Academic literature on the topic 'The Mean Value Theorem of Differentiation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The Mean Value Theorem of Differentiation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "The Mean Value Theorem of Differentiation"
Raikhola, Sher Singh. "An explorative study on "Differentiation, Rolle's theorem, and the mean value theorem: In Vedic and modern methods." International Journal of Statistics and Applied Mathematics 9, no. 5 (2024): 137–44. http://dx.doi.org/10.22271/maths.2024.v9.i5b.1830.
Full textDeng, Yashuang, and Yuhui Shi. "An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation." Entropy 23, no. 12 (2021): 1628. http://dx.doi.org/10.3390/e23121628.
Full textBURGIN, MARK. "FUZZY OPTIMIZATION OF REAL FUNCTIONS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, no. 04 (2004): 471–97. http://dx.doi.org/10.1142/s021848850400293x.
Full textYu, Xiao, Yan Hua, and Yanrong Lu. "Observer-based robust preview tracking control for a class of continuous-time Lipschitz nonlinear systems." AIMS Mathematics 9, no. 10 (2024): 26741–64. http://dx.doi.org/10.3934/math.20241301.
Full textYang, Man, Qiang Zhang, Ke Xu, and Ming Chen. "Adaptive Differentiator-Based Predefined-Time Control for Nonlinear Systems Subject to Pure-Feedback Form and Unknown Disturbance." Complexity 2021 (July 27, 2021): 1–12. http://dx.doi.org/10.1155/2021/7029058.
Full textTrokhimchuk, Yu Yu. "Mean-Value Theorem." Ukrainian Mathematical Journal 65, no. 9 (2014): 1418–25. http://dx.doi.org/10.1007/s11253-014-0869-z.
Full textTokieda, Tadashi F. "A Mean Value Theorem." American Mathematical Monthly 106, no. 7 (1999): 673. http://dx.doi.org/10.2307/2589498.
Full textTokieda, Tadashi F. "A Mean Value Theorem." American Mathematical Monthly 106, no. 7 (1999): 673–74. http://dx.doi.org/10.1080/00029890.1999.12005102.
Full textPALES, ZSOLT. "A general mean value theorem." Publicationes Mathematicae Debrecen 89, no. 1-2 (2016): 161–72. http://dx.doi.org/10.5486/pmd.2016.7443.
Full textTong, Jingcheng. "On Flett's mean value theorem." International Journal of Mathematical Education in Science and Technology 35, no. 6 (2004): 936–41. http://dx.doi.org/10.1080/00207390412331271339.
Full textDissertations / Theses on the topic "The Mean Value Theorem of Differentiation"
Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.
Full textBel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139.
Full textHassan, Lama. "Observation et commande des systèmes non linéaires à retard." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00934943.
Full textHassan, Lama. "Observation et commande des systèmes non-linéaires à retard." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0141.
Full textLin, Yu-Siang, and 林郁翔. "Discrete Mean Value Theorem." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60305687811322887486.
Full textHwang, Gwo-Jwu, and 黃國祖. "Mean value Theorem for one-sided differentiable function." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46244603358603144552.
Full textXu, Yuan-Feng, and 許原豐. "An analysis of optical flow algorithms for motion estimation by mean-value theorem." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/94324912031756206063.
Full textRomero, Christopher 1978. "They Must Be Mediocre: Representations, Cognitive Complexity, and Problem Solving in Secondary Calculus Textbooks." Thesis, 2012. http://hdl.handle.net/1969.1/148224.
Full textBooks on the topic "The Mean Value Theorem of Differentiation"
Bean, Hamilton. United States Intelligence Cultures. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190846626.013.357.
Full textBook chapters on the topic "The Mean Value Theorem of Differentiation"
Ben-Israel, Adi, and Robert Gilbert. "Mean value theorem." In Computer-Supported Calculus. Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6146-3_7.
Full textLang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0077-9_5.
Full textLang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4419-8532-3_5.
Full textMercer, Peter R. "The Mean Value Theorem." In More Calculus of a Single Variable. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_5.
Full textSmoryński, Craig. "The Mean Value Theorem." In MVT: A Most Valuable Theorem. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52956-1_3.
Full textObata, Nobuaki. "The Levy Laplacian and mean value theorem." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087857.
Full textHui-Ru, Chen, and Shang Chan-Juan. "Generalizations of the Second Mean Value Theorem for Integrals." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_83.
Full textDi Crescenzo, Antonio, Barbara Martinucci, and Julio Mulero. "Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions." In Computer Aided Systems Theory – EUROCAST 2017. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74727-9_10.
Full textIndlekofer, Karl-Heinz, and Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.
Full textKosheleva, Olga, and Karen Villaverde. "Uncertainty-Related Example Explaining Why Calculus Is Useful: Example of the Mean Value Theorem." In How Interval and Fuzzy Techniques Can Improve Teaching. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55993-2_5.
Full textConference papers on the topic "The Mean Value Theorem of Differentiation"
Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem." In 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.
Full textZhou, Yanwen, Chang Gao, and Wensheng Yu. "Formal Proof of the Mean Value Theorem Based on Coq." In 2023 China Automation Congress (CAC). IEEE, 2023. http://dx.doi.org/10.1109/cac59555.2023.10451477.
Full textZhang, Qingling, and Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.
Full textMa, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.
Full textPei, Hongmei, Xuanhai Li, and Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral." In International Conference on Education, Management, Computer and Society. Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.
Full textMessaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm." In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.
Full textZhang, C., Q. Lv, and J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields." In 80th EAGE Conference and Exhibition 2018. EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.
Full textDonghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.
Full textIchalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin, and Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation." In 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.
Full textOu, Yangjing, Chenghua Wang, and Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.
Full textReports on the topic "The Mean Value Theorem of Differentiation"
Smith, Donald L., Denise Neudecker, and Roberto Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2018. http://dx.doi.org/10.61092/iaea.yxma-3y50.
Full textSmith, Donald L., Denise Neudecker, and Roberto Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2020. http://dx.doi.org/10.61092/iaea.nqsh-f02d.
Full textSmith, D. L., D. Neudecker, and R. Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2020. http://dx.doi.org/10.61092/iaea.3ar5-xmp8.
Full text