Academic literature on the topic 'The second generation of biofuels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The second generation of biofuels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "The second generation of biofuels"
Zhu, Lian Dong, Erkki Hiltunen, and Josu Takala. "Microalgal Biofuels Beat the First and Second Generation Biofuels." Applied Mechanics and Materials 197 (September 2012): 760–63. http://dx.doi.org/10.4028/www.scientific.net/amm.197.760.
Full textBurhani, Dian, Eka Triwahyuni, and Ruby Setiawan. "Second Generation Biobutanol: An Update." Reaktor 19, no. 3 (October 16, 2019): 101–10. http://dx.doi.org/10.14710/reaktor.19.3.101-110.
Full textMungodla, Sarah Gabashwediwe, Linda Zikhona Linganiso, Sukoluhle Mlambo, and Tshwafo Motaung. "Economic and technical feasibility studies: technologies for second generation biofuels." Journal of Engineering, Design and Technology 17, no. 4 (August 5, 2019): 670–704. http://dx.doi.org/10.1108/jedt-07-2018-0111.
Full textKupczyk, Adam, Joanna Mączyńska, Michał Sikora, Karol Tucki, and Tomasz Żelaziński. "Stan i perspektywy oraz uwarunkowania prawne funkcjonowania sektorów biopaliw transportowych w Polsce." Roczniki Naukowe Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich 104, no. 1 (May 17, 2017): 39–55. http://dx.doi.org/10.22630/rnr.2017.104.1.3.
Full textRostek, Ewa. "BIOFUELS OF FIRST AND SECOND GENERATION." Journal of KONES. Powertrain and Transport 23, no. 4 (September 6, 2016): 413–20. http://dx.doi.org/10.5604/12314005.1217259.
Full textBacovsky, Dina. "How close are second-generation biofuels?" Biofuels, Bioproducts and Biorefining 4, no. 3 (May 2010): 249–52. http://dx.doi.org/10.1002/bbb.222.
Full textCarriquiry, Miguel A., Xiaodong Du, and Govinda R. Timilsina. "Second generation biofuels: Economics and policies." Energy Policy 39, no. 7 (July 2011): 4222–34. http://dx.doi.org/10.1016/j.enpol.2011.04.036.
Full textBiernat, Krzysztof. "Biopaliwa drugiej generacji." Studia Ecologiae et Bioethicae 5, no. 1 (December 31, 2007): 281–94. http://dx.doi.org/10.21697/seb.2007.5.1.18.
Full textPatel, Shalu, Savita Dixit, Kavita Gidwani Suneja, and Nilesh Tipan. "Second Generation Biofuel – An Alternative Clean Fuel." SMART MOVES JOURNAL IJOSCIENCE 7, no. 3 (March 26, 2021): 13–21. http://dx.doi.org/10.24113/ijoscience.v7i3.364.
Full textHoush, Mashor, Madhu Khanna, and Ximing Cai. "Mix of First- and Second-Generation Biofuels to Meet Multiple Environmental Objectives: Implications for Policy at a Watershed Scale." Water Economics and Policy 01, no. 03 (September 2015): 1550006. http://dx.doi.org/10.1142/s2382624x1550006x.
Full textDissertations / Theses on the topic "The second generation of biofuels"
Stephenson, Anna Louise. "The sustainability of first- and second-generation biofuels using life cycle analysis." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608636.
Full textAtubi, Phylander Omosigho. "Novel synthesis of silica-supported Fischer-Tropsch catalysts for second generation biofuels." Thesis, University of Huddersfield, 2015. http://eprints.hud.ac.uk/id/eprint/26187/.
Full textDimitriou, Ioanna. "Techno-economic assessment and uncertainty analysis of thermochemical processes for second generation biofuels." Thesis, Aston University, 2013. http://publications.aston.ac.uk/19315/.
Full textPryor, Owen. "Ignition Studies of Diisopropyl Ketone, A Second-Generation Biofuel." Honors in the Major Thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1637.
Full textB.S.A.E.
Bachelors
Mechanical and Aerospace Engineering
Engineering and Computer Science
Aerospace Engineering
Magnusson, Mimmi. "Energy systems studied of biogas : Generation aspects of renewable vehicle fuels in the transport system." Doctoral thesis, KTH, Energiprocesser, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105120.
Full textQC 20121116
Wu, Yi. "Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0011/document.
Full textLaminar flame speed is one of the key parameters for understanding reactivity, diffusivity and exothermicity of fuels. It is also useful to validate both the kinetic chemical mechanisms as well as turbulent models. Although laminar flame speeds of many types of fuels have been investigated over many decades using various combustion methodologies, accurate measurements of laminar flame speeds of multicomponent liquid fuels in high-pressure and high-temperature conditions similar to the operating conditions encountered in aircraft/automobile combustion engines are still required. In this current study, a high-pressure combustion chamber was specifically developed to measure the laminar flame speed of multicomponent liquid fuels such as kerosene and second generation of biofuels. The architecture of the burner is based on a preheated premixed Bunsen flame burner operated in elevated pressure and temperature conditions. The optical diagnostics used to measure the laminar flame speed are based on the detection of the flame contour by using OH* chemiluminescence, OH- and acetone/aromatic- Planar laser induced fluorescence (PLIF). The laminar flame speed of gaseous CH4/air and acetone/air premixed laminar flames were first measured for validating the experimental setup and the measurement methodologies. Then, the laminar flame speeds of kerosene or surrogate fuels (neat kerosene compounds, LUCHE surrogate kerosene and Jet A-1) were investigated and compared with simulation results using detailed kinetic mechanisms over a large range of conditions including pressure, temperature and equivalence ratio. The last part of the thesis was devoted to study the effect of oxygenated compounds contained in the second generation of biofuels on the laminar flame speeds. After measuring the laminar flame speeds of various oxygenated components present in partially hydro-processed lignocellulosic biomass pyrolysis oils, the effect of these oxygenates on the flame speeds of these fuels were quantitatively investigated
Wetterlund, Elisabeth. "System studies of forest-based biomass gasification." Doctoral thesis, Linköpings universitet, Energisystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74576.
Full textBioenergi spelar en viktig roll för att nå EU:s mål för förnybar energi. Sverige har med sina goda skogstillgångar och sin väletablerade skogsindustri en nyckelposition vad gäller modern bioenergianvändning. Förgasning av biomassa har flera fördelar jämfört med förbränningsbaserade processer - i synnerhet möjligheten att konvertera lågvärdiga råvaror till exempelvis fordonsdrivmedel. Används gasen istället för elproduktion kan en högre verkningsgrad nås om gasen används i en kombicykel, jämfört med i en konventionell ångturbincykel. De förgasningsbaserade processerna har i allmänhet ett betydande överskott av värme, vilket möjliggör integrering med fjärrvärmesystem eller industriella processer. I denna avhandling analyseras integrering av storskalig biomassaförgasning för drivmedelseller elproduktion, med andra delar av energisystemet. Skogsbaserad biomassa är i fokus och analysen behandlar såväl teknoekonomiska aspekter, som effekter på globala fossila CO2-utsläpp. Forskningen har gjorts på två olika systemnivåer - dels i form av detaljerade fallstudier av biomassaförgasning integrerat med lokala svenska system, dels i form av systemstudier på europeisk nivå. Resultaten visar att förgasningsbaserad biodrivmedels- eller elproduktion kan komma att utgöra ekonomiskt intressanta alternativ för integrering med fjärrvärme eller massa- och papperstillverkning. På grund av osäkerheter i fråga om framtida energimarknadsförhållanden och på grund av de höga kapitalkostnaderna som investering i förgasningsanläggningar innebär, kommer kraftfulla ekonomiska styrmedel krävas om biomassaförgasning är en önskad utvecklingsväg för framtidens energisystem, såvida inte olje- och elpriserna är höga nog att i sig skapa tillräckliga incitament. Medan förgasningsbaserad drivmedelsproduktion kan vara ekonomiskt attraktivt att integrera med såväl fjärrvärme som med massa- och papperstillverkning, framstår förgasningsbaserad elproduktion som betydligt mer lovande vid integrering med massa- och papperstillverkning. Användning av bioenergi anses ofta vara CO2-neutralt, eftersom upptaget av CO2 i växande biomassa antas balansera den CO2 som frigörs när biomassan förbränns. Som ett av alternativen i denna avhandling ses biomassa som begränsad, vilket innebär att ökad användning av bioenergi i en del av energisystemet begränsar den tillgängliga mängden biomassa för andra användare, vilket leder till ökade CO2-utsläpp för dessa. Resultaten visar att när hänsyn tas till denna typ av marginella effekter av ökad biomassaanvändning, blir potentialen för minskade globala CO2-utsläpp med hjälp av förgasningsbaserade tillämpningar mycket osäker. I själva verket skulle de flesta av de förgasningsbaserade drivmedel som studerats i denna avhandling leda till en utsläppsökning, snarare än den önskade minskningen.
Skalický, Michal. "Druhá generace biopaliv v reálném světě." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-15649.
Full textGibon, Thomas. "Environmental Input-Output Assessment of Integrated Second Generation Biofuel Production in Fenno-Scandinavia." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9066.
Full textThe goal of this study is to investigate the potential implementation of integrated dimethyl ether (DME) production from by-products of the pulp and paper industry in Fenno-Scandinavia (Finland, Norway and Sweden) and to quantify the consequences of several use scenarios in which fossil fuels were gradually substituted by DME. To that end, two analytical frameworks were jointly used, life cycle assessment (LCA) and environmentally-extended input-output analysis (EEIOA). The first framework was utilised to make an exhaustive inventory of the Chemrec process and its integration in the Finnish, Norwegian and Swedish contexts. The latter framework was employed in order to incorporate this production system into a multi-regional input-output model that has been created for the purpose of the study. For data availability reasons, the stressors that have been examined are anthropogenic carbon dioxide, methane and dinitrogen monoxide, widely regarded as the elements which are responsible for the most serious environmental impacts. Three different story lines (plus a baseline scenario) were taken into account: a resource assessment scenario, in which a total implementation is assumed; a policy-independent approach setting a constant increase in the use of biofuels and a policy-compliance approach, aiming at satisfying European directive goals. It results that 5.21 to 20.6 Mt of DME can be produced, while the range of greenhouse gases emissions that can be saved thanks to a black liquor-based DME production scheme goes from 46.7 (scenario 3) to 70.5 (scenario 2) Mt in 2050, that is, 8.1512.8% out of the otherwise total emissions in Fenno-Scandinavia. This LCA/IO analysis emphasises that the amount of greenhouse gases emissions embodied in every kg of DME highly depends on each country's background economy and evolves considerably along the decade, unit-level analysis show drastic reductions (-15% to -57% between 2000 and 2050) in DME embodied emissions. A nationwide analysis highlights a very important potential from the Finnish pulp and paper industry. All in all, it shows that such a biofuel production scheme should be implemented in countries that have an remarkable environmental profile to obtain very significant environmental performances. Only a joint effort of all the key sectors (energy, transportation, households) can lead to climate change mitigation and energy security.
Samuel, Victor. "Environmental and socioeconomic assessment of rice straw conversion to ethanol in Indonesia : The case of Bali." Thesis, KTH, Energi och klimatstudier, ECS, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127807.
Full textHarnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia
Books on the topic "The second generation of biofuels"
Jansen, Roland A. Second Generation Biofuels and Biomass. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652976.
Full textSubcommittee hearing on second generation biofuels: The new frontier for small businesses. Washington: U.S. G.P.O., 2008.
Find full textFrieden, Dorian. Emission balances of first- and second-generation biofuels: Case studies from Africa, Mexico, and Indonesia. Bogor, Indonesia: CIFOR, 2011.
Find full textBajpai, Pratima. Third Generation Biofuels. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2378-2.
Full textRoyal Society of Chemistry (Great Britain), ed. Chemical and biochemical catalysis for next generation biofuels. Cambridge: Royal Society of Chemistry, 2010.
Find full textSimmons, Blake A., ed. Chemical and Biochemical Catalysis for Next Generation Biofuels. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849732857.
Full textBook chapters on the topic "The second generation of biofuels"
Chandel, Anuj Kumar, Tassia Lopes Junqueira, Edvaldo Rodrigo Morais, Vera Lucia Reis Gouveia, Otavio Cavalett, Elmer Ccopa Rivera, Victor Coelho Geraldo, Antonio Bonomi, and Silvio Silvério da Silva. "Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol." In Biofuels in Brazil, 1–29. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05020-1_1.
Full textRaghavendra, H. L., Shashank Mishra, Shivaleela P. Upashe, and Juliana F. Floriano. "Research and Production of Second-Generation Biofuels." In Bioprocessing for Biomolecules Production, 383–400. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119434436.ch18.
Full textde Moraes Rocha, George Jackson, Viviane Marcos Nascimento, Vinicius Fernandes Nunes da Silva, and Anuj Kumar Chandel. "Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production." In Biofuels in Brazil, 225–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05020-1_11.
Full textCeballos, Ruben Michael. "First-generation biofuel and second-generation biofuel feedstocks." In Bioethanol and Natural Resources, 19–52. Boca Raton : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315154299-2.
Full textSouza Dias, Marina O. de, Otávio Cavalett, Rubens M. Filho, and Antonio Bonomi. "Integrated first- and second-generation processes for bioethanol production from sugarcane." In Sugarcane-Based Biofuels and Bioproducts, 311–32. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118719862.ch12.
Full textHirani, Arvind H., Nasir Javed, Muhammad Asif, Saikat K. Basu, and Ashwani Kumar. "A Review on First- and Second-Generation Biofuel Productions." In Biofuels: Greenhouse Gas Mitigation and Global Warming, 141–54. New Delhi: Springer India, 2018. http://dx.doi.org/10.1007/978-81-322-3763-1_8.
Full textHayes, Daniel J. M. "Second-Generation Biofuels: Why They are Taking so Long." In Advances in Bioenergy, 163–91. Oxford, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118957844.ch12.
Full textChagas, André Luis Squarize. "Socio-Economic and Ambient Impacts of Sugarcane Expansion in Brazil: Effects of the Second Generation Ethanol Production." In Biofuels in Brazil, 69–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05020-1_4.
Full textNanda, Sonil, Rachita Rana, Prakash K. Sarangi, Ajay K. Dalai, and Janusz A. Kozinski. "A Broad Introduction to First-, Second-, and Third-Generation Biofuels." In Recent Advancements in Biofuels and Bioenergy Utilization, 1–25. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1307-3_1.
Full textBorse, Prasanna, and Amol Sheth. "Technological and Commercial Update for First- and Second-Generation Ethanol Production in India." In Sustainable Biofuels Development in India, 279–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50219-9_13.
Full textConference papers on the topic "The second generation of biofuels"
Venturini, Osvaldo Jose, Dimas Jose Rua Orozco, and José Carlos Escobar Palacio. "PERFORMANCE EVALUATION OF MICROTURBINES OPERATING WITH SECOND-GENERATION BIOFUELS." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0436.
Full textGu¨ell, Berta Matas, Judit Sandquist, and Lars So̸rum. "Gasification of Biomass to Second Generation Biofuels: A Review." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54140.
Full textJÄGER, Alexander, Heike KAHR, Tina ORTNER, and Renate KRÄNZL-NAGL. "BIOETHANOL FROM STRAW AND ITS PUBLIC ACCEPTANCE." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.009.
Full textTaha, Ahmed A., Tarek Abdel-Salam, and Madhu Vellakal. "Hydrogen, Biodiesel and Ethanol for Internal Combustion Engines: A Review Paper." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1011.
Full textLudwik WICKI, Ludwik WICKI. "DEVELOPMENT OF BIOFUELS PRODUCTION FROM AGRICULTURAL RAW MATERIALS." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.192.
Full textContino, Francesco, Fabrice Foucher, Fabien Halter, Guillaume Dayma, Philippe Dagaut, and Christine Mounaïm-Rousselle. "Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates." In 11th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-24-0098.
Full textTwomey, Kelly M., Ashlynn S. Stillwell, and Michael E. Webber. "The Water Quality and Energy Impacts of Biofuels." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90294.
Full textJiang, Yunjian, Yong Zhang, Chengcheng Wu, and Nana Geng. "Bi-Objectives Optimization of a Second-Generation Biofuel Supply Chain under Demand Uncertainty." In 2014 International Conference of Logistics Engineering and Management. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413753.016.
Full textEldeeb, Mazen A., and Malshana Wadugurunnehalage. "Chemical Kinetic Model Reduction and Analysis of Tetrahydrofuran Combustion Using Stochastic Species Elimination." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16583.
Full textKiesling, Elmar, Markus Gunther, Christian Stummer, and Lea M. Wakolbinger. "An Agent-based simulation model for the market diffusion of a second generation biofuel." In 2009 Winter Simulation Conference (WSC 2009). IEEE, 2009. http://dx.doi.org/10.1109/wsc.2009.5429299.
Full textReports on the topic "The second generation of biofuels"
D., Frieden, Pena N., Bird D.N., Schwaiger H., and Canella L. Emission balances of first -and second- generation biofuels: Case studies from Africa, Mexico and Indonesia. Center for International Forestry Research (CIFOR), 2011. http://dx.doi.org/10.17528/cifor/003508.
Full textGanguli, Sumitrra, Abhishek Somani, Radha K. Motkuri, and Cary N. Bloyd. India Alternative Fuel Infrastructure: The Potential for Second-generation Biofuel Technology. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1530891.
Full textGladden, John Michael, Weihua Wu, Craig A. Taatjes, Adam Michael Scheer, Kevin M. Turner, Eizadora T. Yu, Greg O'Bryan, Amy Jo Powell, and Connie W. Gao. Tailoring next-generation biofuels and their combustion in next-generation engines. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1121906.
Full textTing, Kai M. Second Generation of Mass Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590623.
Full textKwak, Larry W. Second-Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada485134.
Full textArmijo, J. S., M. Misra, and Piyush Kar. Second Generation Waste Package Design Study. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/910143.
Full textSikivie, P., N. S. Sullivan, and D. B. Tanner. Second-generation dark-matter axion search. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/458887.
Full textKwak, Larry W. Second Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada540718.
Full textM.A. Alvin. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/829652.
Full textKwak, Larry W. Second-Generation Therapeutic DNA Lymphoma Vaccines. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada504992.
Full text