Academic literature on the topic 'Theorem of Dirichlet'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Theorem of Dirichlet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Theorem of Dirichlet"

1

S. Phillips, Doug, and Peter Zvengrowski. "CONVERGENCE OF DIRICHLET SERIES AND EULER PRODUCTS." Contributions, Section of Natural, Mathematical and Biotechnical Sciences 38, no. 2 (2017): 153. http://dx.doi.org/10.20903/csnmbs.masa.2017.38.2.111.

Full text
Abstract:
The first part of this paper deals with Dirichlet series, and convergence theorems are proved that strengthen the classical convergence theorem as found e.g. in Serre’s “A Course in Arithmetic.” The second part deals with Euler-type products. A convergence theorem is proved giving sufficient conditions for such products to converge in the half-plane having real part greater than 1/2. Numerical evidence is also presented that suggests that the Euler products corresponding to Dirichlet L-functions L(s, χ), where χ is a primitive Dirichlet character, converge in this half-plane.
APA, Harvard, Vancouver, ISO, and other styles
2

ZHANG, LILING. "SET OF EXTREMELY DIRICHLET NON-IMPROVABLE POINTS." Fractals 28, no. 02 (2020): 2050034. http://dx.doi.org/10.1142/s0218348x20500346.

Full text
Abstract:
Let [Formula: see text] be the continued fraction expansion of [Formula: see text]. The growth rate of the product of the partial quotients [Formula: see text] is closely connected with the improvability of Dirichlet’s theorem in the sense that the faster [Formula: see text] grows, the less possibility the improvement of Dirichlet’s theorem has. In this paper, we study the size of the points for which [Formula: see text] grows in a given speed. We call the points of this type as extremely Dirichlet non-improvable points.
APA, Harvard, Vancouver, ISO, and other styles
3

Demanze, O., and A. Mouze. "Universal approximation theorem for Dirichlet series." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–11. http://dx.doi.org/10.1155/ijmms/2006/37014.

Full text
Abstract:
The paper deals with an extension theorem by Costakis and Vlachou on simultaneous approximation for holomorphic function to the setting of Dirichlet series, which are absolutely convergent in the right half of the complex plane. The derivation operator used in the analytic case is substituted by a weighted backward shift operator in the Dirichlet case. We show the similarities and extensions in comparing both results. Several density results are proved that finally lead to the main theorem on simultaneous approximation.
APA, Harvard, Vancouver, ISO, and other styles
4

Genys, Jonas, and Antanas Laurinčikas. "JOINT WEIGHTED LIMIT THEOREMS FOR GENERAL DIRICHLET SERIES." Mathematical Modelling and Analysis 16, no. 1 (2011): 39–51. http://dx.doi.org/10.3846/13926292.2011.559592.

Full text
Abstract:
In the paper,two joint weighted limit theorems in the sense of weak convergence of probability measures on the complex plane for general Dirichlet series are obtained. The first of them gives only the existence of the limit measure, while in the second theorem,under some additional hypothesis on the weight function, the explicit form of the limit measure is presented. Namely, the limit measure coincides with the distribution of some random element related to considered Dirichlet series.
APA, Harvard, Vancouver, ISO, and other styles
5

Mazhar. "AN INTEGRABILITY THEOREM FOR DIRICHLET SERIES." Real Analysis Exchange 20, no. 2 (1994): 726. http://dx.doi.org/10.2307/44152553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borwein, David. "A Tauberian theorem concerning Dirichlet series." Mathematical Proceedings of the Cambridge Philosophical Society 105, no. 3 (1989): 481–84. http://dx.doi.org/10.1017/s0305004100077859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borwein, David. "An Inculsion Theorem for Dirichlet Series." Canadian Mathematical Bulletin 32, no. 4 (1989): 479–81. http://dx.doi.org/10.4153/cmb-1989-069-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HAMAHATA, Yoshinori. "OKADA'S THEOREM AND MULTIPLE DIRICHLET SERIES." Kyushu Journal of Mathematics 74, no. 2 (2020): 429–39. http://dx.doi.org/10.2206/kyushujm.74.429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gaisin, A. M. "A uniqueness theorem for Dirichlet series." Mathematical Notes of the Academy of Sciences of the USSR 50, no. 2 (1991): 807–12. http://dx.doi.org/10.1007/bf01157566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuznetsov, Alexey. "Lagrange Inversion Theorem for Dirichlet series." Journal of Mathematical Analysis and Applications 493, no. 2 (2021): 124575. http://dx.doi.org/10.1016/j.jmaa.2020.124575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Theorem of Dirichlet"

1

Kidane, Berhanu Tekle. "The Corona Theorem for the multiplier algebras on weighted Dirichlet spaces." Thesis, [Tuscaloosa, Ala. : University of Alabama Libraries], 2009. http://purl.lib.ua.edu/2150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Ismail 1961. "Uniqueness of Positive Solutions for Elliptic Dirichlet Problems." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc330654/.

Full text
Abstract:
In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also p
APA, Harvard, Vancouver, ISO, and other styles
3

Fahrenwaldt, Matthias. "The Connes-Moscovici local index theorem for the non commutative 2-torus and the meromorphic extendibility of certain Dirichlet series." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967343356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tamašauskaitė, Ugnė. "Sudėtinės funkcijos universalumas." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130730_105103-87570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MATSUMOTO, Kohji. "An introduction to the value-distribution theory of zeta-functions." Šiauliai University, 2006. http://hdl.handle.net/2237/20445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mori, Takahiro. "Lp-Kato class measures and their relations with Sobolev embedding theorems." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Junior, Ricardo dos Santos Freire. "Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102007-162259/.

Full text
Abstract:
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mo
APA, Harvard, Vancouver, ISO, and other styles
8

Morales, Gerard John Alva. "Estabilidade de Liapunov e derivada radial." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-19112014-174237/.

Full text
Abstract:
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes.<br>We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.
APA, Harvard, Vancouver, ISO, and other styles
9

Charabati, Mohamad. "Le problème de Dirichlet pour les équations de Monge-Ampère complexes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30001/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude de la régularité des solutions des équations de Monge-Ampère complexes ainsi que des équations hessiennes complexes dans un domaine borné de Cn. Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel. Dans le deuxième chapitre, on étudie le module de continuité des solutions du problème de Dirichlet pour les équations de Monge-Ampère lorsque le second membre est une mesure à densité continue par rapport à la mesure de Lebesgue dans un domaine strictement hyperconvexe lipschitzien. Dans le troisième chapitre, on prouve la continuité h
APA, Harvard, Vancouver, ISO, and other styles
10

Daktaraitė, Gitana. "Ribinė teorema L funkcijų sąsūkų su Dirichlė charakteriu argumentui." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140716_142601-64561.

Full text
Abstract:
Sakykime, kad F yra normuota parabolinė tikrinė forma pilnosios modulinės grupės atžvilgiu, L(s, F) yra susieta su L funkcijos sąsūka L(s, F, χ) su Dirichlė charakteriu moduliu q, kai q yra pirminis skaičius. Bakalauro darbe įrodyta ribinė teorema L funkcijų sąsūkų argumentui arg L(s, F, χ).<br>Let F(z) a holomorfic normalized Hecke eigen cups form of weight κ for the full modular group, L(s, F), s = σ + it, be the L-function attached to the form F. Let L(s, F, χ) denote a twist of L(s, F) with a Dirichlet character χ modulo q, by the Dirichlet series and can be analytically continued to an en
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Theorem of Dirichlet"

1

Hino, Masanori. A trace theorem for Dirichlet forms on fractals. Research Institute for Mathematical Sciences, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benedek, Agnes Ilona. Remarks on a theorem of Å. Pleijel and related topics. INMABB-CONICET, Universidad Nacional del Sur, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1952-, Bump Daniel, and Friedberg Solomon 1958-, eds. Weyl group multiple Dirichlet series: Type A combinatorial theory. Princeton University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Solomon, Friedberg, Goldfeld Dorian, and SpringerLink (Online service), eds. Multiple Dirichlet Series, L-functions and Automorphic Forms. Birkhäuser Boston, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1886, Riesz Marcel b., ed. The general theory of Dirichlet's series. Dover Publications, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Uppuluri V. R., Frankowski K, Odeh Robert E, Davenport James M, and Institute of Mathematical Statistics, eds. Dirichlet integrals of type 2 and their applications. American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gauss-Dirichlet Conference (2005 Göttingen, Germany). Analytic number theory: A tribute to Gauss and Dirichlet : proceedings of the Gauss-Dirichlet Conference, Göttingen, Germany, June 20-24, 2005. Edited by Duke William 1958- and Tschinkel Yuri. American Mathematical Society, Clay Mathematics Institute, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dancer, E. N. Weakly nonlinear Dirichlet problems on long or thin domains. American Mathematical Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ng, Kai Wang. Dirichlet and Related Distributions: Theory, Methods and Applications. Wiley, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A Dirichlet problem for distributions and specifications for random fields. American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Theorem of Dirichlet"

1

Hlawka, Edmund, Rudolf Taschner, and Johannes Schoißengeier. "The Dirichlet Approximation Theorem." In Geometric and Analytic Number Theory. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-75306-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Apostol, Tom M. "Kronecker’s theorem with applications." In Modular Functions and Dirichlet Series in Number Theory. Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0999-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kontorovich, Alex V. "A Pseudo Twin Primes Theorem." In Multiple Dirichlet Series, L-functions and Automorphic Forms. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Apostol, Tom M. "General Dirichlet series and Bohr’s equivalence theorem." In Modular Functions and Dirichlet Series in Number Theory. Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0999-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shorey, Tarlok Nath. "The Dirichlet Series and the Dirichlet Theorem on Primes in Arithmetic Progressions." In Infosys Science Foundation Series. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9097-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laurinčikas, Antanas. "Limit Theorem for the Dirichlet Series with Multiplicative Coefficients." In Limit Theorems for the Riemann Zeta-Function. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2091-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kheyfits, Alexander. "A Sampling Theorem for solutions of the Dirichlet Problem for the Schrödinger Operator." In Reproducing Kernels and their Applications. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-2987-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knopp, Marvin I. "Hamburger’s Theorem on ζ(s) and the Abundance Principle for Dirichlet Series with Functional Equations." In Number Theory. Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-7023-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knopp, Marvin I. "Hamburger’s Theorem on ζ(s) and the Abundance Principle for Dirichlet Series with Functional Equations." In Number Theory. Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-02-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Queffélec, Hervé, and Martine Queffélec. "Voronin type theorems." In Diophantine Approximation and Dirichlet Series. Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-61-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Theorem of Dirichlet"

1

Wang, Shin-Hwa, and Tzung-Shin Yeh. "An Exact multiplicity theorem of a P-Laplacian Dirichlet problem and its application." In Proceedings of the ICM 2002 Satellite Conference on Nonlinear Functional Analysis. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704283_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Zheng, Yan-Feng Li, Yuan-Jian Yang, Jinhua Mi, and Hong-Zhong Huang. "Extensions of Bayesian Reliability Analysis by Using Imprecise Dirichlet Model." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47183.

Full text
Abstract:
Bayesian approaches have been demonstrated as effective methods for reliability analysis of complex systems with small-amount data, which integrate prior information and sample data using Bayes’ theorem. However, there is an assumption that precise prior probability distributions are available for unknown parameters, yet these prior distributions are sometimes unavailable in practical engineering. A possible way to avoiding this assumption is to generalize Bayesian reliability analysis approach by using imprecise probability theory. In this paper, we adopt a set of imprecise Dirichlet distribu
APA, Harvard, Vancouver, ISO, and other styles
3

Sah, Si Mohamed, and Brian P. Mann. "Stability of a Pivoting Fluid-Filled Container." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47997.

Full text
Abstract:
This paper investigates the stability of a pivoting cylindrical container that is slowly filled with fluid. The stability of the upright and tilt angle equilibria is studied by using the Lagrange-Dirichlet theorem. The potential energy of the system is given for two regions that are delimited by an edge angle, and two spill angles. A bifurcation diagram is obtained showing the stability of the upright and tilt angle equilibria as function of both the fluid height in the container and the pivot location. In particular, it is shown that the upright angle equilibrium undergoes a pitchfork bifurca
APA, Harvard, Vancouver, ISO, and other styles
4

He, Jia, Changying Du, Changde Du, Fuzhen Zhuang, Qing He, and Guoping Long. "Nonlinear Maximum Margin Multi-View Learning with Adaptive Kernel." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/254.

Full text
Abstract:
Existing multi-view learning methods based on kernel function either require the user to select and tune a single predefined kernel or have to compute and store many Gram matrices to perform multiple kernel learning. Apart from the huge consumption of manpower, computation and memory resources, most of these models seek point estimation of their parameters, and are prone to overfitting to small training data. This paper presents an adaptive kernel nonlinear max-margin multi-view learning model under the Bayesian framework. Specifically, we regularize the posterior of an efficient multi-view la
APA, Harvard, Vancouver, ISO, and other styles
5

Trodden, Mark. "Dirichlet solitons in field theories." In COSMO--98. ASCE, 1999. http://dx.doi.org/10.1063/1.59451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chernov, V. M. "Tauber theorems for Dirichlet series and fractals." In Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.546905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Queffélec, Hervé. "Composition operators in the Dirichlet series setting." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turowski, Krzysztof, Philippe Jacquet, and Wojciech Szpankowski. "Asymptotics of Entropy of the Dirichlet-Multinomial Distribution." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Han, Yanjun, Jiantao Jiao, and Tsachy Weissman. "Does dirichlet prior smoothing solve the Shannon entropy estimation problem?" In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andrade, Daniel, Timo Horeis, and Bernhard Sick. "Knowledge fusion using Dempster-Shafer theory and the imprecise Dirichlet model." In 2008 IEEE Conference on Soft Computing in Industrial Applications (SMCia). IEEE, 2008. http://dx.doi.org/10.1109/smcia.2008.5045950.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Theorem of Dirichlet"

1

Yin, Zheng. Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/753013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!