textL'aplicació de tècniques d'aprenentatge automàtic (ML) pel control i operació de xarxes informàtiques ja s'ha plantejat anteriorment per la comunitat científica. Un exemple important és "Knowledge Plane", proposat per D. Clark et al. Tot i això, aquestes propostes no s'han utilitzat ni implementat mai en aquest camp. En aquesta tesi, explorem els motius que han fet impossible l'adopció fins al present, i que ara en permeten la implementació. El principal motiu és l'adopció de dos nous paradigmes: Software-Defined Networking (SDN) i Network Analytics (NA), que permeten la utilització de tècniques d'aprenentatge automàtic en el context de control i operació de xarxes informàtiques. En aquesta tesi, es descriu aquest paradigma, que aprofita les possibilitats ofertes per SDN, per NA i per ML, i s'expliquen aplicacions en el món de la informàtica i les comunicacions on l'aplicació d'aquestes tècniques poden ser molt beneficioses. Hem anomenat a aquest paradigma Knowledge-Defined Networking (KDN). En aquest context, una de les aplicacions de ML és el modelatge de xarxes informàtiques per estimar-ne el comportament. El modelatge de xarxes és un camp de recerca important el aquest camp, i que permet, per exemple, optimitzar-ne el seu rendiment. Un dels objectius de la tesi és respondre la següent pregunta: Pot una xarxa neuronal modelar de manera acurada el comportament d'una xarxa informàtica en funció del tràfic d'entrada? Aquesta tesi es centra principalment en el modelatge del retard mig (temps entre que s'envia i es rep un paquet). També s'estudia com varia aquest retard (jitter) i el nombre de paquets perduts. Per fer-ho, s'assumeix que la xarxa és totalment desconeguda i que només es coneix la matriu de tràfic d'entrada i la matriu de rendiment com a sortida. Es fan servir diferents tècniques de ML, com ara regressors lineals i xarxes neuronals, i se n'avalua la precisió per diferents xarxes i diferents configuracions de xarxa i tràfic. Finalment, també s'estudia l'impacte de tenir múltiples fluxos entre els parells de nodes. En la tesi, també s'explora l'ús de tècniques d¿aprenentatge automàtic en altres camps relacionats amb les xarxes informàtiques. Un cas rellevant és la predicció de tràfic. Una bona estimació del tràfic permet preveure la utilització dels diversos elements de la xarxa i optimitzar-ne el seu rendiment. Les tècniques tradicionals de predicció de tràfic es basen en tècniques de sèries temporals, com ara models ARMA o ARIMA. En aquesta tesis es proposa una nova metodologia que combina un model ARIMA amb una xarxa neuronal. La xarxa neuronal millora la predicció dels valors atípics, que tenen comportament complexos i no lineals. Per fer-ho, s'incorpora a l'anàlisi l'ús d'informació externa, com ara: informació meteorològica, esdeveniments, vacances, etc. La hipòtesi principal és que el tràfic de xarxes informàtiques depèn del comportament dels usuaris finals, que a la vegada depèn de factors externs. Per això, s'avalua la precisió de la metodologia presentada fent servir dades reals d'un enllaç de sortida de la xarxa d'un campus. S'observa que el model presentat funciona bé, superant la precisió de models ARIMA estàndards. Una altra aplicació important és en el camp de Network Function Virtualization (NFV). El paradigma de NFV fa les xarxes més flexibles gràcies a l'ús de Virtual Network Functions (VNF) en lloc de dispositius específics. L'avantatge principal és la flexibilitat que ofereixen aquests elements virtuals. Per contra, l'ús de nodes virtuals augmenta la dificultat de modelar aquestes xarxes. Aquest problema es pot estudiar també mitjançant tècniques d'aprenentatge automàtic, tant per modelar com per controlar la xarxa. Com a primer pas, aquesta tesi es centra en el modelatge del comportament de VNFs treballant soles en funció del tràfic que processen. Concretament, es demostra que el consum de CPU d'una VNF es pot estimar a partir a partir de diverses característiques del tràfic d'entrada.
Gooch, Richard M. "Machine learning techniques for signal processing, pattern recognition and knowledge extraction from examples." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294898.
Full textAnnane, Amina. "Using Background Knowledge to Enhance Biomedical Ontology Matching." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS032/document.
Full textLife sciences produce a huge amount of data (e.g., clinical trials, scientific articles) so that integrating and analyzing all the datasets related to a given research question like the correlation between phenotypes and genotypes, is a key element for knowledge discovery. The life sciences community adopted Semantic Web technologies to achieve data integration and interoperability, especially ontologies which are the key technology to represent and share the increasing amount of data on the Web. Indeed, ontologies provide a common domain vocabulary for humans, and formal entity definitions for machines.A large number of biomedical ontologies and terminologies has been developed to represent and annotate various datasets. However, datasets represented with different overlapping ontologies are not interoperable. It is therefore crucial to establish correspondences between the ontologies used; an active area of research known as ontology matching.Original ontology matching methods usually exploit the lexical and structural content of the ontologies to align. These methods are less effective when the ontologies to align are lexically heterogeneous i.e., when equivalent concepts are described with different labels. To overcome this issue, the ontology matching community has turned to the use of external knowledge resources as a semantic bridge between the ontologies to align. This approach arises several new issues mainly: (1) the selection of these background resources, (2) the exploitation of the selected resources to enhance the matching results. Several works have dealt with these issues jointly or separately. In our thesis, we made a systematic review and historical evaluation comparison of state-of-the-art approaches.Ontologies, others than the ones to align, are the most used background knowledge resources. Related works often select a set of complete ontologies as background knowledge, even if, only fragments of the selected ontologies are actually effective for discovering new mappings. We propose a novel BK-based ontology matching approach that selects and builds a knowledge resource with just the right concepts chosen from a set of ontologies. The conducted experiments showed that our BK selection approach improves efficiency without loss of effectiveness.Exploiting background knowledge resources in ontology matching is a double-edged sword: while it may increase recall (i.e., retrieve more correct mappings), it may lower precision (i.e., produce more incorrect mappings). We propose two methods to select the most relevant mappings from the candidate ones: (1) based on a set of rules and (2) with Supervised Machine Learning. We experiment and evaluate our approach in the biomedical domain, thanks to the profusion of knowledge resources in biomedicine (ontologies, terminologies and existing alignments).We evaluated our approach with extensive experiments on two Ontology Alignment Evaluation Initiative (OAEI) benchmarks. Our results confirm the effectiveness and efficiency of our approach and overcome or compete with state-of-the-art matchers exploiting background knowledge resources
Johansson, Josefin. "The knowledge base of machine learning, across data analytics teams in a matrix organization. : An exploratory case study on machine learning." Thesis, Karlstads universitet, Handelshögskolan, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-66283.
Full textKaithi, Bhargavacharan Reddy. "Knowledge Graph Reasoning over Unseen RDF Data." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1571955816559707.
Full text