Journal articles on the topic 'Theorem of intermediate value (Theorem of Bolzano)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Theorem of intermediate value (Theorem of Bolzano).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Thakur, Ramkrishna, and S. K. Samanta. "A Study on Some Fundamental Properties of Continuity and Differentiability of Functions of Soft Real Numbers." Advances in Fuzzy Systems 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/6429572.
Full textWłodarczyk, Kazimierz. "Intermediate value theorems for holomorphic maps in complex Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 109, no. 3 (May 1991): 539–40. http://dx.doi.org/10.1017/s0305004100069978.
Full textROSSER, J. BARKLEY. "ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS." New Mathematics and Natural Computation 08, no. 01 (March 2012): 53–72. http://dx.doi.org/10.1142/s1793005712400029.
Full textBayoumi, Aboubakr. "Bolzano’s intermediate-value theorem for quasi-holomorphic maps." Central European Journal of Mathematics 3, no. 1 (March 2005): 76–82. http://dx.doi.org/10.2478/bf02475656.
Full textKryszewski, Wojciech, and Jakub Siemianowski. "The Bolzano mean-value theorem and partial differential equations." Journal of Mathematical Analysis and Applications 457, no. 2 (January 2018): 1452–77. http://dx.doi.org/10.1016/j.jmaa.2017.01.040.
Full textJohnsonbaugh, Richard. "A Discrete Intermediate Value Theorem." College Mathematics Journal 29, no. 1 (January 1998): 42. http://dx.doi.org/10.2307/2687637.
Full textJohnsonbaugh, Richard, and Duane W. DeTemple. "A Discrete Intermediate Value Theorem." College Mathematics Journal 29, no. 1 (January 1998): 42. http://dx.doi.org/10.1080/07468342.1998.11973914.
Full textHuang, Xun-Cheng. "From Intermediate Value Theorem to Chaos." Mathematics Magazine 65, no. 2 (April 1, 1992): 91. http://dx.doi.org/10.2307/2690487.
Full textHuang, Xun-Cheng. "From Intermediate Value Theorem To Chaos." Mathematics Magazine 65, no. 2 (April 1992): 91–103. http://dx.doi.org/10.1080/0025570x.1992.11995989.
Full textBridges, Douglas S. "A General Constructive Intermediate Value Theorem." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, no. 5 (1989): 433–35. http://dx.doi.org/10.1002/malq.19890350509.
Full textLarson, Suzanne. "THE INTERMEDIATE VALUE THEOREM INf-RINGS." Communications in Algebra 30, no. 5 (May 31, 2002): 2469–504. http://dx.doi.org/10.1081/agb-120003479.
Full textBayne, Richard, Terrence Edwards, and Myung H. Kwack. "A Common Generalization of the Intermediate Value Theorem and Rouché's Theorem." Missouri Journal of Mathematical Sciences 18, no. 1 (February 2006): 26–32. http://dx.doi.org/10.35834/2006/1801026.
Full textWu, Z. "A Fixed Point Theorem, Intermediate Value Theorem, and Nested Interval Property." Analysis Mathematica 45, no. 2 (October 17, 2018): 443–47. http://dx.doi.org/10.1007/s10476-018-0612-3.
Full textHERZOG, GERD, and ROLAND LEMMERT. "BOUNDARY VALUE PROBLEMS VIA AN INTERMEDIATE VALUE THEOREM." Glasgow Mathematical Journal 50, no. 3 (September 2008): 531–37. http://dx.doi.org/10.1017/s0017089508004394.
Full textMASHINCHI, Mashallah. "An Intermediate Value Theorem in Neighbourhood Spaces." Tokyo Journal of Mathematics 09, no. 1 (June 1986): 181–86. http://dx.doi.org/10.3836/tjm/1270150984.
Full textWORDSWORTH, J. R. "An intermediate value theorem for asymptotic values." Mathematical Proceedings of the Cambridge Philosophical Society 138, no. 1 (January 2005): 129–34. http://dx.doi.org/10.1017/s0305004104007844.
Full textChantasartrassmee, Avapa, and Narong Punnim. "An Intermediate Value Theorem for the Arboricities." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/947151.
Full textFierro, Raul, Carlos Martinez, and Claudio H. Morales. "The aftermath of the intermediate value theorem." Fixed Point Theory and Applications 2004, no. 3 (2004): 516570. http://dx.doi.org/10.1155/s1687182004310053.
Full textMatveev, M. N. "An intermediate value theorem for face polytopes." Lobachevskii Journal of Mathematics 37, no. 3 (May 2016): 307–15. http://dx.doi.org/10.1134/s1995080216030173.
Full textHerzog, Gerd. "An intermediate value theorem in ordered Banach spaces." Annales Polonici Mathematici 98, no. 1 (2010): 63–69. http://dx.doi.org/10.4064/ap98-1-4.
Full textArdeshir, Mohammad, and Rasoul Ramezanian. "The double negation of the intermediate value theorem." Annals of Pure and Applied Logic 161, no. 6 (March 2010): 737–44. http://dx.doi.org/10.1016/j.apal.2009.06.005.
Full textGaber, Iris, Arieh Lev, and Romina Zigdon. "Insights and Observations on Teaching the Intermediate Value Theorem." American Mathematical Monthly 126, no. 9 (October 21, 2019): 845–49. http://dx.doi.org/10.1080/00029890.2019.1647061.
Full textDuca, Dorel I., and Ovidiu T. Pop. "On the intermediate point in Cauchy's mean-value theorem." Mathematical Inequalities & Applications, no. 3 (2006): 375–89. http://dx.doi.org/10.7153/mia-09-37.
Full textDuca, Dorel I., and Ovidiu T. Pop. "Concerning the intermediate point in the mean value theorem." Mathematical Inequalities & Applications, no. 3 (2009): 499–512. http://dx.doi.org/10.7153/mia-12-38.
Full textHendtlass, Matthew. "The intermediate value theorem in constructive mathematics without choice." Annals of Pure and Applied Logic 163, no. 8 (August 2012): 1050–56. http://dx.doi.org/10.1016/j.apal.2011.12.026.
Full textZhu, Sanguo. "An intermediate-value theorem for the upper quantization dimension." Journal of Mathematical Analysis and Applications 348, no. 1 (December 2008): 389–94. http://dx.doi.org/10.1016/j.jmaa.2008.07.043.
Full textCastro Pérez, Jaime, Andrés González Nucamendi, and Gerardo Pioquinto Aguilar Sánchez. "Approximate integration through remarkable points using the Intermediate Value Theorem." Scientia et Technica 25, no. 1 (March 30, 2020): 142–49. http://dx.doi.org/10.22517/23447214.21641.
Full textPerrucci, Daniel, and Marie-Françoise Roy. "Quantitative fundamental theorem of algebra." Quarterly Journal of Mathematics 70, no. 3 (May 15, 2019): 1009–37. http://dx.doi.org/10.1093/qmath/haz008.
Full textTan, Yu Cheng, Chang Shou Deng, and Yan Liu. "Mean Evolutionary Algorithm Based on Intermediate Value Theorem of Continuous Function." Advanced Materials Research 989-994 (July 2014): 1686–91. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.1686.
Full textShamseddine, Khodr, and Martin Berz. "Intermediate Value Theorem for Analytic Functions on a Levi-Civita Field." Bulletin of the Belgian Mathematical Society - Simon Stevin 14, no. 5 (December 2007): 1001–15. http://dx.doi.org/10.36045/bbms/1197908910.
Full textBau, Sheng, Benjamin van Niekerk, and David White. "An Intermediate Value Theorem for the Decycling Numbers of Toeplitz Graphs." Graphs and Combinatorics 31, no. 6 (December 4, 2014): 2037–42. http://dx.doi.org/10.1007/s00373-014-1492-3.
Full textLindenstrauss, Elon, Yuval Peres, and Wilhelm Schlag. "Bernoulli convolutions and an intermediate value theorem for entropies ofK-partitions." Journal d'Analyse Mathématique 87, no. 1 (December 2002): 337–67. http://dx.doi.org/10.1007/bf02868480.
Full textKabbouch, Oussama, and Mustapha Najmeddine. "The Reverse of the Intermediate Value Theorem in Some Topological Spaces." International Journal of Mathematics and Mathematical Sciences 2021 (April 10, 2021): 1–4. http://dx.doi.org/10.1155/2021/6320969.
Full textGomes, Abel, and José Morgado. "A Generalized Regula Falsi Method for Finding Zeros and Extrema of Real Functions." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/394654.
Full textLiu, Dongyuan, and Zigen Ouyang. "Solvability of Third-Order Three-Point Boundary Value Problems." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/793639.
Full textPatinkin, Seth. "Stirring our way to Sharkovsky's theorem." Bulletin of the Australian Mathematical Society 56, no. 3 (December 1997): 453–58. http://dx.doi.org/10.1017/s0004972700031245.
Full textCorgnier, Luigi, Carla Massaza, and Paolo Valabrega. "Hensel's lemma and the intermediate value theorem over a non-Archimedean field." Journal of Commutative Algebra 9, no. 2 (June 2017): 185–211. http://dx.doi.org/10.1216/jca-2017-9-2-185.
Full textHENRIKSEN, MELVIN, SUZANNE LARSON, and JORGE MARTINEZ. "The Intermediate Value Theorem for Polynomials over Lattice-ordered Rings of Functions." Annals of the New York Academy of Sciences 788, no. 1 General Topol (May 1996): 108–23. http://dx.doi.org/10.1111/j.1749-6632.1996.tb36802.x.
Full textJulian, William H., Ray Milnes, and Fred Richman. "The intermediate value theorem: preimages of compact sets under uniformly continuous functions." Rocky Mountain Journal of Mathematics 18, no. 1 (March 1988): 25–36. http://dx.doi.org/10.1216/rmj-1988-18-1-25.
Full textBerger, Josef, Hajime Ishihara, Takayuki Kihara, and Takako Nemoto. "The binary expansion and the intermediate value theorem in constructive reverse mathematics." Archive for Mathematical Logic 58, no. 1-2 (May 10, 2018): 203–17. http://dx.doi.org/10.1007/s00153-018-0627-2.
Full textVrahatis, Michael N. "Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros." Topology and its Applications 275 (April 2020): 107036. http://dx.doi.org/10.1016/j.topol.2019.107036.
Full textCameron, Thomas. "Spectral Bounds for Matrix Polynomials with Unitary Coefficients." Electronic Journal of Linear Algebra 30 (February 8, 2015): 585–91. http://dx.doi.org/10.13001/1081-3810.2911.
Full textMassaza, Carla, Lea Terracini, and Paolo Valabrega. "On an intermediate value theorem for polynomials and power series over a valued field." Communications in Algebra 45, no. 10 (December 23, 2016): 4528–41. http://dx.doi.org/10.1080/00927872.2016.1270955.
Full textBarany, Michael J. "Stuck in the Middle: Cauchy’s Intermediate Value Theorem and the History of Analytic Rigor." Notices of the American Mathematical Society 60, no. 10 (November 1, 2013): 1. http://dx.doi.org/10.1090/noti1049.
Full textDavid, Erika J., Kyeong Hah Roh, and Morgan E. Sellers. "Teaching the Representations of Concepts in Calculus: The Case of the Intermediate Value Theorem." PRIMUS 30, no. 2 (April 25, 2019): 191–210. http://dx.doi.org/10.1080/10511970.2018.1540023.
Full textShamseddine, Khodr, and Todd Sierens. "On Locally Uniformly Differentiable Functions on a Complete Non-Archimedean Ordered Field Extension of the Real Numbers." ISRN Mathematical Analysis 2012 (April 17, 2012): 1–20. http://dx.doi.org/10.5402/2012/387053.
Full textPop, Emilia-Loredana, Dorel Duca, and Augusta Raţiu. "Properties of the intermediate point from a mean value theorem of the integral calculus - II." General Mathematics 27, no. 1 (June 1, 2019): 29–36. http://dx.doi.org/10.2478/gm-2019-0003.
Full textPop, Emilia-Loredana, Dorel Duca, and Augusta Raţiu. "Calculus for the intermediate point associated with a mean value theorem of the integral calculus." General Mathematics 28, no. 1 (June 1, 2020): 59–66. http://dx.doi.org/10.2478/gm-2020-0005.
Full textOman, Greg. "The Converse of the Intermediate Value Theorem: From Conway to Cantor to Cosets and Beyond." Missouri Journal of Mathematical Sciences 26, no. 2 (November 2014): 134–50. http://dx.doi.org/10.35834/mjms/1418931955.
Full textPalmgren, Erik. "Developments in Constructive Nonstandard Analysis." Bulletin of Symbolic Logic 4, no. 3 (September 1998): 233–72. http://dx.doi.org/10.2307/421031.
Full text