To see the other types of publications on this topic, follow the link: The theory of Van Hiele.

Dissertations / Theses on the topic 'The theory of Van Hiele'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'The theory of Van Hiele.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nasser, Lilian. "Using the van Hiele theory to improve secondary school geometry in Brazil." Thesis, King's College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mateya, Muhongo. "Using the van Hiele theory to analyse geometrical conceptualisation in grade 12 students: a Namibian perspective." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003706.

Full text
Abstract:
The study reported here utilised a theory of levels of geometric thinking. This theory was proposed and developed by two Dutch mathematics educators, Pierre van Hiele and his wife, Dina van Hiele-Geldof. The van Hiele theory enables investigations into why many students experience difficulties in learning geometry. In many nations, such as the UK, the USA, Netherlands, the USSR and to a certain extent, Nigeria and South Africa, research evidence has indicated that the overall students’ mathematical competencies are linked to their geometric thinking levels. This study is the first of its kind to apply the van Hiele theory of geometric thinking in the Namibian context to analyse geometrical conceptualisation in Grade 12 mathematics students. In all, 50 Grade 12 students (20 from School A and 30 from School B) were involved in this study. These students wrote a van Hiele Geometry Test adapted from the Cognitive Development and Achievement in Secondary School Geometry test items. Thereafter, a clinical interview with the aid of manipulatives was conducted. The results from this study indicated that many of the School A and School B students who participated in the research have a weak conceptual understanding of geometric concepts: 35% of the School A and 40% of the School B subsamples were at the prerecognition level. 25% and 30% of the School A, and 20% and 23.3% of the School B students were at van Hiele levels 1 and 2 respectively. An equal number of students but different in percentages, 2 (10%) in School A and 2 (6.7%) in School B, were at van Hiele level 3. Only one student from School B attained van Hiele level 4. These results were found to be consistent with those of previous similar studies in UK, USA, Nigeria and South Africa. The findings of this study also highlight issues of how the Namibian Grade 12 geometry syllabus should be aligned with the van Hiele levels of geometric thinking as well as the use of appropriate and correct language in geometrical thinking and problem solving.
APA, Harvard, Vancouver, ISO, and other styles
3

Gon?alves, Alan Jorge Ciqueira. "Uma proposta de ensino de c?nicas com o aux?lio do GeoGebra." Universidade Federal Rural do Rio de Janeiro, 2015. https://tede.ufrrj.br/jspui/handle/jspui/1753.

Full text
Abstract:
Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-06-08T12:58:44Z No. of bitstreams: 1 2016 - Alan Jorge Ciqueira Gon?alves.pdf: 2968550 bytes, checksum: c41aeac563a3e880f387fa38231d62f7 (MD5)
Made available in DSpace on 2017-06-08T12:58:44Z (GMT). No. of bitstreams: 1 2016 - Alan Jorge Ciqueira Gon?alves.pdf: 2968550 bytes, checksum: c41aeac563a3e880f387fa38231d62f7 (MD5) Previous issue date: 2015-08-31
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES
This study aims to improve understanding of studies of conics. For this, we will use as theoretical foundation in the construction of the proposed activities, the geometric constructivist theory of Van Hiele. Moreover, in line with the new teaching, and learning tools, we use a dynamic geometry software, the GeoGebra
Este trabalho tem por objetivo melhorar a compreens?o do estudo de c?nicas. Para isto, usaremos como fundamenta??o te?rica na constru??o das atividades propostas a teoria construtivista geom?trica de Van Hiele. Al?m disso, em conson?ncia com as novas ferramentas de ensino e aprendizagem, utilizaremos um software de geometria din?mica, GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
4

Muyeghu, Augustinus. "The use of the van Hiele theory in investigating teaching strategies used by grade 10 geometry teachers in Namibia." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003703.

Full text
Abstract:
This study reports on the extent to which selected mathematics teachers facilitate the teaching and learning of geometry at the van Hiele levels 1 and 2 at a Grade 10 level in selected schools in Namibia. It also addresses and explores the teaching strategies teachers employ in their classrooms. Kilpatrick et al.’s model for proficient teaching and the van Hiele model of geometric thinking were used to explore the type of teaching strategies employed by selected mathematics teachers. These two models served as guidelines from which interview and classroom observation protocols were developed. Given the continuing debate across the world about the learning and teaching of geometry, my thesis aims to contribute to a wider understanding of the teaching of geometry with regard to the van Hiele levels 1 and 2. There are no similar studies on the teaching of geometry in Namibia. My study concentrates on selected Grade 10 mathematics teachers and how they teach geometry using the van Hiele theory and the five Kilpatrick components of proficient teaching. As my research looks at teaching practice it was important to deconstruct teaching proficiency with a view to understanding what makes good teachers effective. The results from this study indicated that the selected Grade 10 mathematics teachers have a good conceptual understanding of geometry as all of them involved in this study were able to facilitate the learning and teaching of geometry that is consistent with the van Hiele levels 1 and 2.
APA, Harvard, Vancouver, ISO, and other styles
5

Yip, Yun-keen, and 葉潤建. "A comparative analysis of the intended and attained geometry curriculum in Hong Kong relative to the van Hiele level theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31957614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Assad, Alessandra. "Usando o geogebra para analisar os níveis do pensamento geométrico dos alunos do ensino médio na perspectiva de Van Hiele." Universidade Estadual de Ponta Grossa, 2017. http://tede2.uepg.br/jspui/handle/prefix/2444.

Full text
Abstract:
Submitted by Eunice Novais (enovais@uepg.br) on 2018-03-01T13:43:37Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) -Alessandra-Assad.pdf: 8992837 bytes, checksum: 39109f11342ebe17bfb50e8dcd0365a8 (MD5)
Made available in DSpace on 2018-03-01T13:43:37Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) -Alessandra-Assad.pdf: 8992837 bytes, checksum: 39109f11342ebe17bfb50e8dcd0365a8 (MD5) Previous issue date: 2017-12-14
O presente trabalho teve como finalidade a investigação dos níveis do pensamento geométrico de estudantes de um colégio público da cidade de Paranaguá/PR, tendo como fundamentação teórica a Teoria de Van Hiele. Dessa forma para atingir o objetivo proposto utilizou-se das Tecnologias Educacionais, por meio de atividades desenvolvidas com o software Geogebra. Os participantes da pesquisa eram estudantes de três turmas do primeiro ano do Ensino Médio de um colégio público da cidade de Paranaguá. Estes realizaram 13 (treze) atividades correspondentes as 15 (quinze) habilidades indicadas no referencial teórico utilizado, divididas em três níveis: nível 0 (visualização), nível 1 (análise), nível 2 (dedução informal). A metodologia utilizada para esta pesquisa tratou-se da forma exploratória e aplicada. Pela análise dos dados coletados na resolução das atividades, pode-se concluir que o nível 0 foi atingido pela maior parte dos estudantes, uma menor porcentagem dos estudantes conseguiu atingir o nível 1. Em relação ao nível 2 pode-se verificar que foi o nível com maior dificuldade nas três turmas. Estes resultados apontam que os estudantes do colégio, onde se realizou a pesquisa, não detêm as habilidades visual, verbal, lógica, desenho e aplicação condizentes com o nível de ensino, segundo a Teoria de Van Hiele. Diante da evidente defasagem no conteúdo de Geometria apresentada pelos estudantes, pode-se dizer que além do objetivo proposto, esta pesquisa corrobora com os trabalhos de Pavanelo(1993), Lorenzato (1995), Passos (2000) e Barbosa (2003) entre outros que dissertam a respeito do abandono da geometria nas escolas do Brasil. Os resultados obtidos são preocupantes, pois esta defasagem acarreta a não compreensão dos conteúdos que serão trabalhado posteriormente. Assim, algumas ações no planejamento do processo de ensino-aprendizagem da geometria precisam ser repensadas. No âmbito local, pretende-se apresentar os resultados desta pesquisa à equipe pedagógica da escola, assim como aos professores da área de Matemática para que planejamentos e estratégias sejam organizados a fim de melhorar as habilidades do pensamento geométrico dos estudantes para que possam se aproximar do nível que é condizente a eles, segundo a teoria utilizada.
The present dissertation had the purpose to investigate the levels of geometric thinking of students of public school in the city of Paranagua/PR, having as theoretical foundation the Theory of Van Hiele. Thus, in order to achieve the proposed objective, it was used the Educational Technologies, through activities developed with Geogebra software. The research participants were students of three classes of the first year of the High School of a public school of the city of Paranaguá. They performed 13 (thirteen) activities corresponding to 15 (fifteen) skills indicated in the theoretical framework used, divided into three levels: level 0 (visualization), level 1 (analysis), level 2 (informal deduction). The methodology used for this research was exploratory and applied. By analyzing the data collected in the resolution of activities, it can be concluded that the majority of the students reached level 0 and a lower percentage of the students managed to reach level 1. In relation to level 2, it can be verified that it was the most difficult level to achieve in the three classes. These results point out the students of the school where the research was carried out do not hold the visual, verbal, logical, design and application skills that correspond to the level of education, according to Van Hiele Theory. In addition to the proposed objective, this research corroborates the works of Pavanelo (1993), Lorenzato (1995), Passos (2000) and Barbosa (2003) among others who talk about the abandonment of geometry in Brazilian schools. The results obtained are worrisome, as this lag causes the lack of understanding of the contents that will be worked on later. Therefore, some actions in the planning of the teaching-learning process of geometry need to be rethought. At the local level, it is intended to present the results of this research to the pedagogical team of the school, as well as teachers in the Mathematics area, so that the planning and strategies are organized in order to improve students' geometric thinking abilities so that they can approach the level that is appropriate to them, according to the theory used.
APA, Harvard, Vancouver, ISO, and other styles
7

Alves, Andréia Rodrigues. "O desenho geométrico no 9º ano como estratégia didática no ensino da geometria." Universidade Federal de Alagoas, 2017. http://www.repositorio.ufal.br/handle/riufal/1736.

Full text
Abstract:
This research aims to present part of the history of the Geometric Design history in Brazil, passing through significant historical moments, that played a very important role in the development of nowadays Geometric Design, searching for its importance, as well as what it‟s into the National Curricular Parameters (PCNs).The Van Hiele's Theory is presented through its different levels and how the teacher can use this theory and provide a better use of learning in Geometry. The works shows a previous and posteriori evaluation to diagnose the level of geometric learning of the students before and after the activities proposed in this paper, with reference as evaluation criterion the Theory of Van Hiele. Some activities were applied in a state school in Arapiraca-AL, with a 9th grade class, which involved basic geometric constructions to aid in the learning of Geometry. As results some considerations were taken into account about the activities that were proposed in the classroom and how they could help in the process of teaching and learning Geometry.
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Apresentamos, neste trabalho, um pouco da história do ensino do Desenho Geométrico no Brasil, que passando por momentos históricos significativos tiveram um papel muito importante no desenvolvimento do que se tem hoje sobre Desenho Geométrico, procurando sua importância, bem como o que dizem os Parâmetros Curriculares Nacionais. Mostramos, também, a Teoria de Van Hiele, passando por seus diferentes níveis e como o professor pode utilizar essa teoria e proporcionar um melhor aproveitamento de aprendizagem na Geometria. Apresentamos uma avaliação prévia e posteriori para diagnosticar o nível de aprendizagem geométrica dos alunos antes e depois da realização das atividades propostas nesta dissertação, tendo como critério de avaliação a Teoria de Van Hiele. Aplicamos algumas atividades em uma escola Estadual de Arapiraca-AL, com uma turma do 9º ano, que envolviam construções geométricas básicas para auxiliar na aprendizagem da Geometria. Finalizamos com as considerações sobre as atividades que foram propostas em sala de aula e como elas puderam auxiliar no processo de ensino e aprendizagem da Geometria.
APA, Harvard, Vancouver, ISO, and other styles
8

Geja, Nokuzola Hlaleleni. "Investigating a way of teaching transformation geometry in grade 9 applying van Hiele’s theory and Kilpatrick’s model : a case study." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1020601.

Full text
Abstract:
Transformation geometry has been neglected in our schools because teachers are often not proficient enough to teach it, as it was not part of the syllabus during their training. The study investigates effective ways of teaching transformation geometry in grade 9, applying van Hiele’s theory (1986) of geometry teaching and learning and Kilpatrick’s model of mathematical proficiency. The teaching programme activities require consistent use of physical manipulatives by the teacher for effective teaching, learning and understanding of geometric concepts. The type of study is a case study. Data collection tools are: - baseline evaluation, teacher & learner interviews (pre & post programme intervention) and observation (pre & post) during the implementation of the teaching programme. Results were analysed both qualitatively and quantitatively. My research findings show some improvement of learner performance after the application of the programme. Baseline evaluation shows that some learners attained below and above 30%. Interviews showed that some learners had problems before the implementation of the programme and some problems were eliminated by the use of the programme activities and learning progression was evident. Learner performance showed that learners had acquired some knowledge and critical thinking and reasoning skills, reflection skills, communication through LOLT improved, commitment to activities of the programme and teaching practice had improved. Learner performance showed that a learner can be in two different levels at the same time. Consistent use of manipulatives resulted in effective teaching and learning of geometry in grade 9. The results of this research support other researchers’ views of teaching geometry using van Hiele’s theory (1986) and Kilpatrick et al. (2001). Shaw (2002) argues that teaching geometry with manipulatives enhances conceptual understanding by the learner. In my opinion, it also promotes immediate intervention by the teacher as soon as the learner picks an incorrect object. The project enhanced and improved levels of communication between the learner, teacher and others in the classroom.
APA, Harvard, Vancouver, ISO, and other styles
9

Kotze, Jeannette. "The effect of a dynamic technological learning environment on the geometry conceptualisation of pre-service mathematics teachers / by Jeannette Kotze." Thesis, North-West University, 2006. http://hdl.handle.net/10394/1359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fredriksson, Amanda, and Josefin Ek. "Van Hiele´s teori : En litteraturstudie om elevers lärande och geometriundervisning utifrån van Hiele´s teori." Thesis, Högskolan för lärande och kommunikation, Högskolan i Jönköping, Matematikdidaktik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-35363.

Full text
Abstract:
Ämnesområdet för litteraturstudien är matematik, mer specificerat mot området geometri, gällande elevers lärande om geometriska figurer utifrån van Hiele´s teori. Det finns flera problemområden inom matematik, ett av dem är elevers svårigheter att benämna geometriska figurer och dess egenskaper med korrekt terminologi. Elevers matematiska språk och erfarenheter anses idag vara influerat av vardagligt språk, exempelvis benämns fyrhörning frekvent som fyrkant. Därför är syftet med vår litteraturstudie att klargöra relationen mellan undervisning gällande geometriska figurer och elevers lärande, utifrån van Hiele´s teori. Genomförande av denna litteraturstudie har gjorts genom analys av vetenskapliga publikationer i form av doktorsavhandlingar, forskningsartiklar och en antologi. Publikationerna som använts har hittats i databaserna ERIC och Google Scholar. Analys har gjorts med hjälp av en analysmall för att synliggöra likheter och skillnader som framgick mellan publikationerna. Urvalet som gjorts har baserats på våra frågeställningar. Genom denna litteraturstudie har vi konstaterat att van Hiele´s teori består av fem tankenivåer. Varje nivå uppnås successivt genom en stegvis progression. Progressionen har sin utgångspunkt i det konkreta och strävar mot det abstrakta. Inom van Hiele´s teori har språket en väsentlig roll och lärandet sker i en social kontext. Laboration och konkret material används som medel för att nå nästkommande nivå. En god begreppsförståelse är utvecklad när elever har nått abstraktion, vilket gör att konkret material inte behöver tillämpas mer. Vår slutsats är, inom geometriundervisning måste det finnas en progression från konkret till abstrakt, för att elever ska kunna utveckla god begreppsförståelse. Det finns möjligheter att tillämpa van Hiele´s teori i praktiken, eftersom den kan användas som både undervisningsmetod med hjälp av stöttande faser och som verktyg för bedömning. Van Hiele´s teori kan ge både elever och lärare möjligheter att utveckla matematiska kunskaper inom området geometri och därför anser vi van Hiele´s teori som relevant inför vårt kommande yrke som lärare.
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Kin-wai. "The effectiveness of van Hiele-based instruction." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35676723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Kin-wai, and 廖建威. "The effectiveness of van Hiele-based instruction." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35676723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Passos, Adriana Quimentão. "Van Hiele, educação matemática realística e GEPEMA : algumas aproximações." Universidade Estadual de Londrina. Centro de Ciências Exatas. Programa de Pós-Graduação em Ensino de Ciências e Educação Matemática, 2015. http://www.bibliotecadigital.uel.br/document/?code=vtls000204160.

Full text
Abstract:
Esta tese investiga possíveis relações entre os princípios de avaliação da Educação Matemática Realística e fases do processo de aprendizagem propostas por Dina Van Hiele-Geldof e Pierre Van Hiele, buscando aproximações com os trabalhos do GEPEMA. O problema de pesquisa foi delimitado com base na reflexão a respeito do processo de ensino e de aprendizagem da matemática e de estudos da RME realizados no interior do GEPEMA. O trabalho foi desenvolvido em uma perspectiva de pesquisa de natureza teórica do tipo especulativa. Inicia apresentando o contexto em que a pesquisa foi desenvolvida, destacando a compreensão do GEPEMA de avaliação como prática de investigação e oportunidade de aprendizagem e os pressupostos da RME. Destaca o aspecto didático do trabalho dos Van Hiele, em especial, as fases do processo de aprendizagem: informação, orientação guiada, explicitação, orientação livre e integração. Trata da avaliação de acordo com a abordagem da RME, tendo como fundamento principalmente os trabalhos de De Lange. Finaliza com algumas aproximações entre o trabalho dos Van Hiele, os princípios de avaliação da RME e os trabalhos do GEPEMA. Considera que as fases do processo de aprendizagem dos Van Hiele são mais um elemento auxiliar na elaboração do conhecimento matemático a partir de situações que possam ser matematizadas, desenvolvidas por meio de um processo de reinvenção guiada apoiada em informações coletadas em situações de avaliação.
This thesis investigates possible relationships between the principles of Realistic mathematics education evaluation and phases of the learning process proposed by Dina van Hiele-Geldof and Pierre van Hiele, seeking approaches with the work of the GEPEMA. The problem of this research was defined based on the reflection about the teaching and learning process of mathematics and studies of RME performed inside the GEPEMA. The work was developed in a perspective of theoretical nature research of the speculative type. The thesis shows the context in which the research was developed, and emphasizes the understanding of evaluation from GEPEMA’s view as a research practice and learning opportunity and the assumptions of the RME. It highlights the educational aspect of the work of van Hiele, in particular phases of the learning process: information, guided orientation, explanation, free orientation and integration. This is about assessment according to RME's approach, taking as a basis mainly the works of De Lange. To finish with, it’s presented some approaches between the work of van Hiele, RME assessment principles and the work of the GEPEMA. It is considered that the stages of the learning process of the van Hiele approach are more an auxiliary element in the development of the mathematical knowledge from situations that can be mathematized, developed through a process of reinvention tour based on information collected in assessment situations.
APA, Harvard, Vancouver, ISO, and other styles
14

Kwan, Shi-Pui, and Ka-Luen Cheung. "The van Hiele Phases of Learning in studying Cube Dissection." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80503.

Full text
Abstract:
Spatial sense is an important ability in mathematics. Formula application is very different from spatial concept acquisition. But it is often observed that in schools students learn spatial concepts by memorizing instead of understanding. In the past academic year we had tried out and developed a series of learning activities based on van Hiele’s model for guiding learners to explore the cube and its cut sections. The ideas in origami, and mathematical modelling by manipulative as well as mathematical software are integrated into our study. This paper gives a brief account on our works. We start by presenting a sequence of math-rich learning tasks, followed by some related folding ideas and mathematical background analysis. Finally we round up our paper with a concise discussion on some major elements of our design based on the van Hiele learning phases.
APA, Harvard, Vancouver, ISO, and other styles
15

Prat, Villar Mónica. "Extensión del modelo de Van Hiele al concepto de área." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/63246.

Full text
Abstract:
[EN] THE EXTENSION OF VAN HIELE'S MODEL TO THE CONCEPT OF AREA The extension of Van Hiele's model outside the geometrical sphere and of the basic educational levels has been an opened question up to the moment when Professor LLorens read his thesis in 1994 at the Polytechnic University of Valencia. Here the concept of local proximity was applied to one of its most visual and geometrical manifestations: the tangent line to a specific point in a curve. Some other possibilities were displayed there, together with a specific methodology to be used, in a similar or more interesting way than this present thesis. Even though a lot of works related to this topic were published and at least five doctoral theses were written, as a progressive extension of the previous one, there are some questions which are still considered to represent a high level of interest. One of these questions, maybe the most relevant for the A level teaching and its mathematical foundations, is represented by the title of this thesis, both for its direct interest and the concept of whole. We have extended Van Hiele's model to the concept of area by formulating the corresponding descriptors and proposing methodological actions which are in favour of the progress of the reasoning process. We have used the decomposition into areas of a mixtilinear trapezium, with visual and numerical components, as a mechanism to approach the first stage of the concept. The numerical component, related to the previous extensions, represents a breakdown. Using as a tool a Socratic interview, in the daily process of feedback of these interviews, we have reached a formulation of the descriptors which later on has been confirmed by means of a standard guideline answered in at least twenty interviews. Apart from that we have developed a written test, which lacks the precision of an interview but with other advantages represented by the use of accurate statistic tools. This test enabled us to verify the existence of two levels of reasoning, previously described, and the possibility to detect them. Hence this work has been able to prove that Van Hiele's model is able to describe the process of reasoning in other pillar of the mathematical analysis. Also it highlights that some educational routines do not favour the right learning of some concepts. There is a high number of students who, despite their academic results, have not reached the third stage. The emphasis in mechanical or algebraic topics decreases the possibility of realizing other type of work which may be more appropriate for a better comprehension. That is to say that, the skill in algebraic tools is not linked to a high level of reasoning. As a consequence, the use of visuals is reopened to debate in order to favour the create learning situations which lead to the increase in the level of reasoning.
[ES] EXTENSIÓN DEL MODELO DE VAN HIELE AL CONCEPTO DE ÁREA La extensión del modelo de van Hiele fuera del ámbito de la geometría y de los niveles educativos elementales fue una cuestión abierta hasta la tesis, leída en 1994 en la Universidad Politécnica de Valencia (UPV) por el prof. Llorens, en que se aplicaba al concepto de aproximación local en una de sus manifestaciones más visuales y geométrica: la recta tangente a una curva en un punto. En aquella memoria se sugerían otras posibilidades con tanto o más interés que la desarrollada y, además, se trazó una cierta "metodología" para abordarlas. Aunque se han publicado numerosos trabajos al respecto y, además, se han leído al menos cinco tesis doctorales que cabe considerar continuadoras -al menos, en parte- de aquella memoria, quedan aún pendientes no pocas cuestiones que podemos considerar del máximo interés. Una de ellas, quizá la de mayor repercusión en las cuestiones docentes del bachillerato y de los fundamentos de análisis matemático, tanto por su interés directo como por la relación con el concepto de integral, es la que da título a nuestra memoria. Hemos extendido el modelo de van Hiele al concepto de área formulando los descriptores correspondientes y sugiriendo acciones metodológicas que favorecen el progreso en el nivel de razonamiento. Asimismo, hemos analizado la relación con el proceso de enseñanza-aprendizaje de la integral. Todo ello con el esquema de trabajo que, como hemos dicho antes, se ha reiterado en las memorias de doctorado mencionadas. En concreto, hemos usado, como mecanismo para aproximarnos a la fase-1 del concepto, una descomposición en franjas para un trapecio mixtilíneo, con componente visual y numérica. Esa componente numérica supone toda una novedad respecto de las extensiones del modelo antes citadas. Utilizando como herramienta una entrevista socrática, en el habitual proceso de feed-back de estas entrevistas, hemos logrado llegar a la formulación de los descriptores que después se han corroborado usando el guion definitivo en una veintena de entrevistas. Además, hemos desarrollado una prueba escrita que, sin la precisión de la entrevista pero con otras ventajas evidentes, usando las herramientas estadísticas apropiadas, nos ha permitido verificar la existencia de los niveles de razonamiento previamente descritos y la posibilidad de detectarlos. Así pues, con este trabajo se ha probado que el modelo de van Hiele es capaz de describir el proceso de razonamiento en otro pilar más del análisis matemático. Y también evidencia que determinadas rutinas presentes en los sistemas educativos no favorecen el correcto aprendizaje de los conceptos. Hay demasiados estudiantes que no han alcanzado el nivel III pese a que por su nivel académico deberían haberlo hecho, pero el énfasis en cuestiones mecánicas o algebraicas merman la posibilidad de realizar otro tipo de trabajo más adecuado para que se produzca una buena comprensión. Es decir, se ha evidenciado que la destreza en las herramientas algebraicas no va ligada a un nivel de razonamiento elevado. En consecuencia, se vuelve a plantear el uso de la visualización para crear situaciones de aprendizaje que conduzcan al progreso en el nivel de razonamiento.
[CAT] EXTENSIÓ DEL MODEL DE VAN HIELE AL CONCEPTE D'ÀREA L'extensió del model de van Hiele fora de l'àmbit de la geometria i dels nivells educatius elementals va ser una qüestió oberta fins la tesi, llegida al 1994 en la Universitat Politècnica de València (UPV) pel prof. Llorens, en la qual s'aplicava al concepte d'aproximació local en una de les seues manifestacions més visuals i geomètrica: la recta tangent a una corba en un punt. A aquella memòria es suggerien altres possibilitats amb tant o més interés que la desenvolupada i, a més a més, es va dissenyar una certa "metodologia" per abordar-les. Encara que s'han publicat nombrosos treballs al respecte i a més a més s'han llegit al menys cinc tesis doctorals que es poden considerar continuadores -al menys, en part- d'aquella memòria, queden encara pendents no poques qüestions que podem considerar del màxim interés. Una d'elles, potser la de major repercussió en les qüestions docents del batxillerat i dels fonaments de l'anàlisi matemàtica, tant pel seu interés directe com per la relació amb el concepte d'integral, és la que dóna títol a la nostra memòria. Hem estés el model de van Hiele al concepte d'àrea formulant els descriptors corresponents i suggerint accions metodològiques que afavorisquen el progrés en el nivell de raonament. Així mateix, hem analitzat la relació amb el procés d'ensenyança-aprenentatge de la integral. Tot allò amb l'esquema de treball que, com hem dit abans, s'ha reiterat a les memòries de doctorat anomenades. En concret, hem fet ús, com mecanisme per aproximar-nos a la fase-1 del concepte, una descomposició en franjes per a un trapeci mixtiline, amb component visual i numèrica. Eixa component numèrica suposa tota una novetat respecte les extensions del model abans dites. Utilitzant com ferramenta una entrevista socràtica, en l'habitual procés de feed-back d'aquestes entrevistes, hem aconseguit arribar a la formulació dels descriptors que després hem corroborat fent ús del guió definitiu en unes vint entrevistes. A més a més, hem desenvolupat una prova escrita que, sense la precisió de l'entrevista però amb altres avantatges evidents, utilitzant les ferramentes estadístiques apropiades, ens han permés verificar l'existència dels nivells de raonament prèviament descrits i la possibilitat de detectar-los. Així, amb aquest treball ha quedat provat que el model de van Hiele pot descriure el procés de raonament en altre pilar més de l'anàlisi matemàtica. I també evidencia que determinades rutines presents als sistemes educatius no afavoreixen el correcte aprenentatge dels conceptes. Hi ha massa estudiants que no han aconseguit el nivell III encara que pel seu nivell acadèmic haurien d'haver-lo fet, però l'èmfasi en qüestions mecàniques o algebraiques disminueixen la possibilitat de realitzar altre tipus de treball més adequat per a que es produisca una bona comprensió. És a dir, s'ha evidenciat que la destresa amb les eines algebraiques no va lligada a un nivell de raonament elevat. En conseqüència, es torna a plantejar l'ús de la visualització per a crear situacions d'aprenentatge que conduisquen al progrés en el nivell de raonament.
Prat Villar, M. (2016). Extensión del modelo de Van Hiele al concepto de área [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63246
TESIS
APA, Harvard, Vancouver, ISO, and other styles
16

Yuceakin, Doguhan, and Paul Georgescu. "How teachers integrate digital technology in geometry in high school." Thesis, Malmö universitet, Fakulteten för lärande och samhälle (LS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-34804.

Full text
Abstract:
Skolverket (2013) skriver att läroplanen för gymnasieskolan ska överföra värden, förmedla kunskaper och förbereda eleverna att arbeta och medverka i samhället. Då tekniken ständigt utvecklas, förändras samhället och skolan följer även med i förändringen. Vidare skriver Skolverket (2013) att eleverna också ska kunna orientera sig och agera i en komplex verklighet med stort informationsflöde, ökad digitalisering och snabb förändringstakt. Arbetet har inspirerats av våra egna personliga erfarenheter från både vår skolgång och verksamhets förlagda utbildning. Syftet är att undersöka hur lärare integrerar digitala verktyg inom området geometri med avsikt att inspirera studenter eller redan verksamma lärare. Det teoretiska ramverket som används i studien kommer från forskarparet Dina och Pierre van Hieles nivåer om elevers geometriförståelse. Forskarparet van Hiele är i nuläget ledande inom forskning gällande elevers förståelse för geometri, den är uppdelade i fem nivåer där högre nivåer innebär djupare förståelse. För att elever ska stiga från en så kallad van Hiele-nivå till en högre krävs det att eleven tillsammans med läraren genomgår fem av van Hieles inlärningsfaser. I studien har semistrukturerade intervjuer förts med frågor av öppen art. I dataanalysen användes tematisering som redskap, det är för att lyfta datan till en högre analytisk nivå samtidigt som den sammanfattas på ett effektivt sätt. Resultatet visar att samtliga lärare använder digitala verktyg som medel främst för visualisering, de är alla positivt inställda gentemot digitala verktyg som medel och uppnår även höga van Hiele-nivåer samt inläsningsfaser i undervisningen med digitala verktyg. Det som saknas för att uppfylla alla van Hiele-nivåer och inlärningsfaser är ämnesdiskussioner med elever på ett individuellt plan.
APA, Harvard, Vancouver, ISO, and other styles
17

Vidigal, Sonia Maria Pereira. "Formação de personalidade ética: as contribuições de Kohlberg e van Hiele." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/48/48134/tde-23052011-155307/.

Full text
Abstract:
Tendo em vista a questão de como formar uma personalidade ética, o objetivo deste trabalho foi o de realizar uma investigação teórica visando à compreensão de como se desenvolvem dois aspectos que compõem tal formação: a moral e a cognição. Buscou-se ainda comparar as semelhanças entre esses aspectos e observar intervenções pedagógicas que propiciassem o desenvolvimento de ambos. Para o estudo do desenvolvimento moral, analisaram-se os trabalhos do psicólogo americano Lawrence Kohlberg, que baseou sua investigação nos estudos de Dewey e Piaget, aprimorando uma sequência de etapas pelas quais as pessoas passam em sua formação. Além disso, o psicólogo e seus colaboradores pesquisaram quais condições favoreciam esse avanço de forma a propiciar que níveis mais elevados de desenvolvimento fossem atingidos. Para o estudo dos aspectos cognitivos de tal questão, buscou-se um autor holandês, que elaborou, na área da matemática, um modelo para o desenvolvimento do pensar geométrico: Pierre van Hiele. Apesar de ele ter elaborado um modelo específico para o pensar geométrico, afirma ser possível utilizar esse modelo para o estudo da cognição em outras áreas do conhecimento, não se restringindo apenas à geometria. Ao se compararem as semelhanças entre os dois estudos, foram observados elementos comuns a ambos, entre eles, a necessidade de se favorecer a ocorrência de conflitos cognitivos para o avanço de uma etapa à outra. A partir da semelhança das teorias, buscaram-se ações possíveis de aplicação em sala de aula que propiciassem esses desenvolvimentos de forma eficaz. Quanto às intervenções pedagógicas, foi destacado o diálogo a conversação, a argumentação e a discussão de dilemas morais como condição favorável em sala de aula. Verificou-se que a conversação apresenta o ganho de propiciar que os pensamentos dos alunos fiquem mais claros pela explicitação de suas ideias, além de enriquecer seu repertório a partir da visão alheia; a argumentação acresce, aos proveitos da conversação, a tomada de decisão, pois exige do aluno o posicionamento e uma escolha; a discussão de dilemas morais acrescenta, às intervenções anteriores, o benefício do trabalho com os valores pessoais de cada um e da exigência de uma hierarquização desses valores. Essas intervenções buscam o aumento do nível de consciência dos alunos, essencial para a formação da personalidade ética.
Aiming at forming an ethical personality, this paper carries out a theoretical investigation designed to understand how to develop two aspects that make up such formation: morality and cognition. It also compares the similarities between these aspects and the observed pedagogical interventions that provide for the development of both such aspects. For the study of moral development, the American psychologist Lawrence Kohlbergs work was looked into. He based his research on the studies of Dewey and Piaget, by improving a sequence of stages through which people undergo their formation. In addition the psychologist and his colleagues investigated what conditions favored this advance in order to allow for higher levels of development. In order to study the cognitive aspects of this question, Pierre van Hiele, a Dutch author in the field of mathematics, was studied. He developed a model for the development of geometric thinking. Although this author has prepared a specific model for geometric thinking, he claims one should be able to apply it to cognition studies not only in Geometry but also in regard with other fields. When comparing the similarities between the two studies, elements common to both were observed - among them the need to enable cognitive conflicts to advance from one stage to another. Based on the similarity of theories, the paper looked into other possible actions for implementation in the classroom that could effectively provide such development. Regarding the pedagogical interventions, dialogue (conversation, argument and debate on moral dilemmas) was highlighted as a favorable condition in the classroom. One observes that conversation includes the benefit to provide for clearer thoughts on the part of the students when elucidating their ideas. Also, it enriches their repertoire based on the view of others. To the advantage of conversation, argument adds decision making, for it requires the student\'s attitude and choice. And, to the previous interventions, debating moral dilemmas adds the benefit of working with the personal values of each one and of the requirement of a hierarchy of those values. These interventions seek to increase the level of students awareness, which is essential for the formation of the ethical personality.
APA, Harvard, Vancouver, ISO, and other styles
18

DOMINGOS, J. "Um estudo sobre polígonos a partir dos princípios de Van Hiele." Universidade Federal do Espírito Santo, 2010. http://repositorio.ufes.br/handle/10/2268.

Full text
Abstract:
Made available in DSpace on 2016-08-29T11:11:33Z (GMT). No. of bitstreams: 1 tese_4535_JAILSON20130430-135832.pdf: 4860209 bytes, checksum: d591100afa559605679dc5502b82cca2 (MD5) Previous issue date: 2010-06-24
Este trabalho de mestrado com foco na educação matemática vincula-se ao Programa de Pós Graduação em Educação do Centro de Educação da Universidade Federal do Espírito Santo. Nossa pesquisa de cunho qualitativo investiga visualização e caracterização inicial de polígonos a partir dos princípios de van Hiele, combinados com o uso de recursos didáticos. Procuramos responder ?pergunta: O que alunos e professores aprendem sobre polígonos e desenvolvimento do raciocínio geométrico quando utilizam tangram, geoplanos e construção de pipas em turmas do 6º ano do ensino fundamental? Neste trabalho o ensino de geometria está fundamentado por van Hiele, Pavanello e Lorenzato. Para analisar a relação entre resolução de problemas, recursos didáticos e o ensino de geometria, utilizamos Polya e Santos-Wagner. Usamos, na pesquisa de campo, um teste diagnóstico inicial e um final e, uma sequência didática composta por três blocos de atividades: um usando o tangram, outro com o geoplano e outro com construção de pipas. Nosso estudo foi desenvolvido de março a setembro de 2009, com alunos do sexto ano de uma escola municipal de Vila Velha, ES. Coletamos os dados por meio de entrevistas a alunos e atividades nas aulas com os blocos mencionados. Nossa análise das respostas dos estudantes nos testes diagnósticos e dos dados coletados no estudo nos indicam que tangram, geoplano e pipas são recursos didáticos que auxiliam no reconhecimento visual de polígonos e de suas características. As atividades didáticas da pesquisa auxiliaram a aprendizagem de conceitos geométricos, em particular a formação do conceito de polígonos e a discussão sobre polígonos convexos e não convexos. Verificamos que os alunos se interessaram pelas atividades, aprenderam com as mesmas e nos levaram a investigar como nomear polígonos com mais de 20 lados. Acreditamos que poderíamos explorar ainda mais o potencial desses recursos didáticos em termos de ensino e aprendizagem de geometria se nós tivéssemos preparado sequências didáticas menores entremeando o uso dos três recursos.
APA, Harvard, Vancouver, ISO, and other styles
19

COSTA, André Pereira da. "A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17129.

Full text
Abstract:
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-06-20T17:52:33Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_AndréPereira.pdf: 4946213 bytes, checksum: 7c107c2e3c7fc4a9983f95790958afb9 (MD5)
Made available in DSpace on 2016-06-20T17:52:33Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_AndréPereira.pdf: 4946213 bytes, checksum: 7c107c2e3c7fc4a9983f95790958afb9 (MD5) Previous issue date: 2016-02-15
Capes
A presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação.
This present dissertation aimed to investigate the effects of a didactic sequence for notable quadrilaterals concept construction, using the GeoGebra Dynamic Geometry software as a didactical resource. The study, that is a replication of Câmara dos Santos (2001) research and it was developed in a class with 30 students of sixth grade class of elementary public school in Recife city, capital of Pernambuco State, Brazil. In this sense, we used as theoretical support the Van-Hiele (1957) theory for the development of geometric thinking by presenting appropriate links with our object of study, this is, with the concept of notable quadrilaterals. By considering the objective that we sought to achieve, we analyzed the obtained data, that is, the productions of the students, which included the activities proposed in the didactic sequence, written documents (worksheets), GeoGebra recordings and the results of pre and post-testing. Besides, these tests were performed in two stages: first, before didactic sequence application of, and, secondly, after the final work with the sequence. In this way, which regard to the development of levels of geometric thinking, considering Van-Hiele (1957) theory, we verified an important progress in this process, because a considerable part of the participating students had advanced among initial levels, through didactic sequence (being checked around 17% of the total of students). We also observed some students did not reach the passage from first to second level, but, these students had a significantly progress inside their own level, what made them being close to the next level (43% of students). Futhermore, was possible to identify students working on two levels at the same time (40% of students), this fact indicates that may exist transition zones between vanhielians’ levels, as Câmara dos Santos (2001) verified. In this research, GeoGebra was an important didactical resource for geometry teaching and learning process, mostly, for the development of levels of geometric thinking in the 6th grade of elementary school, having the Van-Hiele theory as support.
APA, Harvard, Vancouver, ISO, and other styles
20

Smyser, Eileen Marie. "The effects of The Geometric Supposers : spatial ability, van Hiele levels, and achievement /." Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1234541992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kekana, Grace Ramatsimele. "Using GeoGebra in transformation geometry : an investigation based on the Van Hiele model." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60947.

Full text
Abstract:
This study investigated the use of an advanced technological development (free GeoGebra software) within the secondary educational setting in four relatively under-resourced schools in the Gauteng Province of South Africa. This advancement is viewed as having the potential to promote the teaching and learning of complex ideas in mathematics, even within traditionally deprived communities. The focus in this study was on the teaching and learning of transformation geometry at Grade 9 and attainment was reflected in terms of the van Hieles' levels of geometrical thinking. A mixed methods approach was followed, where data was collected through lesson observations, written tests and semi-structured interviews. Four Grade 9 teachers from four schools were purposively selected, while twenty-four mathematics learners (six from each school) in the Tshwane metropolitan region were randomly selected. The teachers' lesson observations and interview outcomes were coded and categorised into themes, and the learners' test scripts were marked and captured. The analysis of test scores was structured according to the van Hieles' levels of geometric thought development. As far as the use of GeoGebra is concerned, it was found that teachers used the program in preparation for, as well as during lessons; learners who had access to computers or android technology, used GeoGebra to help them with practice and exercises. As far as the effect of the use of GeoGebra is concerned, improved performance in transformation geometry was demonstrated.
Dissertation (MEd)--University of Pretoria, 2016.
Science, Mathematics and Technology Education
MEd
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
22

Ferreira, Fabricio Eduardo [UNESP]. "Ensino e aprendizagem de poliedros regulares via a teoria de Van Hiele com origami." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/94271.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-03-22Bitstream added on 2014-06-13T20:35:10Z : No. of bitstreams: 1 ferreira_fe_me_sjrp.pdf: 904891 bytes, checksum: 189144772384df69733ce1617b84cb5d (MD5)
De acordo com as atuais diretrizes pertinentes ao ensino de matemática (Parâmetros Curriculares Nacionais : Matemática e Proposta Curricular do Estado de São Paulo: Matemática), este trabalho baseia-se na Teoria de Van Hiele, visando a aprendizagem de conceitos geométricos, em particular a aprendizagem de poliedros regulares, através da confecção de dobraduras (origami). Iniciando com uma abordagem histórica sobre poliedro, apresenta orientações para o uso de origami em sala de aula, delineia as principais características da Teoria de Van Hiele, além de retomar os principais conceitos matemáticos associados aos poliedros. Utilizando este arcabouço é proposta uma sequência de atividades de sondagem e aplicação de conceitos geométricos respeitando as fases de aprendizagem de Van Hiele, visando a conclusão por parte do aluno, da existência de apenas cinco poliedros regulares. Após a execução das atividades propostas, as demonstrações dos teoremas relacionados aos poliedros apresentados neste trabalho servirão para a sistematização das conclusões feitas pelos alunos, sempre respeitando o nível de Van Hiele em que se encontrem. Apresenta, ainda, atividades de exploração das características dos poliedros através do Teorema de Euler para poliedros convexos
According to the current guidelines relevant to teaching mathematics (National Curriculum: Mathematics, and Curricular Proposal of the State of São Paulo: Mathematics) this work is based on Van Hiele, and aimed at learning of geometric concepts, particularly learning regular polyhedra, by paperfolding (origami). Starting with a historical approach of polyhedron, this work presents guidelines for the use of origami in the classroom, outlines the main features of the Van Hiele theory, and resume the main mathematical concepts associated with polyhedra. Using this framework, a sequence of activities is proposed and the applying of geometric concepts respecting the learning phases of Van Hiele, which aims deduction by the student, of the existence of only five regular polyhedra. After execution of the proposed activities, the proof of theorems related to polyhedra presented in this paper will serve to systematize the conclusions made by the students, always respecting the level of Van Hiele who are. It presents further exploration of the characteristics of polyhedra by Euler's theorem for convex polyhedra
APA, Harvard, Vancouver, ISO, and other styles
23

Ferreira, Fabricio Eduardo. "Ensino e aprendizagem de poliedros regulares via a teoria de Van Hiele com origami /." São José do Rio Preto, 2013. http://hdl.handle.net/11449/94271.

Full text
Abstract:
Orientador: Rita de Cássia Pavani Lamas
Banca: Vanderlei Minori Horita
Banca: Edna Maura Zuffi
O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior.
Resumo: De acordo com as atuais diretrizes pertinentes ao ensino de matemática (Parâmetros Curriculares Nacionais : Matemática e Proposta Curricular do Estado de São Paulo: Matemática), este trabalho baseia-se na Teoria de Van Hiele, visando a aprendizagem de conceitos geométricos, em particular a aprendizagem de poliedros regulares, através da confecção de dobraduras (origami). Iniciando com uma abordagem histórica sobre poliedro, apresenta orientações para o uso de origami em sala de aula, delineia as principais características da Teoria de Van Hiele, além de retomar os principais conceitos matemáticos associados aos poliedros. Utilizando este arcabouço é proposta uma sequência de atividades de sondagem e aplicação de conceitos geométricos respeitando as fases de aprendizagem de Van Hiele, visando a conclusão por parte do aluno, da existência de apenas cinco poliedros regulares. Após a execução das atividades propostas, as demonstrações dos teoremas relacionados aos poliedros apresentados neste trabalho servirão para a sistematização das conclusões feitas pelos alunos, sempre respeitando o nível de Van Hiele em que se encontrem. Apresenta, ainda, atividades de exploração das características dos poliedros através do Teorema de Euler para poliedros convexos
Abstract: According to the current guidelines relevant to teaching mathematics (National Curriculum: Mathematics, and Curricular Proposal of the State of São Paulo: Mathematics) this work is based on Van Hiele, and aimed at learning of geometric concepts, particularly learning regular polyhedra, by paperfolding (origami). Starting with a historical approach of polyhedron, this work presents guidelines for the use of origami in the classroom, outlines the main features of the Van Hiele theory, and resume the main mathematical concepts associated with polyhedra. Using this framework, a sequence of activities is proposed and the applying of geometric concepts respecting the learning phases of Van Hiele, which aims deduction by the student, of the existence of only five regular polyhedra. After execution of the proposed activities, the proof of theorems related to polyhedra presented in this paper will serve to systematize the conclusions made by the students, always respecting the level of Van Hiele who are. It presents further exploration of the characteristics of polyhedra by Euler's theorem for convex polyhedra
Mestre
APA, Harvard, Vancouver, ISO, and other styles
24

Maldonado, Rodríguez Lesly. "Enseñanza de las simetrías con uso de geogebra según el modelo de Van Hiele." Tesis, Universidad de Chile, 2013. http://repositorio.uchile.cl/handle/2250/133875.

Full text
Abstract:
Magister en Educación Mención Informática Educativa
Autor No autoriza la publicación de su tesis a texto completo en el Portal de Tesis Electrónicas.
Esta investigación tiene como objetivo entregar a los docentes de matemática una propuesta de trabajo para la enseñanza de la geometría, integrando un modelo de razonamiento con el uso de las tecnologías de información y comunicación. Para esto se diseñaron guías de aprendizaje, según los niveles de razonamiento geométrico de Van Hiele, para la enseñanza del objeto geométrico Simetrías, a través del software Geogebra. El trabajo con estos talleres permite a los estudiantes pasar de lo más simple a lo más complejo en el estudio de las simetrías, visualizar, manipular y resolver los problemas planteados a través de applets construidos con Geogebra. Es importante señalar que la puesta a prueba de estos recursos permite verificar si el aprendizaje de las simetrías es más significativo al usar el modelo de Van Hiele, o integrando este modelo con el uso de Geogebra, o utilizando la metodología tradicional del establecimiento. Para validar y probar esta propuesta se implementó con un grupo de alumnos de la comuna de Maipú
APA, Harvard, Vancouver, ISO, and other styles
25

Storbacka, Jenni-Marie. "Icke godkänt i matematik : En kartläggning av gymnasieelevers kunskaper i plangeometri." Thesis, Uppsala universitet, Institutionen för pedagogik, didaktik och utbildningsstudier, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-176017.

Full text
Abstract:
Studiens syfte är att undersöka kunskaperna i plangeometri hos elever på samhällsvetenskapliga och naturvetenskapliga programmen.  Elevernas kunskaper kartläggs med ett kunskapstest, och detta kunskapstest genomförs även i två gymnasieklasser i Finland. De finska eleverna inkluderas för att bidra med ett internationellt perspektiv på de svenska elevernas resultat. Elevsvaren bedöms med hjälp av van Hieles teori om kunskapsutveckling. Resultaten visar att eleverna klarar av att utföra de beräkningarna som krävs, men att det saknas en djupare förståelse för geometri, speciellt inom området area. Jämförelsen mellan de finska och de svenska eleverna visar att det inte finns någon större skillnad mellan eleverna.
APA, Harvard, Vancouver, ISO, and other styles
26

Wiker, Sarah, and Andreas Blixt. "Diagnostisering av elever i geometri : En studie med utgångspunkt i van Hieles teori." Thesis, Högskolan Dalarna, Matematikdidaktik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:du-1856.

Full text
Abstract:
Detta är en studie som har sin utgångspunkt i Pierre M. van Hieles teori om lärande i geometri, som presenterades 1986 i boken Structure and Insight. Van Hiele har i boken vidareutvecklat sin och Dina van Hiele-Geldofs ursprungliga lärandeteori från 1955. Vår studie har som syfte att se om van Hieles teori går att tillämpa i en individuell, skriftlig diagnos för att nivåbestämma elever i årskurs 1 på gymnasiet.
APA, Harvard, Vancouver, ISO, and other styles
27

Maguiña, Rojas Albert Thomy. "Una propuesta didáctica para la enseñanza de los cuadrialáteros basada en el modelo Van Hiele." Master's thesis, Pontificia Universidad Católica del Perú, 2013. http://tesis.pucp.edu.pe/repositorio/handle/123456789/4733.

Full text
Abstract:
El presente trabajo de investigación tiene por finalidad diseñar una propuesta didáctica para la enseñanza de los cuadriláteros basada en las fases de aprendizaje del modelo de Van Hiele con apoyo del software de geometría dinámica GeoGebra. La elección del modelo de Van Hiele como marco teórico permitirá proponer niveles de desarrollo del pensamiento geométrico para la adquisición de conocimientos y habilidades en relación a los cuadriláteros, así como, identificar el nivel de razonamiento en el que se encuentran nuestros estudiantes; y además servirá para señalar las fases de aprendizaje que se deben seguir para promover el ascenso de los estudiantes de un nivel de razonamiento al inmediato superior. Además, las propiedades de recursividad y de secuencialidad que son propias de estas fases garantizan el desarrollo de las actividades, las cuales permitirán alcanzar mayores grados de adquisición en los distintos niveles de razonamiento. Con este trabajo pretendemos que los estudiantes del cuarto grado de secundaria alcancen el nivel 3, de deducción informal, de acuerdo al modelo de Van Hiele. La metodología que usamos para este trabajo está basada en la propuesta de Jaime (1993), que consiste en describir el proceso de adquisición de un nuevo nivel de razonamiento y describe una forma de evaluar las respuestas de los alumnos. En esta experiencia se presentaron 10 estudiantes, en forma voluntaria, a quienes se les tomó una prueba de entrada para identificar el nivel de razonamiento en el que se encontraban respecto al objeto matemático cuadriláteros. Luego se trabajó con ellos varias actividades diseñadas según las fases de aprendizaje de Van Hiele con el objetivo de promover el desarrollo del pensamiento geométrico respecto a los cuadriláteros y ayudarlos a avanzar a un nivel de razonamiento superior. Finalmente se les aplicó una prueba de salida para verificar si habían incrementado su nivel de razonamiento respecto a los cuadriláteros. Según los resultados obtenidos, la propuesta didáctica permitió que los estudiantes lograrán un grado de adquisición alta en el nivel 1, un grado de adquisición intermedia en el nivel 2 y se encuentren desarrollando habilidades en el nivel 3, pasando de un nivel de adquisición nula a una adquisición baja.
Tesis
APA, Harvard, Vancouver, ISO, and other styles
28

Lujan, Maria Lucia S. "A geometria da 1a serie do 1o grau : um trabalho na perspectiva de Van Hiele." [s.n.], 1997. http://repositorio.unicamp.br/jspui/handle/REPOSIP/253329.

Full text
Abstract:
Orientador: Lucila Diehl Tolaine Fini
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Educação
Made available in DSpace on 2018-07-23T07:22:58Z (GMT). No. of bitstreams: 1 Lujan_MariaLuciaS_M.pdf: 10073307 bytes, checksum: bae5592f3cbc3594c472c171d14176fb (MD5) Previous issue date: 1997
Resumo: Esta pesquisa teve como fundamento o modelo de desenvolvimento do pensamento geométrico de van Hiele e apoiou-se na Psicologia Genética de Piaget. Foram investigadas algumas atividades geométricas em alunos em início de escolarização. Utilizou-se, para isso, materiais não industrializados e confeccionados especialmente para este trabalho. Foram sujeitos desta pesquisa 44 crianças da 12 série do 1 Q grau de uma escola da rede oficial do Estado de São Paulo, que constituíram o grupo experimental e o grupo de controle. Esses sujeitos foram submetidos ao pré-teste, intervenção pedagógica e pós-teste. Os resultados indicaram que os sujeitos do grupo experimental, e que foram submetidos a um trabalho de intervenção pedagógica, apresentaram um desempenho significativamente melhor no pós-teste que o grupo de controle que não participou do trabalho de intervenção pedagógica. A pesquisa mostrou, também, que alunos de 1º série, podem adquirir conceitos geométricos, como os estudados nesta pesquisa, se a proposta de trabalho pedagógico for condizente ao nível cognitivo dos educandos
Abstract: This research had as basis the geometric thought development model of van Hiele and was assisted by the Piaget's genetic psychology. A few geometrical activities of students in the elementary school were investigated. For this purpose non-industrialized materials were used and made specially for this work. For this research 44 children first graders (elementary school) from an official school of the São Paulo State formed the experimental and the control groups. Those students were submitted to an initial test, pedagogical intervention and a post test. The results indicated that the students from the experimental group, who were submitted to pedagogical intervention, presented a significantly better performance in the post test than the control group, who did not participate of the pedagogical intervention. This research has also shown that students of the first grade of the elementary school can acquire geometrical concepts, as those used in this work, only if the proposed pedagogical work was adequate for their cognitive level
Mestrado
Educação Matematica
Mestre em Educação
APA, Harvard, Vancouver, ISO, and other styles
29

Vorster, Johanna Alida. "The influence of terminology and support materials in the main language on the conceptualisation of geometry learners with limited English proficiency / J.A. Vorster." Thesis, North-West University, 2005. http://hdl.handle.net/10394/601.

Full text
Abstract:
Learners in South Africa underachieve in Mathematics. Amidst many other factors that influence the Mathematics scenario in South African schools, one major aspect of the Mathematics classroom culture is the Language of Learning and Teaching (LoLT). For many learners the LoLT, namely English, is not their main language. The question arises of whether Setswana learners with Limited English Proficiency (LEP) are disadvantaged because the LoLT is English and if so, what could be done about it. The interaction between language and thought is discussed against the background of the learning theories of Piaget, Vygotsky and van Hiele, as well as the Network Theory of Learning. From this study the importance of language for conceptualisation becomes clear, especially that of the mother tongue. The circle is then narrowed down to take a look at the vital part that language plays in Mathematics and the problems that exist for the learner when negotiating meaning during the journey between natural language and the mathematical register. Focusing on the situation of the Setswana Mathematics learner with English as LoLT, the views of parents and teachers come under scrutiny as well as government policies regarding the LoLT. The techniques and strategies of teachers in the English Second Language Mathematics classrooms (ESL-classrooms) are investigated. In this regard code-switching is of importance and is discussed extensively. These theoretical investigations led to an empirical study. Firstly, a quantitative study was undertaken by means of a survey to investigate the language situation in schools where Setswana is the main language. Furthermore, the views of those teachers, who teach Setswana learners with English as LoLT, on how English as LoLT influences Setswana Mathematics learners' conceptualisation were investigated. A sample of 218 teachers in the North-West Province of South Africa was used in this survey. A complex language situation crystallises where no one-dimensional answer can be recommended. Code-switching has clearly made large inroads into the Mathematics classroom, but teachers' views on the expediency of using Setswana, especially for formal notes, terminology and tests, vary considerably. Secondly, a qualitative study was undertaken in two schools. The study investigated the possibility that notes in Setswana as well as in English, and the aid of an English/Setswana glossary of Mathematical terminology in daily tasks as well as in tests, would be of value to learners. It was clear from the sample that the new terminology is difficult for the teachers in question because they are used to the English terminology. Some learners also find the Setswana terminology difficult. However, the learners experience the use of the Setswana in the notes positively. It was clear from the interviews with the learners that by far the most of the learners in the sample felt that the Setswana/English notes as well as the glossary helped them to understand better. The learners oscillate between English and Setswana to understand the explanation given or the question asked. Most of the learners are of opinion that tests where questions are asked in both languages contribute to a better comprehension of what is asked. They also experience the glossary of English/Setswana terminology supplied in the test as an important aid. Recommendations comprise that the Setswana Mathematics register should be expanded and final examinations set in both Setswana and English. Furthermore, teachers should be educated to use new terminology effectively as a scaffold to ensure adequate conceptualisation, as well as to manage code-switching in a structured way.
Thesis (M.Ed.)--North-West University, Potchefstroom Campus, 2005.
APA, Harvard, Vancouver, ISO, and other styles
30

Saads, Silvia Maria Leao. "Learning about polyhedra through visual and tactile perception and discussion." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Van, Putten Sonja. "Levels of thought in geometry of pre-service mathematics educators according to the van Hiele model." Diss., University of Pretoria, 2008. http://hdl.handle.net/2263/24834.

Full text
Abstract:
This study aimed to investigate the level of understanding of Euclidian geometry, in terms of theoretical knowledge as well as its problem-solving application, in pre-service mathematics education (PME) students at the University of Pretoria. In order to do so, a one group pre-test/ post-test procedure was conducted around an intensive geometry module, and a representational group of students was interviewed before and after the module to discuss their high school experiences of learning geometry and to analyse their attitudes towards the subject. The van Hiele Theory of Levels of Thought in Geometry was used as the theoretical framework for this study. The PME students in this study, prior to their completion of the geometry module, lacked the content knowledge, skills and insight in Euclidian geometry that is expected at matric level (Level 3). The pre-test results revealed that half the group could only be classified as being on Level 0. By the time the post-test was written, 60% of the group had moved onto Level 1 as their maximum competence level. This implies that these students were all brought to greater insight by the teaching they received during the geometry module. However, the overall improvement in the group as revealed in the post-test results, consisted of an upward movement of only one level. Therefore, the geometry module offered did not bring about sufficient improvement for these students to be able to teach geometry adequately (Level 3 is required). The students who were interviewed for this study uniformly expressed their dislike or fear of Euclidian geometry in general, but described the positive change in their attitude during the course of the module because of the way it was presented. Training of students for a career as mathematics educators which includes an in-depth van Hiele-based geometry module would facilitate the acquisition of insight and relational understanding.
Dissertation (MEd)--University of Pretoria, 2008.
Curriculum Studies
MEd
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
32

Junior, Ornélio Hinterholz. "O uso do pov-ray no ensino de geometria analítica no ensino médio." Universidade Federal de Roraima, 2015. http://www.bdtd.ufrr.br/tde_busca/arquivo.php?codArquivo=292.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Em plena era da informação, na qual os jovens mostram-se aficionados e ansiosos por inovações tecnológicas, não é mais possível praticar em sala de aula, de forma perene, tão somente as metodologias tradicionais de ensino. A presente pesquisa teve por objetivo inovar pedagogicamente ao estabelecer conexões teórico-práticas aplicáveis entre a Computação Gráfica e os conteúdos da Geometria Analítica do Ensino Médio com vistas ao desenvolvimento das competências requeridas aos alunos. Os tipos de metodologias adotadas no trabalho foram: descritiva e exploratória (quanto aos objetivos), qualitativa (quanto à abordagem), e bibliográfica (quanto aos procedimentos). O objetivo foi alcançado por meio de uma profunda revisão de literatura, culminando com a elaboração de mapas conceituais, que correlacionaram conceitos da Geometria Analítica com conceitos da Computação Gráfica. Foram elaboradas também sequências didáticas definidas com base na Teoria da Aprendizagem Significativa de Ausubel e na Teoria dos Níveis de Raciocínio Geométrico de Van Hiele e adaptadas a partir de problemas disponibilizados publicamente pelo Projeto NRICH, da Universidade de Cambridge para que se adequassem à possibilidade de resolução com a utilização de um software do tipo ray-tracing denominado POV-Ray.
In the middle of Information Age, in which young people show up passionate and eager for technological innovations, it is no longer possible to practice in the classroom, in a perennial way, only just the traditional teaching methodologies. This research aimed to innovate pedagogically by establishing theoretical and practical connections between the applicable Computer Graphics and the High School Analytic Geometry content in order to develop the skills required to students. The kinds of methodologies used in this research were: descriptive and exploratory (as for objectives), qualitative (as for approach), and literature review (as for procedures). The aim was achieved through a thorough literature review, culminating in the development of conceptual maps, which correlated concepts of Analytical Geometry with concepts of Computer Graphics. Didactic sequences, also were prepared, defined based on Meaningful Learning Theory of Ausubel and the Theory of Geometric Reasoning Levels of Van Hiele and adapted from problems publicly available by University of Cambridges NRICH Project. The adaptation was necessary in order to allow the problems resolution with the use of a ray-tracing software called POV-Ray.
APA, Harvard, Vancouver, ISO, and other styles
33

Thornér, Kristina. "Lärobokens roll i matematikundervisningen. : Allmändidaktisk tillämpning av van Hieles teorier vid introduktion av algebra." Thesis, Södertörn University College, Lärarutbildningen, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-226.

Full text
Abstract:

Detta arbete är en textanalys av hur några svenska läroböcker i matematik introducerar algebra speglat i van Hieles teorier om tankenivåer vid inlärning. Van Hieles teorier poängterar språket som kunskapsbärare i matematik vilket går som en röd tråd genom analysen. Generellt börjar läroböckerna på van Hieles tankenivå 3. Enligt van Hieles teorier borde undervisningen i algebra börja på nivå 1, vilket då blir lärarens uppgift att göra utan stöd av matematikboken. Förslag på arbetssätt för nivå 1 och 2 ingår.


This paper is a text analysis of how some Swedish textbooks in mathematics introduce algebra filtered by van Hiele theories of levels of thinking. The van Hiele theories emphasize that the language constitutes the knowledge objects in mathematics, wich is used all through the analysis. Generally the textbooks start at the third van Hiele’s level of thinking. According to the van Hiele theories the teaching of algebra should start at level 1. This then becomes the teachers’ task to do without the support of the textbook in mathematics. Ideas on teaching level 1 and 2 are included.

APA, Harvard, Vancouver, ISO, and other styles
34

Silva, Filho Gilberto Beserra da. "Geometria espacial no Ensino Médio: Uma abordagem concreta." Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2326.

Full text
Abstract:
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-05-19T12:19:08Z No. of bitstreams: 1 PDF - Gilberto Beserra da Silva Filho.pdf: 2246546 bytes, checksum: 2ce35dfd1f7a8e15ac073b28740b5161 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:40:51Z (GMT) No. of bitstreams: 1 PDF - Gilberto Beserra da Silva Filho.pdf: 2246546 bytes, checksum: 2ce35dfd1f7a8e15ac073b28740b5161 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:41:07Z (GMT) No. of bitstreams: 1 PDF - Gilberto Beserra da Silva Filho.pdf: 2246546 bytes, checksum: 2ce35dfd1f7a8e15ac073b28740b5161 (MD5)
Made available in DSpace on 2016-07-21T20:41:07Z (GMT). No. of bitstreams: 1 PDF - Gilberto Beserra da Silva Filho.pdf: 2246546 bytes, checksum: 2ce35dfd1f7a8e15ac073b28740b5161 (MD5) Previous issue date: 2015-12-04
Our research work covers the field of geometry in order to investigate how a sequence of activities can contribute to the level advancements under the Van Hiele‟s model, starting from concrete everyday life objects and manipulable materials, relating them with the concepts and properties of geometric solids. To this end, we conducted a qualitative research in a senior year of a state High School in the city of Flores - PE. As our method, a series of activities were apllied, using manipulable materials, the van Hiele model and aspects of the social interaction, in view of the relevance of teaching and learning geometry. It was observed that, among the main implications of this research, the interpersonal relationships, group work and progress on development levels of geometric thinking can be emphasized. This research was conducted in five stages; the first four with the class working in groups, carrying out the presented activities; and the last one was carried out individually, with the students solving a questionnaire to verify whether there has been level progress, based on the van Hiele theory. The data were acquired through analysis of recorded audios, films, oral and written communication records. We rely on van Hiele‟s studies, especially on his levels of learning, which guided the elaboration of the activities sequence. Concerned about an appropriate methodology to more effectively contribute to understanding of the problem, we analyzed some teaching tools, including the Laboratório de Ensino de Geometria and two methodological tendencies of the mathematical teaching, emphasizing those that we considered more suitable for use in spatial geometry teaching. Our goal was to provide objective answers to pertinent solutions in our research and show that it is possible to engage students in the process, in a pleasant way and that they can build their knowledge with meaning. The results show a certain fragility that exists in the student regarding the knowledge of geometry. On the other hand, the results also show the existence of a potentiality for realization of the work through social interaction; therefore, we conclude that the sequence of activities, tied to the way they were experienced by the students, presents itself as a significant contribution so there is advancement in the development of geometrical thinking, based on the van Hiele model.
Nosso trabalho de pesquisa aborda o campo da geometria, com o objetivo de investigar como uma sequência de atividades pode contribuir para o avanço de nível segundo o modelo van Hiele partindo de objetos concretos do cotidiano e de materiais manipuláveis relacionando-os com os conceitos e propriedades de sólidos geométricos. Para tanto, realizamos uma pesquisa de caráter qualitativo, numa turma de 3º Ano do Ensino Médio de uma escola estadual do município de Flores – PE. Utilizamos como método, a realização de uma sequência de atividades, utilizando materiais manipuláveis, o modelo van Hiele e aspectos da interação social, tendo em vista a relevância do ensino e aprendizagem da geometria. Observamos que, entre as principais repercussões desse trabalho, destacamos as relações interpessoais, o trabalho em grupo e o avanço sobre os níveis de desenvolvimento do pensamento geométrico. Essa pesquisa foi desenvolvida em cinco etapas, as quatro primeiras com a turma trabalhando em equipe na realização das atividades propostas, e a última individualmente, na resolução de um questionário para verificarmos se houve avanço de níveis, baseado na teoria de van Hiele. Os dados foram recolhidos por meio da observação de áudios, filmagens, registros da comunicação oral e escrita. Baseamo-nos nos estudos de van Hiele, sobretudo nas fases de aprendizagem, que nos nortearam na elaboração da sequência de atividades. Preocupados com uma metodologia adequada para contribuir de forma mais eficaz para compreensão do problema, fizemos uma análise de algumas ferramentas de ensino, entre elas o Laboratório de Ensino de Geometria e duas tendências metodológicas de ensino de Matemática, dando ênfase àquelas que achamos mais adequadas para utilizar no ensino de geometria espacial. Nossa proposta foi oferecer respostas objetivas para soluções pertinentes na nossa pesquisa e demonstrar que é possível envolver os alunos durante o processo, de forma prazerosa e que eles possam construir seu conhecimento com significado. Os resultados demonstram uma certa fragilidade que há por parte do aluno quanto ao conhecimento de geometria. Por outro lado, evidencia a potencialidade que há na realização do trabalho a partir da interação social, sendo assim concluímos que a sequência de atividades, atrelada à forma como foi vivenciada pelos alunos, contribui de forma significativa para que haja o avanço no desenvolvimento do pensamento geométrico baseado no modelo van Hiele.
APA, Harvard, Vancouver, ISO, and other styles
35

Lastra, Torres Sonia. "Propuesta metodológica de enseñanza y aprendizaje de la geometría, aplicada en escuelas críticas." Tesis, Universidad de Chile, 2005. http://www.repositorio.uchile.cl/handle/2250/105960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lacerda, Geraldo Herbetet de. "O ensino de geometria plana pela resolução de problemas do tipo quebra-cabeças com palitos de fósforo." Universidade Federal da Paraí­ba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/4601.

Full text
Abstract:
Made available in DSpace on 2015-05-07T15:08:09Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1832682 bytes, checksum: 130715e1d96b5966792eb1ee98ad3518 (MD5) Previous issue date: 2011-05-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This research comprises the result of a process that had beginning as a personal reflection about a specific type of teaching activity that we had developed in the classroom, allowing us to expand our understanding of this topic and work with elements that can be explored in the process of initial and continuing training of teachers of Mathematics. Focusing on the teaching of plane geometry and more specifically exploring relative contents to the study of polygons such as classification, relation between properties, determination of perimeter and area, we take the van Hiele model as the main theoretical reference, which includes establishing different levels of development in student`s geometric thoughts, focusing on the first three (Levels 0, 1 and 2), connecting the action with manipulative materials for teaching geometry and solve problems. As a source of reflection for analysis, we take as the basic proposition a particular type of puzzles with matchsticks in Mathematics textbooks aimed at students from 6 to 9 Years of Elementary Education. We understand that the field of theoretical proposals as highlighted here for the teaching of geometry allows a teacher to do a better plan their actions to the classroom as well as more adequately explore the potential and limitations of various instruments, such textbooks, which are part of everyday school life. We concluded that even activities that may at first seem limited or traditional, can be improved considering references to research in a particular field of research, using them as a starting point for modifying the current reality of our formative student.
O presente trabalho de investigação compreende o resultado de um processo que teve início como uma reflexão pessoal acerca de um tipo específico de atividade didática que desenvolvemos em sala de aula, permitindo-nos ampliar nossa compreensão sobre o tema em tela e colaborar com elementos que podem ser explorados em processos de formação inicial e continuada de professores de Matemática da Educação Básica. Tendo como foco o ensino de Geometria Plana e, mais especificamente, explorando conteúdos relativos ao estudo de polígonos, como a classificação, relação entre propriedades, determinação de perímetro e área, tomamos como principal referencial teórico o Modelo van Hiele, que compreende o estabelecimento de diferentes níveis de desenvolvimento do pensamento geométrico do aluno, centrando-nos nos três primeiros (Níveis 0, 1 e 2), conectando a ação com materiais manipulativos para o ensino de Geometria à Resolução de Problemas. Como fonte de reflexão para análise, tomamos como base a proposição de um tipo particular de quebras-cabeças, com palitos de fósforo, em livros didáticos de Matemática direcionados a alunos do 6º ao 9º Anos do Ensino Fundamental. Compreendemos que o domínio de propostas teóricas como a aqui destacada para o ensino de Geometria, permite ao professor realizar um melhor planejamento de suas ações para a sala de aula, assim como explorar de forma mais adequada as potencialidades e limitações de instrumentos diversos, a exemplo do livro didático, que fazem parte do cotidiano escolar. Concluímos que mesmo atividades que podem, à primeira vista, parecer limitadas ou tradicionais, podem ser melhoradas considerando-se referências de pesquisas realizadas em um determinado campo de investigação, tomando-as como ponto de partida para a modificação da realidade formativa atual de nosso aluno.
APA, Harvard, Vancouver, ISO, and other styles
37

Meira, Gilmara Gomes. "Comunicação e resolução de problemas utilizando o modelo Van Hiele para a exploração geométrica em sala de aula." Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2381.

Full text
Abstract:
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-03-22T14:06:02Z No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-22T15:09:09Z (GMT) No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-22T15:09:19Z (GMT) No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5)
Made available in DSpace on 2016-07-22T15:09:19Z (GMT). No. of bitstreams: 1 PDF - Gilmara Gomes Meira.pdf: 7255359 bytes, checksum: 40824b6702d64e230f76026fb78df336 (MD5) Previous issue date: 2015-04-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This research analyzes limits and possibilities from problems solving that consider the level of comprehension of van Hiele Model. Therefore, we want to know how students communicate with each other when they develop activities with geometric problems solving in the referred Model perspective. The target audience for the research development was a third year class of high school from a public school in Cabaceiras city – PB. The theoretical framework emphasizes the Problem Solving, the Geometric teaching and learning relevance, van Hiele Model, the use of manipulable materials and the aspects of social interaction taking into consideration particularly the written and oral students’ communication. This research, developed together with the Program Observatório de Educação/CAPES proposal, from which we are part of, happenned in three steps – with all the class working on Duo; with all the class working individually and; with the Duo selected from its development on van Hiele tests. Such study is of qualitative nature, it happened from the class development on selected activities that after it resulted in three case studies where it is analyzed the respective development on problems solving subsidized by the use of Tangram and the manner in which the double interact and communicate. The data were collected by participant observation, audiorecordings and recordings of oral and written communication from the Duo. Some of the main references used as theoretical support were Boavida et al (2008), Nasser and Sant'Anna (2010), Rego, Rego and Vieira (2012), Van de Walle (2009), Fonseca (2009), Carvalho (2009 ), among others. The results indicate there is fragility in Geometry knowledge from the students who finish High School, reflecting in limitations to solve problems. Also it reveals the potentialities that exist in the work developed from social interaction, raising a progressive communication that leads the students on reflecting by specific development in problems solving.
A presente pesquisa analisa limites e possibilidades a partir da resolução de problemas que levam em consideração o Nível de compreensão segundo o Modelo van Hiele. Dessa forma, queremos saber como os alunos se comunicam quando desenvolvem atividades com resolução de problemas geométricos, na perspectiva do referido Modelo. O público alvo para desenvolvimento da pesquisa foi uma turma do 3º Ano do Ensino Médio de uma escola pública estadual da cidade de Cabaceiras - PB. O quadro teórico enfatiza a Resolução de Problemas, a relevância do ensino e aprendizagem da Geometria, o Modelo van Hiele, o uso de Materiais Manipuláveis e aspectos da interação social tendo em vista, particularmente, a comunicação oral e escrita dos alunos. Essa pesquisa desenvolvida em conjunto com a proposta do Programa Observatório de Educação/CAPES, do qual fazemos parte, aconteceu em três etapas - com a turma toda trabalhando em Díades; com a turma toda trabalhando individualmente e; com as Díades selecionadas a partir do seu desenvolvimento nos testes van Hiele. Esse estudo é de natureza qualitativa, aconteceu a partir do desenvolvimento da turma em atividades selecionadas que, posteriormente, resultou em três estudos de caso nos quais se analisa o respectivo desenvolvimento na resolução dos problemas subsidiados com o uso do Tangram, bem como o modo como as Díades interagem e se comunicam. Os dados foram recolhidos por meio da observação participante, áudio-gravações e registros da comunicação oral e escrita das Díades. Algumas das principais referências que utilizamos como sustentação teórica foram Boavida et al (2008), Nasser e Sant’anna (2010), Rêgo, Rêgo e Vieira (2012), Van de Walle (2009), Fonseca (2009), Carvalho (2009), entre outros. Os resultados analisados apontam para a fragilidade que há no conhecimento de Geometria por parte dos alunos que concluem o Ensino Médio, refletindo em limitações ao resolver problemas. Além disso, revela as potencialidades que há no trabalho desenvolvido a partir da interação social, suscitando em uma comunicação progressiva que leva os alunos a refletirem por meio do desenvolvimento específico na resolução dos problemas.
APA, Harvard, Vancouver, ISO, and other styles
38

SANTOS, Fernando Tranquilino Marques dos. "Efeitos da utilização do software Régua & Compasso no avanço dos níveis de pensamento geométrico de Van-Hiele." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17424.

Full text
Abstract:
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-07-15T16:25:39Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Fernando Tranquilino Marques dos Santos.pdf: 3178318 bytes, checksum: db16399d765647a1f4ad4df20d68aeb9 (MD5)
Made available in DSpace on 2016-07-15T16:25:39Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Fernando Tranquilino Marques dos Santos.pdf: 3178318 bytes, checksum: db16399d765647a1f4ad4df20d68aeb9 (MD5) Previous issue date: 2016-02-15
Esta dissertação teve como objetivo geral verificar a influência do software “Régua e Compasso” na construção do conceito de quadriláteros no desenvolvimento dos níveis de pensamento geométrico de Van-Hiele em alunos do 6º ano do Ensino Fundamental, partindo da Teoria de fases e níveis de aprendizagem de Pierre Marie Van Hiele e Dina Geldof Van Hiele, como base teórica. Como método a pesquisa foi realizada de forma empírica, utilizando o software Régua e Compasso em conjunto com o Atube Catcher para captação das construções realizadas na interface gráfica, seguindo da análise dos dados a partir da Teoria de Van Hiele. Foi utilizado como instrumento para identificar como os sujeitos da pesquisa estavam com conhecimentos geométricos dos quadriláteros, em seguida a aplicação da sequência didática dividida em três partes para contribuir e levar os sujeitos a avançar nos níveis de Van Hiele e por fim o pós-teste para identificar o avanço. Foi possível identificar que os sujeitos analisados no pré-teste estavam num nível bem abaixo do que representa o nível 1 de Van Hiele, porém com a aplicação da sequência didática foi possível levar os sujeitos a criar e desenvolver estratégias para construção dos quadriláteros, no pós-teste foi possível identificar que os sujeitos avançaram em função das parametrizações. Sendo assim foi identificado que os sujeitos avançaram nos conhecimentos geométricos dos quadriláteros apresentando em alguns momentos um avanço nos níveis de aprendizagem da teoria de Van Hiele. Ficando evidente que está num processo de reconhecimento e de transição para o nível de análise, o que nos faz inferir que possam existir subcategorias desse processo de desenvolvimento.
This dissertation aimed to investigate the influence of "Compass and Ruler" software in building the concept of quadrilaterals as regards the development of Van Hiele's levels of geometric understanding applied to students in the 6th grade of elementary school, starting from the theory of phases and levels of learning from Pierre Marie Van Hiele and Dina Geldof Van Hiele as a theoretical basis. As for its method, the research was carried out empirically by using the Compass and Ruler software in conjunction with aTube Catcher as a means to capture the constructions carried out in the graphical interface. Afterwards, the analysis of data was provided using the Van Hiele Model as a tool to identify the geometric understanding of quadrilaterals of each individual participant in the research, then the application of the didactic sequence divided into three parts to contribute and lead the individuals to move forward in the levels of Van Hiele, and finally the post-test in order to identify the individual progress. It was possible to identify that the individuals analyzed in the pretest were at a much lower level as stated in Van Hiele’s level 1. However, due to the application of the didactic sequence, it was possible to lead the individuals to create and develop strategies for building the quadrilaterals and, in the post-test, it was possible to identify that the individuals moved forward in accordance with the parameterization. As such, it was identified that the individuals enhanced the geometric understanding of quadrilaterals, presenting, at times, a breakthrough in the levels of learning according to Van Hiele theory. It is evident that they are in a process of recognition and transition to the level of analysis, which makes us infer that there may be subcategories of that development process.
APA, Harvard, Vancouver, ISO, and other styles
39

Gehrke, Tatiéle Tamara. "TRILHOS MATEMÁTICOS COMO CONTEXTO PARA O ENSINO E A APRENDIZAGEM DE GEOMETRIA ESPACIAL COM ESTUDANTES DO TERCEIRO ANO DO ENSINO MÉDIO." Centro Universitário Franciscano, 2017. http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/588.

Full text
Abstract:
Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-20T16:42:01Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_TatieleTamaraGehrke.pdf: 3347128 bytes, checksum: 0f23c0cadd61c9ebaa70b9288b0db807 (MD5)
Made available in DSpace on 2018-08-20T16:42:01Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_TatieleTamaraGehrke.pdf: 3347128 bytes, checksum: 0f23c0cadd61c9ebaa70b9288b0db807 (MD5) Previous issue date: 2017-03-22
The purpose of this dissertation is to answer the following problem: How the proposition and resolution of problems created from the observations collected through the realization of a Mathematical Trail in the environment in which the students live can contribute to the teaching and learning of geometric solids with students of the third year of High School? The objective is to investigate if the proposition and resolution of problems created from the observations collected through the accomplishment of a Mathematical Rail in the environment in which the students live contributes to the teaching and learning of the geometric solids with students of the third year of High School. The subjects that participated in the research were students of the 3rd year of the High School of the State School of Secondary Education Presidente Afonso Pena, in the city of Paraíso do Sul / RS. The research was qualitative, based on the ideas of Van Hiele on the development of geometric thinking and Problem Solving. The instruments used involved a diagnostic test, the accomplishment of the Mathematical Trail, the didactic sequence elaborated by the students based on the data collected on the trail and the didactic sequence elaborated by the teacher-researcher, besides a class diary in which the events occurred in Classroom and the documents produced in the productions and resolutions of the problems. The activities developed in the didactic sequences were planned taking into account the levels of Van Hiele, in order to assist in the development of geometric reasoning. After the activities developed and the results analyzed, it was found that the students felt involved with the proposed activities, especially in relation to the Mathematical Trail, from which they could observe and create problems according to their observations in a familiar environment. In addition, it can be concluded that the Problem Solving methodology was valid because it enabled the students to carry out a collective and collaborative work, in addition to favoring the construction of knowledge in a participatory manner.
Com esta dissertação, busca-se responder o seguinte problema: Como a proposição e resolução de problemas criados a partir das observações coletadas por meio da realização de um Trilho Matemático no ambiente em que os estudantes vivem podem contribuir para o ensino e aprendizagem dos sólidos geométricos com estudantes do terceiro ano do Ensino Médio? O objetivo é investigar se a proposição e resolução de problemas criados a partir das observações coletadas por meio da realização de um Trilho Matemático no ambiente em que os estudantes vivem contribui para o ensino e aprendizagem dos sólidos geométricos com estudantes do terceiro ano do Ensino Médio. Os sujeitos participantes da pesquisa foram estudantes do 3° ano do Ensino Médio da Escola Estadual de Ensino Médio Presidente Afonso Pena, do município de Paraíso do Sul/RS. A pesquisa foi de cunho qualitativo, fundamentada nas ideias de Van Hiele sobre o desenvolvimento do pensamento geométrico e na Resolução de Problemas. Os instrumentos utilizados envolveram um teste diagnóstico, a realização do Trilho Matemático, a sequência didática elaborada pelos estudantes com base nos dados coletados no trilho e a sequência didática elaborada pela professora-pesquisadora, além de diário de aula no qual foram registrados os acontecimentos ocorridos em sala de aula e os documentos produzidos nas produções e resoluções dos problemas. As atividades desenvolvidas nas sequências didáticas foram planejadas levando em consideração os níveis de Van Hiele, com intuito de auxiliar no desenvolvimento do raciocínio geométrico. Após as atividades desenvolvidas e os resultados analisados, constatou-se que os estudantes se sentiram envolvidos com as atividades propostas, especialmente em relação ao Trilho Matemático, a partir do qual puderam observar e criar problemas de acordo com suas observações num ambiente familiar. Além disso, pode-se concluir que a metodologia Resolução de Problemas foi válida, pois possibilitou aos estudantes a realização de um trabalho coletivo e colaborativo, além de favorecer a construção do conhecimento de forma participativa.
APA, Harvard, Vancouver, ISO, and other styles
40

Rezi, Viviane. "Um estudo exploratorio sobre os componentes das habilidades matematicas presentes no pensamento em geometria." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/253517.

Full text
Abstract:
Orientador: Marcia Regina Ferreira de Brito
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Educação
Made available in DSpace on 2018-07-28T07:03:29Z (GMT). No. of bitstreams: 1 Rezi_Viviane_M.pdf: 10245249 bytes, checksum: c00579782d968a91333fdcf06adbaa0d (MD5) Previous issue date: 2001
Resumo: O presente estudo teve por objetivo contribuir para o desenvolvimento da compreensão sobre alguns componentes da habilidade matemática intrínsecos às atividades que envolviam conceitos geométricos, através da abordagem de solução de problemas, procurando investigar quais as relações existentes entre o nível de desenvolvimento do pensamento em geometria, e componentes das habilidades matemáticas, como a percepção geométrica e a habilidade para conceitos espaciais. Para isso, foram sujeitos da pesquisa 201 alunos concluintes do ensino médio de duas escolas, uma pública e outra particular, submetidos a cinco instrumentos do tipo lápis e papel, durante o período de aula. Foi identificada uma relação linear significativa entre esses constructos, sendo que quanto maior o nível de desenvolvimento em Geometria do sujeito, melhor era o seu desempenho em provas que avaliavam a percepção geométrica, as habilidades para trabalhar com conceitos espaciais e o raciocínio espacial. Os dados foram analisados também através de análise fatorial, sendo que as provas se agruparam em três fatores de avaliação: problemas com enunciado verbal, problemas que requerem processamento visual e problemas que requerem representação e manipulação mental de objetos
Abstract: The main objective of this investigation was to isolate some mathematics abilities components that appear in activities involving geometric concepts, during problems solving situation. The relations between geometric thinking development level and mathematics abilities components, as the geometric perception and the presence of spatial concepts, were investigated. Subjects were 201 High school students from private and public schools. Instruments were five test and students were submitted to their at class period. A significance linear relationship between these constructs was identified, being that the higher the development level in Geometry presented by the subject, the better was his/her performance on the exams evaluating geometric perception, and also the presence of spatial concepts and spatial reasoning. Data analysis underwent a factorial analysis approach, where exams were gathered upon three evaluation criteria: word problems, visual processing and mental representation
Mestrado
Educação Matematica
Mestre em Educação
APA, Harvard, Vancouver, ISO, and other styles
41

Nagata, Rosenilda de Souza. "Os níveis de desenvolvimento do pensamento geométrico: o aprendizado do conteúdo de polígonos numa perspectiva do modelo Van Hiele." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/1615.

Full text
Abstract:
Neste trabalho estudamos o Modelo de van Hiele, os níveis de desenvolvimento do pensamento geométrico e fases de aprendizagem. Utilizando esse conhecimento elaboramos um Instrumento de Pesquisa a fim de identificar o Nível de Desenvolvimento do Pensamento Geométrico (Níveis de van Hiele) dos alunos do Ensino Fundamental II em relação ao conteúdo de Polígonos. Aplicamos este Instrumento de Pesquisa a 237 alunos de um colégio público (estadual) em Curitiba e realizamos uma análise dos dados obtidos. Aperfeiçoamos as questões do Instrumento de modo que possa ser utilizado pelo professor em sala de aula, auxiliando no diagnóstico do nível que o aluno de encontra em relação ao conteúdo proposto.
This work studies the van Hiele model, the levels of development of geometric thinking and its learning phases. Using this knowledge, we prepared a Research Instrument to identify the Level of Development in Geometric Thinking (Levels of van Hiele) of Middle School students, related to contents of Polygons. We have applied this Research Instrument to 237 students from a public school (state) in Curitiba, and we made an analysis of the acquired data. We have improved the Instrument’s questions so that it can be used by teachers during the class. Helping to identify to which level content the student belongs, related to the proposed.
APA, Harvard, Vancouver, ISO, and other styles
42

Naraine, Bishnu. "Relationships among eye fixation variables on task-oriented viewings of angles, Van Hiele levels, spatial ability, and field dependence /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487672245901492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Braconne, Michoux Annette. "Evolution des conceptions et de l'argumentation en géométrie chez les élèves: paradigmes et niveaux de van Hiele à l'articulation CM2 - 6ème." Phd thesis, Université Paris-Diderot - Paris VII, 2008. http://tel.archives-ouvertes.fr/tel-00389633.

Full text
Abstract:
Cette recherche se propose de tester en CM2 et en 6ème un nouveau cadre théorique construit à partir d'une part de la théorie des paradigmes géométriques et de la théorie des niveaux de van Hiele. La géométrie à l'école primaire est essentiellement une géométrie spatio-graphique (G1) où les objets sont les représentants d'objets physiques et les validations perceptives. Le niveau de van Hiele que l'élève doit maîtriser à la fin du CM2 est celui de l'identification-visualisation (N1). La géométrie au collège vise à être une géométrie proto-axiomatique (G2) où les objets sont théoriques et les validations de type hypothético-déductif. L'élève doit alors maîtriser le niveau de déduction informelle de van Hiele (N3).
Le cadre théorique mis à l'épreuve dans cette étude, propose que le niveau d'analyse (N2) de van Hiele soit une « zone de tuilage » entre les paradigmes géométriques G1 et G2.
Des élèves de CM2 et de 6ème ont répondu aux mêmes questions à propos des triangles particuliers, des quadrilatères particuliers, du cercle.
L'analyse des réponses a permis de montrer qu'un élève de CM2 ou de 6ème ne pouvait être caractérisé par un mode de fonctionnement dans un paradigme unique ou un seul niveau de van Hiele. Selon l'activité il peut fonctionner dans un paradigme ou dans un autre et témoigner de différents niveaux de van Hiele. Le niveau N2 d'analyse de la théorie de van Hiele se confirme comme la « zone de tuilage » entre les deux paradigmes géométriques. Des activités mettant en évidence ce niveau de van Hiele dans l'un ou l'autre des deux paradigmes permette d'instaurer une continuité dans l'enseignement de la géométrie au passage de l'école primaire vers le collège.
APA, Harvard, Vancouver, ISO, and other styles
44

Knight, Kathleen Chesley. "An Investigation into the Change in the Van Hiele Levels of Understanding Geometry of Pre-service Elementary and Secondary Mathematics Teachers." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/KnightKC2006.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barbosa, Ana Cristina Coelho. "Geometria no plano numa turma do 9º ano de escolaridade : uma abordagem sociolinguística à teoria de van Hiele usando o computador." Dissertação, Porto : Universidade do Porto, Faculdade de Ciências, Departamento de Matemática Pura, 2002. http://catalogo.up.pt/F?func=find-b&local_base=FCB01&find_code=SYS&request=000071911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Atebe, Humphrey Uyouyo. "Student's van Hiele levels of geometric thought and conception in plane geometry: a collective case study of Nigeria and South Africa." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003662.

Full text
Abstract:
This study is inspired by and utilises the van Hiele theory of geometric thought levels, currently acclaimed as one of the best frameworks for studying teaching and learning processes in geometry. The study aims both to explore and explicate the van Hiele levels of geometric thinking of a selected group of grade 10, 11 and 12 learners in Nigerian and South African schools. The study further aims to provide a rich and indepth description of the geometry instructional practices that possibly contributed to the levels of geometric conceptualisation exhibited by this cohort of high school learners. This collective case study, presented in two volumes, is oriented within an interpretive research paradigm and characterised by both qualitative and quantitative methods. The sample for the study comprised a total of 144 mathematics learners and 6 mathematics teachers from Nigeria and South Africa. They were selected using both purposive and stratified sampling techniques. In using the van Hiele model to interrogate both learners’ levels of geometric conceptualisation and teaching methods in geometry classrooms, the study employs a qualitative and qunatitative approach to the data-collection process, involving the use of questionnaires (in the form of various pen-and-paper tests, hands-on activity-based tests), interviews and classroom videos. Although the data analysis was done largely through descriptive statistics, the whole process inevitably incorporated elements of inferential statistics (e.g. ANOVA and Tukey HSD post-hoc test) in the quest for indepth analysis and deeper interpretation of the data. Learners were assigned to various van Hiele levels, mainly according to Usiskin’s (1982) forced van Hiele level determination scheme. The whole process of analysing the classroom videos involved a consultative panel of 4 observers and 3 critical readers, using the checklist of van Hiele phase descriptors to guide the analysis process. Concerning learners’ levels of geometric conceptualisation, the results from this study reveal that the most of the learners were not yet ready for the formal deductive study of school geometry, as only 2% and 3% of them were respectively at van Hiele levels 3 and 4, while 47%, 22% and 24% were at levels 0, 1 and 2, respectively. More learners from the Nigerian subsample (53%) were at van Hiele level 0 than learners from the South African subsample (41%) at this level. No learner from the Nigerian subsample was at van Hiele level 4, while 6% of the South African learners were at level 4. In general, learners from the Nigerian subsample had a poorer knowledge of school geometry than their peers from the South African subsample, as learners from the latter subsample obtained significantly higher mean scores in the van Hiele Geometry Test (VHGT) and each of the other tests used in this study. Results relating to gender differences in performance generally favour the male learners in this study. For each of the participating schools, learners’ van Hiele levels (as determined by their scores on the VHGT) strongly correlate with their performance in geometry content tests and mathematics generally. For each of the Nigerian and South African subsamples, for n ≤ 2, learners at van Hiele level n obtained higher means on nearly all the tests administered in this study than their peers at level n–1. This finding provides support for the hierarchical property of the van Hiele levels.
APA, Harvard, Vancouver, ISO, and other styles
47

Braconne-Michoux, Annette. "Evolution des conceptions et de l'argumentation en géométrie chez les élèves : paradigmes et niveaux de van Hiele à l'articulation CM2-6ème." Paris 7, 2008. http://www.theses.fr/2008PA070025.

Full text
Abstract:
Cette recherche se propose de tester en CM2 et en 6eme un nouveau cadre théorique construit à partir de la théorie des paradigmes géométriques et de la théorie des niveaux de van Hiele. La géométrie à l'école primaire est essentiellement une géométrie spatiographique (G1) où les objets sont les représentants d'objets physiques et les validations perceptives. Le niveau de van Hiele que l'élève doit maîtriser à la fin du CM2 est celui de ['identification-visualisation (N1). La géométrie au collège vise à être une géométrie proto-axiomatique (G2) où les objets sont théoriques et les validations de type hypothético-déductif. L'élève doit alors maîtriser le niveau de déduction informelle de van Hiele (N3). Le cadre théorique mis à l'épreuve dans cette étude, propose que le niveau d'analyse (N2) de van Hiele soit une « zone de tuilage » entre les paradigmes géométriques G1 et G2. Des élèves de CM2 et de 6eme ont répondu aux mêmes questions à propos des triangles particuliers, des quadrilatères particuliers, du cercle. L'analyse des réponses a permis de montrer qu'un élève de CM2 ou de 6eme ne pouvait être caractérisé par un mode de fonctionnement dans un paradigme unique ou un seul niveau de van Hiele. Selon l'activité il peut fonctionner dans un paradigme ou dans un autre et témoigner de différents niveaux de van Hiele. Le niveau N2 d'analyse de la théorie de van Hiele se confirme comme la « zone de tuilage » entre les deux paradigmes géométriques. Des activités mettant en évidence ce niveau de van Hiele dans l'un ou l'autre des deux paradigmes permettent d'instaurer une continuité dans l'enseignement de la géométrie dans le passage de l'école primaire au collège
The purpose of this research is to test in Grade 5 (CM2) and Grade 6 (6eme) a new theoretical frame which is a combination of the theory of geometrical paradigms and the van Hiele levels theory. In primary school, geometry is basically spatio-graphic (G1): objects are representations of physical objects and validations are perceptive. The pupil must then master the 1st level of the van Hiele theory: identification-visualisation (N1). In secondary school, geometry tends to be more proto-axiomatic (G2): objects are theoretical and validations are based on hypothetic-deductive reasoning. The student is supposed to master the 4th of the van Hiele levels: informal deduction (N3). The theoretical frame tested here assumes that the 2nd level from the van Hiele levels (N2: analysis) is the "linking level" between G1 and G2. Pupils from Grades 5 and 6 were asked the same questions about triangles, quadrilateral and circle in different ways: sorting drawings, tracing, analysis of drawings and of geometric figures; argumentations; explanations. The analysis of the answers show that a pupil, either in Grade 5 or Grade 6, can work within both geometrical paradigms and at different van Hiele levels, depending on the question he is asked. Analysis being the 2nd of the van Hiele levels has been proved as the "linking level" between paradigms G1 and G2. Activities at this van Hiele level in the context of either paradigm G1 or G2 can reduce the discontinuity between spatio-graphic geometry in primary school and proto-axiomatic geometry in secondary school
APA, Harvard, Vancouver, ISO, and other styles
48

Idris, Noraini. "Spatial Visualization, Field Dependence/Independence, Van Hiele Level, and Achievement in Geometry: The Influence of Selected Activities for Middle School Students." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392211705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Barbosa, Ana Cristina Coelho. "Geometria no plano numa turma do 9º ano de escolaridade : uma abordagem sociolinguística à teoria de van Hiele usando o computador." Master's thesis, Porto : Universidade do Porto, Faculdade de Ciências, Departamento de Matemática Pura, 2002. http://hdl.handle.net/10216/64034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Steyn, Catherina. "An investigation of the link between the typical geometry errors and the Van Hiele levels of geometric thought of grade 9 learners." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/12152.

Full text
Abstract:
South African learners perform poorly in the geometry sections of both national and international assessments. Numerous assessment reports mention multiple errors that keep re-occurring and play a big role in the learners’ poor performance. For this research, the link between the grade 9 learners Van Hiele levels of thought and the typical errors that they made were investigated. In this mixed method study, 194 grade 9 learners in two schools in Port Elizabeth, South Africa were tested using a Van Hiele based test. A test was set up containing multiple-choice and open-ended questions and was used to determine firstly, the predominant level of geometric reasoning of the learners and secondly, to determine their typical errors. Semi-structured interviews were held with six learners to gain more insight into some of the typical errors uncovered in the tests. The quantitative data revealed that the learners’ predominant levels of geometric thought were low. Furthermore, the qualitative data revealed typical error patterns concerning angles and sides, parallel lines, hierarchy of quadrilaterals and incorrect reasons in the proofs. The quantitative and qualitative data was merged to determine if the errors could be linked to the Van Hiele levels. From the findings, it was concluded that most of their typical errors could be linked to the Van Hiele levels of the learners.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography