Academic literature on the topic 'The theory of Van Hiele'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'The theory of Van Hiele.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "The theory of Van Hiele"
Izzati, Fitri Amalia, Hadi Kusmanto, and Toheri Toheri. "Pengaruh Penerapan Teori Van Hiele Berbantuan Software Wingeom Terhadap Kemampuan Penalaran Matematika Siswa pada Materi Geometri." ITEJ (Information Technology Engineering Journals) 2, no. 1 (July 25, 2016): 19–25. http://dx.doi.org/10.24235/itej.v2i1.13.
Full textHowse, Tashana D., and Mark E. Howse. "Linking the Van Hiele Theory to Instruction." Teaching Children Mathematics 21, no. 5 (December 2014): 304–13. http://dx.doi.org/10.5951/teacchilmath.21.5.0304.
Full textTeppo, Anne. "Van Hiele Levels of Geometric Thought Revisited." Mathematics Teacher 84, no. 3 (March 1991): 210–21. http://dx.doi.org/10.5951/mt.84.3.0210.
Full textAnwar, Azwar. "Perbedaan Hasil Belajar Matematika Siswa ditinjau dari Level Geometri Van Hiele SMP Kelas VII." MANDALIKA Mathematics and Educations Journal 1, no. 2 (December 31, 2019): 74. http://dx.doi.org/10.29303/mandalika.v1i2.1536.
Full textHandoko, Akbar, Santi Sartika, and Bambang Sri Anggoro. "Subject-specific pedagogy: Development of biology teaching materials based on van hiele thinking theory." JPBIO (Jurnal Pendidikan Biologi) 6, no. 1 (April 29, 2021): 125–32. http://dx.doi.org/10.31932/jpbio.v6i1.933.
Full textLusyana, Evvy, and Wahyu Setyaningrum. "van Hiele instructional package for vocational school students’ spatial reasoning." Beta Jurnal Tadris Matematika 11, no. 1 (May 31, 2018): 79–100. http://dx.doi.org/10.20414/betajtm.v11i1.146.
Full textJunedi, Beni. "PENERAPAN TEORI BELAJAR VAN HIELE PADA MATERI GEOMETRI DI KELAS VIII." MES: Journal of Mathematics Education and Science 3, no. 1 (November 14, 2017): 1–7. http://dx.doi.org/10.30743/mes.v3i1.213.
Full textSwafford, Jane O., Graham A. Jones, and Carol A. Thornton. "Increased Knowledge in Geometry and Instructional Practice." Journal for Research in Mathematics Education 28, no. 4 (July 1997): 467–83. http://dx.doi.org/10.5951/jresematheduc.28.4.0467.
Full textElly S, As, and Novianti Mandasari. "Analisis Proses Abstraksi Matematika dalam Memahami Konsep dan Prinsip Geometri Ditinjau dari Teori Van Hiele." Jurnal Pendidikan Matematika (JUDIKA EDUCATION) 1, no. 2 (September 1, 2018): 61–70. http://dx.doi.org/10.31539/judika.v1i2.312.
Full textBudiarti, Marlinda Indah Eka. "Analisis Proses Pemecahan Masalah Geometri Berdasarkan Teori Van Hiele." Qalam : Jurnal Ilmu Kependidikan 5, no. 2 (January 8, 2019): 33. http://dx.doi.org/10.33506/jq.v5i2.344.
Full textDissertations / Theses on the topic "The theory of Van Hiele"
Nasser, Lilian. "Using the van Hiele theory to improve secondary school geometry in Brazil." Thesis, King's College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281619.
Full textMateya, Muhongo. "Using the van Hiele theory to analyse geometrical conceptualisation in grade 12 students: a Namibian perspective." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003706.
Full textGon?alves, Alan Jorge Ciqueira. "Uma proposta de ensino de c?nicas com o aux?lio do GeoGebra." Universidade Federal Rural do Rio de Janeiro, 2015. https://tede.ufrrj.br/jspui/handle/jspui/1753.
Full textMade available in DSpace on 2017-06-08T12:58:44Z (GMT). No. of bitstreams: 1 2016 - Alan Jorge Ciqueira Gon?alves.pdf: 2968550 bytes, checksum: c41aeac563a3e880f387fa38231d62f7 (MD5) Previous issue date: 2015-08-31
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
This study aims to improve understanding of studies of conics. For this, we will use as theoretical foundation in the construction of the proposed activities, the geometric constructivist theory of Van Hiele. Moreover, in line with the new teaching, and learning tools, we use a dynamic geometry software, the GeoGebra
Este trabalho tem por objetivo melhorar a compreens?o do estudo de c?nicas. Para isto, usaremos como fundamenta??o te?rica na constru??o das atividades propostas a teoria construtivista geom?trica de Van Hiele. Al?m disso, em conson?ncia com as novas ferramentas de ensino e aprendizagem, utilizaremos um software de geometria din?mica, GeoGebra.
Muyeghu, Augustinus. "The use of the van Hiele theory in investigating teaching strategies used by grade 10 geometry teachers in Namibia." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003703.
Full textYip, Yun-keen, and 葉潤建. "A comparative analysis of the intended and attained geometry curriculum in Hong Kong relative to the van Hiele level theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31957614.
Full textAssad, Alessandra. "Usando o geogebra para analisar os níveis do pensamento geométrico dos alunos do ensino médio na perspectiva de Van Hiele." Universidade Estadual de Ponta Grossa, 2017. http://tede2.uepg.br/jspui/handle/prefix/2444.
Full textMade available in DSpace on 2018-03-01T13:43:37Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) -Alessandra-Assad.pdf: 8992837 bytes, checksum: 39109f11342ebe17bfb50e8dcd0365a8 (MD5) Previous issue date: 2017-12-14
O presente trabalho teve como finalidade a investigação dos níveis do pensamento geométrico de estudantes de um colégio público da cidade de Paranaguá/PR, tendo como fundamentação teórica a Teoria de Van Hiele. Dessa forma para atingir o objetivo proposto utilizou-se das Tecnologias Educacionais, por meio de atividades desenvolvidas com o software Geogebra. Os participantes da pesquisa eram estudantes de três turmas do primeiro ano do Ensino Médio de um colégio público da cidade de Paranaguá. Estes realizaram 13 (treze) atividades correspondentes as 15 (quinze) habilidades indicadas no referencial teórico utilizado, divididas em três níveis: nível 0 (visualização), nível 1 (análise), nível 2 (dedução informal). A metodologia utilizada para esta pesquisa tratou-se da forma exploratória e aplicada. Pela análise dos dados coletados na resolução das atividades, pode-se concluir que o nível 0 foi atingido pela maior parte dos estudantes, uma menor porcentagem dos estudantes conseguiu atingir o nível 1. Em relação ao nível 2 pode-se verificar que foi o nível com maior dificuldade nas três turmas. Estes resultados apontam que os estudantes do colégio, onde se realizou a pesquisa, não detêm as habilidades visual, verbal, lógica, desenho e aplicação condizentes com o nível de ensino, segundo a Teoria de Van Hiele. Diante da evidente defasagem no conteúdo de Geometria apresentada pelos estudantes, pode-se dizer que além do objetivo proposto, esta pesquisa corrobora com os trabalhos de Pavanelo(1993), Lorenzato (1995), Passos (2000) e Barbosa (2003) entre outros que dissertam a respeito do abandono da geometria nas escolas do Brasil. Os resultados obtidos são preocupantes, pois esta defasagem acarreta a não compreensão dos conteúdos que serão trabalhado posteriormente. Assim, algumas ações no planejamento do processo de ensino-aprendizagem da geometria precisam ser repensadas. No âmbito local, pretende-se apresentar os resultados desta pesquisa à equipe pedagógica da escola, assim como aos professores da área de Matemática para que planejamentos e estratégias sejam organizados a fim de melhorar as habilidades do pensamento geométrico dos estudantes para que possam se aproximar do nível que é condizente a eles, segundo a teoria utilizada.
The present dissertation had the purpose to investigate the levels of geometric thinking of students of public school in the city of Paranagua/PR, having as theoretical foundation the Theory of Van Hiele. Thus, in order to achieve the proposed objective, it was used the Educational Technologies, through activities developed with Geogebra software. The research participants were students of three classes of the first year of the High School of a public school of the city of Paranaguá. They performed 13 (thirteen) activities corresponding to 15 (fifteen) skills indicated in the theoretical framework used, divided into three levels: level 0 (visualization), level 1 (analysis), level 2 (informal deduction). The methodology used for this research was exploratory and applied. By analyzing the data collected in the resolution of activities, it can be concluded that the majority of the students reached level 0 and a lower percentage of the students managed to reach level 1. In relation to level 2, it can be verified that it was the most difficult level to achieve in the three classes. These results point out the students of the school where the research was carried out do not hold the visual, verbal, logical, design and application skills that correspond to the level of education, according to Van Hiele Theory. In addition to the proposed objective, this research corroborates the works of Pavanelo (1993), Lorenzato (1995), Passos (2000) and Barbosa (2003) among others who talk about the abandonment of geometry in Brazilian schools. The results obtained are worrisome, as this lag causes the lack of understanding of the contents that will be worked on later. Therefore, some actions in the planning of the teaching-learning process of geometry need to be rethought. At the local level, it is intended to present the results of this research to the pedagogical team of the school, as well as teachers in the Mathematics area, so that the planning and strategies are organized in order to improve students' geometric thinking abilities so that they can approach the level that is appropriate to them, according to the theory used.
Alves, Andréia Rodrigues. "O desenho geométrico no 9º ano como estratégia didática no ensino da geometria." Universidade Federal de Alagoas, 2017. http://www.repositorio.ufal.br/handle/riufal/1736.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Apresentamos, neste trabalho, um pouco da história do ensino do Desenho Geométrico no Brasil, que passando por momentos históricos significativos tiveram um papel muito importante no desenvolvimento do que se tem hoje sobre Desenho Geométrico, procurando sua importância, bem como o que dizem os Parâmetros Curriculares Nacionais. Mostramos, também, a Teoria de Van Hiele, passando por seus diferentes níveis e como o professor pode utilizar essa teoria e proporcionar um melhor aproveitamento de aprendizagem na Geometria. Apresentamos uma avaliação prévia e posteriori para diagnosticar o nível de aprendizagem geométrica dos alunos antes e depois da realização das atividades propostas nesta dissertação, tendo como critério de avaliação a Teoria de Van Hiele. Aplicamos algumas atividades em uma escola Estadual de Arapiraca-AL, com uma turma do 9º ano, que envolviam construções geométricas básicas para auxiliar na aprendizagem da Geometria. Finalizamos com as considerações sobre as atividades que foram propostas em sala de aula e como elas puderam auxiliar no processo de ensino e aprendizagem da Geometria.
Geja, Nokuzola Hlaleleni. "Investigating a way of teaching transformation geometry in grade 9 applying van Hiele’s theory and Kilpatrick’s model : a case study." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1020601.
Full textKotze, Jeannette. "The effect of a dynamic technological learning environment on the geometry conceptualisation of pre-service mathematics teachers / by Jeannette Kotze." Thesis, North-West University, 2006. http://hdl.handle.net/10394/1359.
Full textFredriksson, Amanda, and Josefin Ek. "Van Hiele´s teori : En litteraturstudie om elevers lärande och geometriundervisning utifrån van Hiele´s teori." Thesis, Högskolan för lärande och kommunikation, Högskolan i Jönköping, Matematikdidaktik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-35363.
Full textBooks on the topic "The theory of Van Hiele"
Woodward, Ernest. Visualized geometry: A van Hiele level approach. Portland, Maine: J. Weston Walch, 1990.
Find full textFuys, David J. The van Hiele model of thinking in geometry among adolescents. Reston, VA (1906 Association Drive, Reston 22091): National Council of Teachers of Mathematics, 1988.
Find full textMuijlwijk, Margreet van. De toekomst van Teiresias: Vrouwelijke gestalten van het gemis. Brussel: Vubpress, 1998.
Find full textBerndsen, F. A. H. Cultuur en methodologie: Over wijzen van bestaan en vormen van onderzoek. Groningen: Passage, 1995.
Find full textKritiek van de maatschappijkritische rede: De structuur van de maatschappijkritiek van de Frankfurter Schule. Muiderberg: Coutinho, 1986.
Find full textHalsema, Annemie. Dialectiek van de seksuele differentie: De filosofie van Luce Irigaray. Amsterdam: Boom, 1998.
Find full textPeter Maria van der Staal. Toekomstonderzoek en wetenschap: Over de grondslagen van wetenschappelijke methoden en technieken van toekomstonderzoek. [Delft]: Delftse Universitaire Pers, 1988.
Find full textBook chapters on the topic "The theory of Van Hiele"
Pegg, John. "The van Hiele Theory." In Encyclopedia of Mathematics Education, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77487-9_183-4.
Full textPegg, John. "van Hiele Theory, The." In Encyclopedia of Mathematics Education, 896–900. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15789-0_183.
Full textPegg, John. "The van Hiele Theory." In Encyclopedia of Mathematics Education, 613–15. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-4978-8_183.
Full textla Bastide-van Gemert, Sacha. "Freudenthal and the Van Hieles’ Level Theory." In All Positive Action Starts with Criticism, 179–204. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9334-6_7.
Full textJohnson, Dana T., Marguerite M. Mason, and Jill Adelson. "The van Hiele Levels of Geometric Understanding." In Polygons Galore!, 10–11. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003237204-6.
Full textRehm, Matthias, Catalin Stan, Niels Peter Wøldike, and Dimitra Vasilarou. "Towards Smart City Learning: Contextualizing Geometry Learning with a Van Hiele Inspired Location-Aware Game." In Entertainment Computing - ICEC 2015, 399–406. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24589-8_32.
Full textWu, Der-Bang, Hsiu-Lan Ma, Guey-Shya Chen, and Hei-Tsz Chang. "An Application of GM(0,N) on Analyzing the First Van Hiele Geometrical Thinking Level." In Understanding Complex Systems, 371–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13938-3_32.
Full textGöhner, Julia Friederike, and Lukas Steinbrink. "Ontological Commitments, Ordinary Language and Theory Choice." In Peter van Inwagen, 41–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70052-6_3.
Full textCharalambous, Michael G. "The van Douwen Technique for Constructing Counterexamples." In Dimension Theory, 187–200. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22232-1_25.
Full textFujita, Shigeji, and Kei Ito. "De Haas–Van Alphen Oscillations." In Quantum Theory of Conducting Matter, 133–49. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-74103-1_11.
Full textConference papers on the topic "The theory of Van Hiele"
Sari, Christina Kartika, Isnaeni Umi Machromah, and Zakkiyah. "Developing Circle Module Based on Van Hiele Theory." In SEMANTIK Conference of Mathematics Education (SEMANTIK 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200827.120.
Full textWatan, Saepul, and Sugiman. "The Van Hiele theory and realistic mathematics education: As teachers’ instruction for teaching geometry." In Proceedings of the 17th International Conference on Ion Sources. Author(s), 2018. http://dx.doi.org/10.1063/1.5054479.
Full textMusdi, Edwin, and Nila Gusnita. "Development of Mathematical Learning Devices Using Van Hiele Theory in Geometry of The Students In Grade VIII Secondary High School." In Proceedings of the 2nd International Conference on Mathematics and Mathematics Education 2018 (ICM2E 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icm2e-18.2018.14.
Full textRahmawati, Fadhilah, Megita Dwi Pamungkas, and Rizki Sariningtias. "The Van Hiele Geometry Thinking Level of Autism Students." In Proceedings of the 3rd International Conference on Learning Innovation and Quality Education (ICLIQE 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200129.167.
Full textPatsiomitou, Stavroula. "The Development of Students Geometrical Thinking through Transformational Processes and Interaction Techniques in a Dynamic Geometry Environment." In InSITE 2008: Informing Science + IT Education Conference. Informing Science Institute, 2008. http://dx.doi.org/10.28945/3235.
Full textLazarov, Borislav, and Rumyana Papancheva. "Computer Supported Evolution Inside Van Hiele Levels 1 and 2." In 8th International Conference on Computer Supported Education. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005903001860192.
Full textTajik, Nadia, and Manzil Maqsood. "INTEGRATING ICT IN MATHEMATICS: EVALUATING STUDENTS’ ACHIEVEMENT USING GEOGEBRA THROUGH VAN HIELE MODEL." In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.2635.
Full textNoviana, Widyah, and Windia Hadi. "The Effect of Van Hiele Learning Model Based Geogebra on Students’ Spatial Ability." In 1st Annual International Conference on Natural and Social Science Education (ICNSSE 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/assehr.k.210430.003.
Full textŞefik, Özgün, Selin Urhan, and Nazan Sezen-Yüksel. "Analysis of metacognitive skills and Van Hiele levels of geometric thinking through various variables." In 7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5078479.
Full textWu, Der-Bang, Hsiu-Lan Ma, Guey-Shya Chen, and Hei-Tsz Chang. "An application of GM(0, N) on analyzing the first van Hiele geometrical thinking level." In 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/gsis.2009.5408264.
Full textReports on the topic "The theory of Van Hiele"
Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.
Full textSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.
Full textBuijs, Arjen E., Susan de Koning, Thomas J. M. Mattijssen, Piet Groenendijk, Amanda Schadeberg, Ingeborg W. Smeding, Marie-José Smits, and Nathalie A. Steins. Burgerbetrokkenheid voor een transitie naar een natuurinclusieve samenleving : De theory of change van Beach Clean-up en Tiny Forest-initiatieven. Wageningen: Wageningen Environmental Research, 2021. http://dx.doi.org/10.18174/538557.
Full text