Journal articles on the topic 'Theoretical simulations of nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Theoretical simulations of nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Farkaš, Barbara, and Nora H. de Leeuw. "A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles." Materials 14, no. 13 (2021): 3611. http://dx.doi.org/10.3390/ma14133611.
Full textGotzias, Anastasios. "Umbrella Sampling Simulations of Carbon Nanoparticles Crossing Immiscible Solvents." Molecules 27, no. 3 (2022): 956. http://dx.doi.org/10.3390/molecules27030956.
Full textWang, Jia, Hao Jie Xiao, Hai Xia Zhang, X. H. Liang, and Hui Li. "Size Dependence of Evaporation Temperature by Bond Number Calculation." Materials Science Forum 814 (March 2015): 96–100. http://dx.doi.org/10.4028/www.scientific.net/msf.814.96.
Full textParimala, V., and D. Ganeshkumar. "Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions." Scientific Temper 15, no. 01 (2024): 1644–51. http://dx.doi.org/10.58414/scientifictemper.2024.15.1.11.
Full textEngelmann, Ulrich M., Ahmed Shalaby, Carolyn Shasha, Kannan M. Krishnan, and Hans-Joachim Krause. "Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory." Nanomaterials 11, no. 5 (2021): 1257. http://dx.doi.org/10.3390/nano11051257.
Full textAlam, Khan. "Synthesis and Study of Correlated Phase Transitions of CrN Nanoparticles." Inorganics 12, no. 9 (2024): 247. http://dx.doi.org/10.3390/inorganics12090247.
Full textCarchini, Giuliano, Neyvis Almora-Barrios, Guillem Revilla-López, et al. "How Theoretical Simulations Can Address the Structure and Activity of Nanoparticles." Topics in Catalysis 56, no. 13-14 (2013): 1262–72. http://dx.doi.org/10.1007/s11244-013-0093-3.
Full textKART, H. H., G. WANG, I. KARAMAN, and T. ÇAĞIN. "MOLECULAR DYNAMICS STUDY OF THE COALESCENCE OF EQUAL AND UNEQUAL SIZED Cu NANOPARTICLES." International Journal of Modern Physics C 20, no. 02 (2009): 179–96. http://dx.doi.org/10.1142/s0129183109013534.
Full textSalado-Leza, Daniela, Ali Traore, Erika Porcel, et al. "Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence." International Journal of Molecular Sciences 20, no. 22 (2019): 5648. http://dx.doi.org/10.3390/ijms20225648.
Full textSikdar, Debabrata, Alwin Bucher, Cristian Zagar, and Alexei A. Kornyshev. "Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters." Faraday Discussions 199 (2017): 585–602. http://dx.doi.org/10.1039/c6fd00249h.
Full textKrasnochtchekov, Pavel, K. Albe, and R. S. Averback. "Simulations of the inert gas condensation processes." International Journal of Materials Research 94, no. 10 (2003): 1098–105. http://dx.doi.org/10.1515/ijmr-2003-0200.
Full textHuang, Kai-Jian, Shui-Jie Qin, Zheng-Ping Zhang, Zhao Ding, and Zhong-Chen Bai. "Nonlocal and Size-Dependent Dielectric Function for Plasmonic Nanoparticles." Applied Sciences 9, no. 15 (2019): 3083. http://dx.doi.org/10.3390/app9153083.
Full textGezgin, Serap Yiğit, Abdullah Kepceoğlu, Yasemin Gündoğdu, et al. "Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies." Nanomaterials 10, no. 6 (2020): 1071. http://dx.doi.org/10.3390/nano10061071.
Full textZyubin, Andrey Yurevich, Igor Igorevich Kon, Darya Alexeevna Poltorabatko, and Ilia Gennadievich Samusev. "FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics." Nanomaterials 13, no. 5 (2023): 897. http://dx.doi.org/10.3390/nano13050897.
Full textEl-bayyari, Zuheir, and Bothina Hamad. "Embryonic Iridium nanoclusters (n=3–13): A molecular dynamics computer simulation." International Journal of Modern Physics C 30, no. 12 (2019): 2050002. http://dx.doi.org/10.1142/s0129183120500023.
Full textYan, Zengshuai, Zeming Wu, Shixin Li, Xianren Zhang, Xin Yi, and Tongtao Yue. "Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides." Nanoscale 11, no. 42 (2019): 19751–62. http://dx.doi.org/10.1039/c9nr03554k.
Full textWu, Juanping, Hongmei Wang, and Bingyu Li. "Structure-aided ACEI-capped remdesivir-loaded novel PLGA nanoparticles: toward a computational simulation design for anti-SARS-CoV-2 therapy." Physical Chemistry Chemical Physics 22, no. 48 (2020): 28434–39. http://dx.doi.org/10.1039/d0cp04389c.
Full textNgo, Minh Quang. "Localized Surface Plasmon Resonances with Spherical Metallic Nanoparticles." Communications in Physics 28, no. 2 (2018): 115. http://dx.doi.org/10.15625/0868-3166/28/2/11037.
Full textPereira, André Luis de Jesus, Juan Ángel Sans, Óscar Gomis, et al. "Size-Dependent High-Pressure Behavior of Pure and Eu3+-Doped Y2O3 Nanoparticles: Insights from Experimental and Theoretical Investigations." Nanomaterials 14, no. 8 (2024): 721. http://dx.doi.org/10.3390/nano14080721.
Full textShtablavyi, I., N. Popilovskyi, Yu Nykyruy, and S. Mudry. "Selective laser sintering of amorphous nanoparticles: Molecular dynamics simulations." Physics and Chemistry of Solid State 25, no. 1 (2024): 5–13. http://dx.doi.org/10.15330/pcss.25.1.5-13.
Full textMariscal, M. M., N. A. Oldani, S. A. Dassie, and E. P. M. Leiva. "Atomistic computer simulations on the generation of bimetallic nanoparticles." Faraday Discuss. 138 (2008): 89–104. http://dx.doi.org/10.1039/b706149h.
Full textKaragiannakis, Nikolaos P., Eugene D. Skouras, and Vasilis N. Burganos. "Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants." Nanomaterials 10, no. 11 (2020): 2288. http://dx.doi.org/10.3390/nano10112288.
Full textOsaci, Mihaela, and Matteo Cacciola. "Influence of the magnetic nanoparticle coating on the magnetic relaxation time." Beilstein Journal of Nanotechnology 11 (August 12, 2020): 1207–16. http://dx.doi.org/10.3762/bjnano.11.105.
Full textSASANPOUR, PEZHMAN, BABAK RASHIDIAN, BIZHAN RASHIDIAN, and MANOUCHEHR VOSSOUGHI. "NOVEL METHOD FOR CANCER CELL APOPTOSIS BY LOCALIZED UV LIGHT WITH GOLD NANOSTRUCTURES: A THEORETICAL INVESTIGATION." Nano 05, no. 06 (2010): 325–32. http://dx.doi.org/10.1142/s1793292010002232.
Full textSamsonov, V. M., I. V. Talyzin, V. V. Puytov, S. A. Vasilyev, A. A. Romanov, and M. I. Alymov. "When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study." Journal of Chemical Physics 156, no. 21 (2022): 214302. http://dx.doi.org/10.1063/5.0075748.
Full textWohld, Jake, Joshua Beck, Kallie Inman, et al. "Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background." Nanomaterials 12, no. 16 (2022): 2847. http://dx.doi.org/10.3390/nano12162847.
Full textHeinrich, D., A. R. Goñi, T. M. Osán, et al. "Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles." Soft Matter 11, no. 38 (2015): 7606–16. http://dx.doi.org/10.1039/c5sm00541h.
Full textFaez, Sanli, Sela Samin, Dashdeleg Baasanjav, Stefan Weidlich, Markus Schmidt, and Allard P. Mosk. "Nanocapillary electrokinetic tracking for monitoring charge fluctuations on a single nanoparticle." Faraday Discussions 193 (2016): 447–58. http://dx.doi.org/10.1039/c6fd00097e.
Full textZhao, Zheng, Haoxiang Xu, Yi Gao, and Daojian Cheng. "Universal description of heating-induced reshaping preference of core–shell bimetallic nanoparticles." Nanoscale 11, no. 3 (2019): 1386–95. http://dx.doi.org/10.1039/c8nr08889f.
Full textAlca-Ramos, Yacu V., Juan A. Ramos-Guivar, and Edson Caetano Passamani. "Analysis of the magnetization for Fe and Ni ferromagnetic nanoparticles with variable geometry using VAMPIRE software." Revista de Investigación de Física 25, no. 2 (2022): 13–20. http://dx.doi.org/10.15381/rif.v25i2.23069.
Full textYao, Y., and A. R. Thölén. "A Tem Investigation Of Nanoparticle Contact." Microscopy and Microanalysis 5, S2 (1999): 162–63. http://dx.doi.org/10.1017/s1431927600014136.
Full textGajdics, Bence D., János J. Tomán, Fanni Misják, György Radnóczi, and Zoltán Erdélyi. "Spinodal Decomposition in Nanoparticles - Experiments and Simulation." Defect and Diffusion Forum 383 (February 2018): 89–95. http://dx.doi.org/10.4028/www.scientific.net/ddf.383.89.
Full textMuaath J. Mahmoud and Bassam G. Rasheed. "Synthesis of Nano Silicon Using Lasers." International Journal of Nanoelectronics and Materials (IJNeaM) 17, no. 1 (2024): 28–34. http://dx.doi.org/10.58915/ijneam.v17i1.449.
Full textVítek, Aleš, and René Kalus. "Phase transitions in free water nanoparticles. Theoretical modeling of [H2O]48 and [H2O]118." Physical Chemistry Chemical Physics 17, no. 16 (2015): 10532–37. http://dx.doi.org/10.1039/c4cp04909h.
Full textLee, Seung-Eun, Hyung-Kyu Lim, and Sangheon Lee. "Ab Initio-Based Structural and Thermodynamic Aspects of the Electrochemical Lithiation of Silicon Nanoparticles." Catalysts 10, no. 1 (2019): 8. http://dx.doi.org/10.3390/catal10010008.
Full textCao, Xue-Zheng, Holger Merlitz, Chen-Xu Wu, Goran Ungar, and Jens-Uwe Sommer. "A theoretical study of dispersion-to-aggregation of nanoparticles in adsorbing polymers using molecular dynamics simulations." Nanoscale 8, no. 13 (2016): 6964–68. http://dx.doi.org/10.1039/c5nr08576d.
Full textTsarmpopoulou, Maria, Alexandros G. Chronis, Mihail Sigalas, Alkeos Stamatelatos, Panagiotis Poulopoulos, and Spyridon Grammatikopoulos. "Calculation of the Localized Surface Plasmon Resonances of Au Nanoparticles Embedded in NiO." Solids 3, no. 1 (2022): 55–65. http://dx.doi.org/10.3390/solids3010005.
Full textИльющенков, Д. С., В. М. Кожевин та С. А. Гуревич. "Зарядовое состояние металлических наночастиц на проводящей подложке". Физика твердого тела 61, № 10 (2019): 1731. http://dx.doi.org/10.21883/ftt.2019.10.48241.471.
Full textNietiadi, Maureen L., Philipp Umstätter, Tiffany Tjong, et al. "The bouncing threshold in silica nanograin collisions." Physical Chemistry Chemical Physics 19, no. 25 (2017): 16555–62. http://dx.doi.org/10.1039/c7cp02106b.
Full textLv, Wang, and Kai Wang. "Application of Nanoparticles to Enhanced Oil Recovery." International Journal of Energy 2, no. 2 (2023): 60–66. http://dx.doi.org/10.54097/ije.v2i2.7770.
Full textStaszewski, Tomasz, and Małgorzata Borówko. "Molecular dynamics simulations of mono-tethered particles at solid surfaces." Physical Chemistry Chemical Physics 20, no. 30 (2018): 20194–204. http://dx.doi.org/10.1039/c8cp03007c.
Full textMorosanu, Cezarina, Larisa Popescu-Lipan, Liviu Sacarescu, Andreea-Roxana Fanaru, and Dorina Creanga. "Theoretical modeling and experimental study of sodium oleate properties for wastewater cleaning with magnetic nanoparticles stabilized with oleate." E3S Web of Conferences 247 (2021): 01025. http://dx.doi.org/10.1051/e3sconf/202124701025.
Full textKuzmin, Alexei, Andris Anspoks, Aleksandr Kalinko, and Janis Timoshenko. "Simulation based approach to structure relaxation in oxides nanomaterials." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C747. http://dx.doi.org/10.1107/s2053273314092523.
Full textSato, Takumi, Keiko Esashika, Eiji Yamamoto, Toshiharu Saiki, and Noriyoshi Arai. "Theoretical Design of a Janus-Nanoparticle-Based Sandwich Assay for Nucleic Acids." International Journal of Molecular Sciences 23, no. 15 (2022): 8807. http://dx.doi.org/10.3390/ijms23158807.
Full textArief, Syukri, Emriadi, and Ade Saputra. "KAJIAN TEORITIS KEMAMPUAN CAPPING KATEKIN, KATEKU TANAT DAN QUARSETIN TERHADAP NANOPARTIKEL PERAK DENGAN MENGGUNAKAN METODA DFT-B." Jurnal Riset Kimia 9, no. 1 (2017): 27. http://dx.doi.org/10.25077/jrk.v9i1.256.
Full textCosta, Jefferson, Quaid Zaman, Karlo Q. da Costa, et al. "Limits of the Effective Medium Theory in Particle Amplified Surface Plasmon Resonance Spectroscopy Biosensors." Sensors 19, no. 3 (2019): 584. http://dx.doi.org/10.3390/s19030584.
Full textRuffino, F., G. Piccitto, and M. G. Grimaldi. "Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres." Journal of Nanoscience 2014 (April 6, 2014): 1–11. http://dx.doi.org/10.1155/2014/407670.
Full textLiu, Linying, Jianhua Zhang, Xiaowei Zhao, et al. "Interaction between charged nanoparticles and vesicles: coarse-grained molecular dynamics simulations." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31946–57. http://dx.doi.org/10.1039/c6cp05998h.
Full textJoshi, Shaunak, Daniel Tartakovsky, and Hamdi Tchelepi. "Designing Stable Nanoparticles for Deforming Silicon Anodes in Lithium Ion Batteries." ECS Meeting Abstracts MA2024-01, no. 38 (2024): 2275. http://dx.doi.org/10.1149/ma2024-01382275mtgabs.
Full textGavilán-Arriazu, E. M., Rodrigo E. Giménez, and O. A. Pinto. "Structural surface and thermodynamics analysis of nanoparticles with defects." Physical Chemistry Chemical Physics 22, no. 40 (2020): 23148–57. http://dx.doi.org/10.1039/d0cp03348k.
Full text