Academic literature on the topic 'The Simulated Annealing Algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The Simulated Annealing Algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "The Simulated Annealing Algorithm"
Lin, Ying Jian, and Xiao Ji Chen. "Simulated Annealing Algorithm Improved BP Learning Algorithm." Applied Mechanics and Materials 513-517 (February 2014): 734–37. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.734.
Full textDu, Gai Li, and Nian Xue. "The Research on Mutil-Objective Location Routing Problem Based on Genetic Simulated Annealing Algorithm." Applied Mechanics and Materials 543-547 (March 2014): 2842–45. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.2842.
Full textGong, Guanglu, Yong Liu, and Minping Qian. "An adaptive simulated annealing algorithm." Stochastic Processes and their Applications 94, no. 1 (July 2001): 95–103. http://dx.doi.org/10.1016/s0304-4149(01)00082-5.
Full textWhitaker, D. "A nested simulated annealing algorithm." Journal of Statistical Computation and Simulation 53, no. 3-4 (December 1995): 233–41. http://dx.doi.org/10.1080/00949659508811708.
Full textYao, Xin. "A new simulated annealing algorithm." International Journal of Computer Mathematics 56, no. 3-4 (January 1995): 161–68. http://dx.doi.org/10.1080/00207169508804397.
Full textDelamarre, D., and B. Virot. "Simulated annealing algorithm : technical improvements." RAIRO - Operations Research 32, no. 1 (1998): 43–73. http://dx.doi.org/10.1051/ro/1998320100431.
Full textBoissin, Nicolas, and Jean-Luc Lutton. "A parallel simulated annealing algorithm." Parallel Computing 19, no. 8 (August 1993): 859–72. http://dx.doi.org/10.1016/0167-8191(93)90070-2.
Full textShao, Wei, and Guangbao Guo. "Multiple-Try Simulated Annealing Algorithm for Global Optimization." Mathematical Problems in Engineering 2018 (July 17, 2018): 1–11. http://dx.doi.org/10.1155/2018/9248318.
Full textLiang, Rui Hua, Xin Peng Du, Qing Bo Zhao, and Li Zhi Cheng. "Sparse Signal Recovery Based on Simulated Annealing." Applied Mechanics and Materials 321-324 (June 2013): 1295–98. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1295.
Full textLi, Xiaocong, Zhanying Wang, Junhua Xu, and Baochao Chen. "Power System Stabilizer Parameters Designing Based on Genetic Simulated Annealing Algorithm." Journal of Clean Energy Technologies 4, no. 3 (2015): 178–82. http://dx.doi.org/10.7763/jocet.2016.v4.275.
Full textDissertations / Theses on the topic "The Simulated Annealing Algorithm"
Seacat, Russell Holland III. "Parallelization of the simulated annealing algorithm." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186551.
Full textWade, A. S. C. "Developments of the simulated annealing algorithm." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300076.
Full textNorgren, Eric, and Johan Jonasson. "Investigating a Genetic Algorithm-Simulated Annealing Hybrid Applied to University Course Timetabling Problem : A Comparative Study Between Simulated Annealing Initialized with Genetic Algorithm, Genetic Algorithm and Simulated Annealing." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186364.
Full textAraujo, Haroldo Alexandre de. "Algoritmo Simulated Annealing." Florianópolis, SC, 2001. http://repositorio.ufsc.br/xmlui/handle/123456789/80386.
Full textMade available in DSpace on 2012-10-18T13:35:55Z (GMT). No. of bitstreams: 1 225675.pdf: 796704 bytes, checksum: 892abc8468e4e7c6715b6c3f2de50e51 (MD5)
A busca por soluções de problemas por meio do computador é o tema central da ciência da computação, relevante para grande parte da ciência e de suas aplicações tecnológicas. Essa busca, certamente, vai na direção de algoritmos eficientes e exatos mas que nem sempre boas soluções podem ser encontradas para muitos problemas de ordem prática, principalmente, no que diz respeito a tempo de execução. Existem problemas, dentre estes, os de otimização combinatorial que apresentam uma peculiaridade com relação aos outros, que é a grande dificuldade de se obter soluções exatas num tempo computacional aceitável. Atualmente, as novas técnicas, especialmente as metaheurísticas, tais como: Tabu Search, Simulated Annealing, Algoritmos Genéticos e Redes Neurais, vêm conseguindo sucesso na solução de problemas de otimização combinatorial, que mesmo não apresentando soluções exatas têm mostrado bastante eficiência com suas soluções aproximadas. Este trabalho propõe um novo método baseado no algoritmo Simulated Annealing (SA) através de mudanças bruscas nos valores da temperatura que são retiradas de múltiplas faixas, ao contrário do SA básico, onde esses valores são obtidos de uma faixa única, ou seja, num SA básico, os valores assumidos pela temperatura saem de um intervalo, partindo de um valor inicial, e vão diminuindo até um valor final. Tais mudanças bruscas acontecem exatamente no momento da mudança de faixa, pois o valor da temperatura que no final de uma faixa é pequeno, assume um valor correspondente a temperatura inicial da faixa seguinte, normalmente, bem maior. Posto a prova, com instâncias euclidianas do Problema Caixeiro Viajante, que é um problema de otimização combinatorial de difícil solução, o método apresenta resultados bastante satisfatórios quando comparado com o SA básico.
Moins, Stephane. "Implementation of a Simulated Annealing algorithm for Matlab." Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1344.
Full textIn this report we describe an adaptive simulated annealing method for sizing the devices in analog circuits. The motivation for use an adaptive simulated annealing method for analog circuit design are to increase the efficiency of the design circuit. To demonstrate the functionality and the performance of the approach, an operational transconductance amplifier is simulated. The circuit is modeled with symbolic equations that are derived automatically by a simulator.
Sohn, Eugene. "Simulated annealing algorithm for customer-centric location routing problem." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117923.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 36-38).
In today's world, the e-commerce market is growing rapidly and becoming more competitive. While many players in the industry are attempting to get their share of pie, consumers are demanding faster deliveries and free shipping. This market growth and change in consumer behavior provides an exciting opportunity for companies to compete. In order to meet the new consumer demand, companies need to find better ways to deliver faster. Faster delivery times can be achieved by using an optimization model to plan delivery network and operations. Typically, this optimization model has been based on minimizing cost. However, in the current market, lowest cost is not necessarily the best driver of sales as the consumer culture enters an era of instant gratification. We argue that minimizing customer waiting time will bring better performance and win over market share by providing the quickest delivery service that is expected by the majority of consumers. We propose solving the location routing problem (LRP) aiming at minimizing customer waiting time with capacitated depots and vehicles. We take two approaches to solve this problem: mathematical model and heuristic algorithm. The mathematical model obtains the optimal solution, but it has a limitation on the size of the problem due to the NP-hardness of the LRP. Therefore, we introduce three different variations of Simulated Annealing (SA) algorithm to solve the Capacitated Latency Location Routing Problem (CLLRP). According to the comparison results on a popular benchmark test, one of the designed SAs, the Iterative Simulated Annealing algorithm, consistently provides the best combination of performance and computation time compared to the other two SAs. Therefore, this specific algorithm is further compared to the mathematical model on some problem instances. The comparison results demonstrate that the proposed algorithm performs competitively with the algorithms in the literature and the mathematical model.
by Eugene Sohn.
M. Eng. in Supply Chain Management
Fleischer, Mark Alan. "Assessing the performance of the simulated annealing algorithm using information theory." Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1057677595.
Full textGelfand, Saul B. (Saul Brian). "Analysis of simulated annealing type algorithms." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14935.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 101-103.
by Saul B. Gelfand.
Ph.D.
Kovàcs, Akos. "Solving the Vehicle Routing Problem with Genetic ALgorithm and Simulated Annealing." Thesis, Högskolan Dalarna, Datateknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3306.
Full textBatts, William Merle. "Modeling of a hardware VLSI placement system : accelerating the simulated annealing algorithm /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1015.
Full textBooks on the topic "The Simulated Annealing Algorithm"
Ginneken, L. P. P. P. van., ed. The annealing algorithm. Boston: Kluwer Academic Publishers, 1989.
Find full textJones, Mark. An improved simulated annealing algorithm for standard cell placement. Urbana, IL: Computer Systems Group, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1988.
Find full textP. J. M. van Laarhoven. Theoretical and computational aspects of simulated annealing. [Amsterdam, Netherlands]: Centrum voor Wiskunde en Informatica, 1988.
Find full textColeman, Thomas F. A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1993.
Find full textD, Karaboga, ed. Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. London: Springer London, 2000.
Find full text1965-, Karaboga Dervis, ed. Intelligent optimisation techniques: Genetic algorithms, tabu search, simulated annealing and neural networks. London: Springer, 2000.
Find full textJunior, Hime Aguiar e. Oliveira. Stochastic global optimization and its applications with fuzzy adaptive simulated annealing. Heidelberg: New York, 2012.
Find full textTucci, Mario, and Marco Garetti, eds. Proceedings of the third International Workshop of the IFIP WG5.7. Florence: Firenze University Press, 2002. http://dx.doi.org/10.36253/88-8453-042-3.
Full textVidal, René V. V., ed. Applied Simulated Annealing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-46787-5.
Full textBook chapters on the topic "The Simulated Annealing Algorithm"
Rossmanith, Peter. "Simulated Annealing." In Algorithms Unplugged, 393–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15328-0_41.
Full textSechen, Carl. "The Simulated Annealing Algorithm." In The Kluwer International Series in Engineering and Computer Science, 31–49. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1697-8_2.
Full textvan Laarhoven, Peter J. M., and Emile H. L. Aarts. "Towards implementing the algorithm." In Simulated Annealing: Theory and Applications, 55–75. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-015-7744-1_5.
Full textvan Laarhoven, Peter J. M., and Emile H. L. Aarts. "Performance of the simulated annealing algorithm." In Simulated Annealing: Theory and Applications, 77–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-015-7744-1_6.
Full textCzech, Zbigniew J., Wojciech Mikanik, and Rafał Skinderowicz. "Implementing a Parallel Simulated Annealing Algorithm." In Parallel Processing and Applied Mathematics, 146–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_16.
Full textBoixo, Sergio, and Rolando D. Somma. "Quantum Algorithms for Simulated Annealing." In Encyclopedia of Algorithms, 1677–80. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_774.
Full textBoixo, Sergio, and Rolando D. Somma. "Quantum Algorithms for Simulated Annealing." In Encyclopedia of Algorithms, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_774-1.
Full textTang, Min, and Jin-xiang Dong. "Simulated Annealing Genetic Algorithm for Surface Intersection." In Lecture Notes in Computer Science, 48–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539902_6.
Full textZbierski, Maciej. "A Simulated Annealing Algorithm for GPU Clusters." In Parallel Processing and Applied Mathematics, 750–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31464-3_76.
Full textLine, Shih-Wei, and Ching-Jung Ting. "Simulated Annealing Algorithm for Berth Allocation Problems." In Proceedings of the Institute of Industrial Engineers Asian Conference 2013, 449–56. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-98-7_54.
Full textConference papers on the topic "The Simulated Annealing Algorithm"
Nikiel, Slawomir, and Pawel Dabrowski. "Deployment algorithm using simulated annealing." In Robotics (MMAR). IEEE, 2011. http://dx.doi.org/10.1109/mmar.2011.6031327.
Full textShiu Yin Yuen and Chi Kin Chow. "A non-revisiting simulated annealing algorithm." In 2008 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2008. http://dx.doi.org/10.1109/cec.2008.4631046.
Full textMingyan Jiang and Yongming Cheng. "Simulated annealing artificial fish swarm algorithm." In 2010 8th World Congress on Intelligent Control and Automation (WCICA 2010). IEEE, 2010. http://dx.doi.org/10.1109/wcica.2010.5554452.
Full textYang Weibo and Wang Yuedong. "Improved simulated annealing algorithm for GTSP." In International Conference on Automatic Control and Artificial Intelligence (ACAI 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1194.
Full textJiang, Haibo, Tingwen Xing, and Meng Du. "Source optimization using simulated annealing algorithm." In 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014), edited by Yudong Zhang and Wei Gao. SPIE, 2014. http://dx.doi.org/10.1117/12.2069398.
Full textLi, Xiaomei. "Protein Folding Based on Simulated Annealing Algorithm." In Third International Conference on Natural Computation (ICNC 2007). IEEE, 2007. http://dx.doi.org/10.1109/icnc.2007.583.
Full textZhu, Jingwei, Ting Rui, Husheng Fang, Jinlin Zhang, and Ming Liao. "Simulated annealing ant colony algorithm for QAP." In 2012 8th International Conference on Natural Computation. IEEE, 2012. http://dx.doi.org/10.1109/icnc.2012.6234519.
Full text"Kernel FCM Based on Simulated Annealing Algorithm." In 2017 the 7th International Workshop on Computer Science and Engineering. WCSE, 2017. http://dx.doi.org/10.18178/wcse.2017.06.019.
Full text"Kernel FCM Based on Simulated Annealing Algorithm." In 2017 the 7th International Workshop on Computer Science and Engineering. WCSE, 2017. http://dx.doi.org/10.18178/wcse.2017.06.020.
Full textYanping, Zhang, and Liu Chao. "Cross Covering Algorithm Based on Simulated Annealing." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.112.
Full textReports on the topic "The Simulated Annealing Algorithm"
Fleischer, Mark, and Sheldon Jacobson. Scale Invariance Properties in the Simulated Annealing Algorithm. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada442644.
Full textGelfand, Saul B., and Sanjoy K. Mitter. Simulated Annealing Type Algorithms for Multivariate Optimization. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada460156.
Full textBui, Thang, Christopher Heigham, Curt Jones, and Tom Leighton. Improving the Performance of the Kernighan-Lin and Simulated Annealing Graph Bisection Algorithms. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada211914.
Full textBandyopadhyay, S., S. K. Pal, and C. A. Murthy. Simulated Annealing Based Pattern Classification. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada358039.
Full textCole, James B., and David H. Gerstman. Image Recovery by Simulated Annealing. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230655.
Full textRose, Jonathan, Wolfgang Klebsch, and Juergen Wolf. Temperature Measurement of Simulated Annealing Placements. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada207229.
Full textGelfand, Saul B., and Sanjoy K. Mitter. Analysis of Simulated Annealing for Optimization. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada170174.
Full textTsitsiklis, John N. Markov Chains with Rare Transitions and Simulated Annealing. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada161598.
Full textRose, Jonathan, Wolfgang Klebsch, and Juergen Wolf. Temperature Measurement and Equilibrium Dynamics of Simulated Annealing Placements. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada207230.
Full textNakao, Shinsuke, J. Najita, and Kenzi Karasaki. Sensitivity study on hydraulic well testing inversion using simulated annealing. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/658166.
Full text