Academic literature on the topic 'Théorie de la décision bayésienne'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Théorie de la décision bayésienne.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Théorie de la décision bayésienne"
Pham, Michel Tuan. "Heuristiques et biais décisionnels en marketing." Recherche et Applications en Marketing (French Edition) 11, no. 4 (December 1996): 53–69. http://dx.doi.org/10.1177/076737019601100403.
Full textCozic, Mikaël, and Agnès Vernet. "Théorie de la décision, l’essor d’une science." Sciences Humaines N° 348, no. 6 (June 10, 2022): 36–39. http://dx.doi.org/10.3917/sh.348.0036.
Full textPérez-Diaz, Claudine. "Théorie de la décision et risques routiers." Cahiers internationaux de sociologie 114, no. 1 (2003): 143. http://dx.doi.org/10.3917/cis.114.0143.
Full textCozic, Mikaël. "Anti-réalisme, rationalité limitée et théorie expérimentale de la décision." Social Science Information 48, no. 1 (March 2009): 35–56. http://dx.doi.org/10.1177/0539018408099636.
Full textFOULLEY, J. L., and E. MANFREDI. "L’évaluation des reproducteurs : L’évaluation génétique des reproducteurs pour des caractères à seuil." INRAE Productions Animales 5, HS (December 2, 1992): 201–4. http://dx.doi.org/10.20870/productions-animales.1992.5.hs.4286.
Full textSfez, Lucien. "Évaluer : de la théorie de la décision à la théorie de l'institution." Cahiers internationaux de sociologie 128-129, no. 1 (2010): 91. http://dx.doi.org/10.3917/cis.128.0091.
Full textBastianello, Lorenzo, and Vassili Vergopoulos. "About Subjective Probability." Revue économique Vol. 74, no. 1 (November 20, 2023): 601–12. http://dx.doi.org/10.3917/reco.744.0601.
Full textAli Omri, Mohamed, Moncef Akremi, and Meryem Bellouma. "La structure du capital des petites et moyennes entreprises industrielles tunisiennes." Notes de recherche 18, no. 2 (February 16, 2012): 141–63. http://dx.doi.org/10.7202/1008478ar.
Full textMeiar, Alain, and Thierry Verstraete. "Essai de conceptualisation de la notion de faux pas dans un contexte de reprise d’entreprise." Projectics / Proyéctica / Projectique 35, no. 2 (October 10, 2023): 107–18. http://dx.doi.org/10.3917/proj.035.0107.
Full textChanson, Guillaume. "Externalisation et théorie des coûts de transaction : analyser un phénomène dynamique avec une théorie statique ?" Management international 18, no. 2 (April 1, 2014): 181–94. http://dx.doi.org/10.7202/1024202ar.
Full textDissertations / Theses on the topic "Théorie de la décision bayésienne"
Toquebeuf, Pascal. "Le rôle de l'hypothèse de conséquentialisme en théorie de la décision." Aix-Marseille 3, 2010. http://www.theses.fr/2010AIX32047.
Full textSince the three last decades, several Non-Expected Utility models of choice under ambiguity have been axiomatized. The two most popular approaches are the maximin expected utility model (MEU) and the Choquet expected utility (CEU) one. One of the main motivations to the development of these models is the rationalization of the Ellsberg paradox. This experiment suggests that individual preferences have to integrated ambiguity and ambiguity attitudes. Contrarily to the bayesian model, NEU models have the ability, thanks to a nonadditive representation of the decision maker's beliefs, to take into account such caracteristics of the decision problem and of the individual psychology. Of particular interest is the update of NEU preferences when new information comes. Indeed, several economic situations involve not only ambiguity, but also sequential information arrivals in the decision process. Whereas the Bayesian updating of probabilistic beliefs automatically satisfies the axioms of consequentialism and dynamic consistency, these hypothesis have to be explicitly assumed in a NEU framework. And yet, they cannot be assumed together : in order to preserve non-additive beliefs, only one of them can be imposed on NEU preferences. Indeed, a folk theorem of decision making under uncertainty states that these assumptions together imply additive beliefs and bayesian updating. The present work studies the consequentialism assumption within a NEU (MEU or CEU) framework, its implications on the decision maker's beliefs, and proposes several ways of updating NEU preferences in a dynamically consistent (but not consequentialist) manner
Abraham, Christophe. "Robustesse par rapport à la fonction de coût en théorie de la décision bayésienne." Montpellier 1, 1998. http://www.theses.fr/1998MON1T020.
Full textCaron, Nathalie. "Approches alternatives d'une théorie non informative des tests bayésiens." Rouen, 1994. http://www.theses.fr/1994ROUES028.
Full textLepage, Maude. "La corrélation appliquée dans un contexte bayésien." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27717/27717.pdf.
Full textBarthelmé, Simon. "Visual uncertainty : a bayesian approach." Paris 5, 2010. http://www.theses.fr/2010PA05H101.
Full textWe study visual uncertainty from the Bayesian point of view. The expression "visual uncertainty" has two meanings: 1. Objective visual uncertainty is linked to lack of information. The function of our visual system is to give us information about the world around us. We seek to estimate distances, shapes, speeds, etc. The information that is available in the visual stimulus is imperfect and always insufficient, so that we may never measure a physical dimension exactly. The remaining uncertainty is the objective uncertainty. 2. Subjective visual uncertainty is a mental state. . We often comment on the information given by our visual sense by saying things like "I can't see very well", "I don't know what that is", "I can't quite read", or "I think it's her but I'm not sure". All these sentences indicate that the observer feels that the visual information they have is unreliable, and express a measure of visual confidence. The central theme of this thesis is the link between subjective and objective visual uncertainty. The main tools we use come from applying the Bayesian framework to visual perception, in which we suppose that perceptual problems can be represented as statistical inference problems. We introduce the main concepts of the Bayesian framework and suggest a formal definition for objective visual uncertainty. We describe several experimental studies that compare Bayesian theory to human behaviour
Brouillette, Marc-Antoine. "Le processus d'évaluation des probabilités subjectives." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26402.
Full textAmedah, Sid Ali. "Bayesian analysis of volatility models with semi-heavy tails, skewness and leverage effects." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25422/25422.pdf.
Full textKortbi, Othmane. "Sur l'estimation d'un vecteur moyen sous symétrie sphérique et sous contrainte." Thèse, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/5158.
Full textAlvarez, Daziano Ricardo. "A Bayesian approach to Hybrid Choice models." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27726/27726.pdf.
Full textMicroeconometric discrete choice models aim to explain the process of individual choice by consumers among a mutually exclusive, exhaustive and finite group of alternatives. Hybrid choice models are a generalization of standard discrete choice models where independent expanded models are considered simultaneously. In my dissertation I analyze, implement, and apply simultaneous estimation techniques for a hybrid choice model that, in the form of a complex generalized structural equation model, simultaneously integrates discrete choice and latent explanatory variables, such as attitudes and qualitative attributes. The motivation behind hybrid choice models is that the key to understanding choice comes through incorporating attitudinal and perceptual data to conventional economic models of decision making, taking elements from cognitive science and social psychology. The Bayesian Gibbs sampler I derive for simultaneous estimation of hybrid choice models offers a consistent and efficient estimator that outperforms frequentist full information simulated maximum likelihood. Whereas the frequentist estimator becomes fairly complex in situations with a large choice set of interdependent alternatives with a large number of latent variables, the inclusion of latent variables in the Bayesian approach translates into adding independent ordinary regressions. I also find that when using the Bayesian estimates it is easier to consider behavioral uncertainty; in fact, I show that forecasting and deriving confidence intervals for willingness to pay measures is straightforward. Finally, I confirm the capacity of hybrid choice modeling to adapt to practical situations. In particular, I analyze consumer response to innovation. For instance, I incorporate proenvironmental preferences toward low-emission vehicles into an economic model of purchase behavior where environmentally-conscious consumers are willing to pay more for sustainable solutions despite potential drawbacks. In addition, using a probit kernel and dichotomous effect indicators I show that knowledge as well as a positive attitude toward the adoption of new technologies favor the adoption of IP telephony.
Tremblay, Nicolas. "La performance cyclique des outils prévisionnels : le cas de la devise canadienne." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26569/26569.pdf.
Full textBooks on the topic "Théorie de la décision bayésienne"
Michel, Mouchart, and Rolin J. M, eds. Elements of Bayesian statistics. New York: M. Dekker, 1990.
Find full textDipak, Dey, Ghosh Sujit K. 1970-, and Mallick Bani K. 1965-, eds. Generalized linear models: A Bayesian perspective. New York: Marcel Dekker, 2000.
Find full textG, Meeden, ed. Bayesian methods for finite population sampling. London: Chapman & Hall, 1997.
Find full textM, Colosimo Bianca, and Del Castillo Enrique, eds. Bayesian process monitoring, control and optimization. Boca Raton: Chapman and Hall/CRC, 2007.
Find full textGuo-Liang, Tian, and Ng Kai Wang, eds. Bayesian missing data problems: EM, data augmentation and noniterative computation. Boca Raton: Chapman & Hall/CRC, 2010.
Find full textNeil, Martin (Martin D.), ed. Risk assessment and decision analysis with Bayesian networks. Boca Raton: Taylor & Francis, 2012.
Find full textGustafson, Paul. Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data. Taylor & Francis Group, 2015.
Find full textBayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data. Taylor & Francis Group, 2015.
Find full textCurrent trends in Bayesian methodology with applications. Boca Raton, FL: CRC Press, 2015.
Find full textBook chapters on the topic "Théorie de la décision bayésienne"
BENMAMMAR, Badr, and Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive." In Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.
Full textWeirich, Paul. "La théorie de la décision généralisée." In Sciences et décision, 69–76. Presses universitaires de Franche-Comté, 2015. http://dx.doi.org/10.4000/books.pufc.13987.
Full text"LA THÉORIE DE LA DÉCISION." In Modèles probabilistes d'aide à la décision, 115–222. Presses de l'Université du Québec, 1986. http://dx.doi.org/10.2307/j.ctv18pgvn2.6.
Full textDrouet, Isabelle. "Théorie causale de la décision et probabilités causales." In Sciences et décision, 63–68. Presses universitaires de Franche-Comté, 2015. http://dx.doi.org/10.4000/books.pufc.13977.
Full textMongin, Philippe. "La théorie de la décision et la psychologie du sens commun." In Sciences et décision, 25–46. Presses universitaires de Franche-Comté, 2015. http://dx.doi.org/10.4000/books.pufc.13957.
Full text"NOTIONS FONDAMENTALES DE THÉORIE DES PROBABILITÉS." In Modèles probabilistes d'aide à la décision, 1–86. Presses de l'Université du Québec, 1986. http://dx.doi.org/10.2307/j.ctv18pgvn2.4.
Full text"La prise de décision dans les groupes." In La théorie des jeux en images, 157–65. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2244-7-059.
Full text"La prise de décision dans les groupes." In La théorie des jeux en images, 157–65. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2244-7.c059.
Full textR. CHAKRAVARTHY, Srinivas. "Modèles de files d’attente dans les services : approche analytique et de simulation." In Théorie des files d’attente 2, 41–89. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9004.ch2.
Full text"La théorie des activités routinières et la décision criminelle." In Les causes du crime, 409–18. Les Presses de l’Université de Montréal, 2015. http://dx.doi.org/10.1515/9782763729176-021.
Full textReports on the topic "Théorie de la décision bayésienne"
Tea, Céline. REX et données subjectives: quel système d'information pour la gestion des risques? Fondation pour une culture de sécurité industrielle, April 2012. http://dx.doi.org/10.57071/170rex.
Full textLaroche, Hervé, and Véronique Steyer. L’apport des théories du sensemaking à la compréhension des risques et des crises. Fondation pour une culture de sécurité industrielle, October 2012. http://dx.doi.org/10.57071/208snv.
Full text