Dissertations / Theses on the topic 'Théorie des nombres'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Théorie des nombres.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Couveignes, Jean-Marc. "Quelques calculs en théorie des nombres." Bordeaux 1, 1994. http://www.theses.fr/1994BOR10593.
Full textGonzalez, Patrick. "Croissance d'automates et théorie des nombres." Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX22028.
Full textBalandraud, Eric. "Quelques résultats combinatoires en théorie additive des nombres." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00172441.
Full textLa seconde partie de cette thèse se place dans le contexte de la théorie additive des nombres. Nous développons une nouvelle approche de la méthode isopérimétrique de Y. ould Hamidoune, qui nous permet, entre autres, de donner une nouvelle démonstration du théorème de Kneser, outil majeur en théorie additive des nombres. Nous donnons une autre application de cette nouvelle approche à la détermination de nouvelles valeurs de taille minimale d'une somme de deux ensembles de tailles fixées, dans des groupes non abéliens. Ces nouvelles valeurs répondent par la négative à une question de la littérature.
Deléglise, Marc. "Applications des ordinateurs à la théorie des nombres." Lyon 1, 1991. http://www.theses.fr/1991LYO10117.
Full textBalandraud, Éric. "Quelques résultats combinatoires en théorie additive des nombres." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13159.
Full textMaksoud, Alexandre. "Théorie d’Iwasawa des motifs d’Artin." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I026/document.
Full textThis thesis studies from the viewpoint of cyclotomic Iwasawa theory certain non-critical Artin motives (in the sense of Deligne), and in particular those attached to classical weight one modular forms that are regular at p. Firstly we define a Selmer group, and show that it is torsion on the corresponding Iwasawa algebra. We then compute the constant term of its caracteristic series in terms of p-adic logarithms of global units, under some mild assumptions. We also highlight a phenomenon of trivial zeros à la Mazur-Tate-Teitelbaum. Secondly we construct a p-adic L-function by deformation by means of Hida theory. Finally we formulate a Iwasawa Main Conjecture for such Artin motives. We show that it follows from the Iwasawa Main Conjecture for ordinary modular forms of weight greater than or equal to 2, and we inconditionally prove one divisibility of our Conjecture
Roussine, Sophie. "Sur le lambda-invariant des corps de nombres." Caen, 2012. http://www.theses.fr/2012CAEN2054.
Full textThis PhD report deals with the study of the Iwasawa lambda invariant λp(K) when p is an odd prime and K is an abelian number field over Q. At first, only the case where K is an imaginary quadratic field is considered. Let's remind us K. Horie's result : for a fixed prime number p, there are infinitely many imagi-nary quadratic fields K such that λp(K) = 0 ; and R. Greenberg's conjecture : λp(K) is not bounded when K runs over the set of imaginary quadratic fields and p runs over the set of prime numbers. In this PhD report, a criterion is given to determine if λp(K) = 1 when p is a fixed odd prime and K is an imaginary quadratic field in which p splits. This result is obtained via a fine study of a theorem of R. Gold. Then, in an other chapter, by analogy with results in function fields, a conjecture is formulated on the existence of a constant C(p) depending on p such that for every abelian number field K we would have λp(K) ≤ C(p)dKlog(dK) where dK is the absolute discriminant of the field K. The optimality of such a bound is studied, as well as how it is related to other conjectures
Cohen, Cyril. "Formalisation des nombres algébriques : construction et théorie du premier ordre." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00780446.
Full textBourgeois, Bénédicte. "La théorie des nombres dans l’œuvre de J. -L. Lagrange." Paris 13, 1990. http://www.theses.fr/1990PA132023.
Full textLepšová, Jana. "Structures substitutives en combinatoire, théorie des nombres, et géométrie discrète." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0083.
Full textThis work aims to discover and develop links between three related but distinct mathematical domains: combinatorics on words, number theory and discrete geometry. From the point of view of combinatorics on words, we study finite and infinite words and morphisms, which act as maps on words. Substitutions are morphisms satisfying some additional properties. Namely, we focus on Sturmian and Arnoux–Rauzy words and on Sturmian morphisms. We provide a formula to determine both critical and asymptotic critical exponent of regular Arnoux–Rauzy words. With the help of this formula, we prove that the minimal critical and minimal asymptotic critical exponent among regular d-ary Arnoux–Rauzy words is attained by the d-bonacci word. We introduce a faithful representation of the special Sturmian monoid by 3×3 matrices with nonnegative integer entries, which enables us to tackle the question of the square roots of fixed points of morphisms in the special Sturmian monoid. As for the number theory, we study positional numeration systems for both nonnegative and negative integers: we define an analogue of the two’s complement notation for Z based on the sequence of Fibonacci numbers. We call it the Fibonacci complement numeration system and we study its properties with respect to addition. We recover this positional numeration system in another context of numeration systems which describe fixed and periodic points of substitutions as automatic sequences. We call these numeration systems Dumont– Thomas numeration systems for Z, we show that they are characterized by a particular total order and they extend naturally to Zd, d ≥ 1. The discrete geometry is present in the form of Wang tilings. Using the Fibonacci complement numeration system extended to Z2, we characterize a particular tiling of the plane as an automatic sequence
Laurent, Arthur. "Autour des nombres de Tamagawa." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00858435.
Full textBroglio, Annie. "Prédiction par automates." Aix-Marseille 1, 1991. http://www.theses.fr/1991AIX11385.
Full textPruniéras, Jean. "Ensembles [oméga] et applications." Paris 13, 2001. http://www.theses.fr/2001PA132024.
Full textThis thesis defines the set concept [omega] and proposes its application to problems which are not directly linked to each other
Thomé, Emmanuel. "Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiques." Habilitation à diriger des recherches, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00765982.
Full textCaputo, Luca. "Sur la structure des noyaux sauvages étales des corps de nombres." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13780/document.
Full textThe aim of the present work is to prove some results about étale wild kernels. Let $p$ be an odd prime. Etale wild kernels of a number field $F$ (which are denoted $WK^{ét}_{2i}(F)$ for $i\in \mathbb{Z}$) are cohomological generalizations of the $p$-part of the classical wild kernel $WK_{2}(F)$, which is the subgroup of $K_2(F)$ made up by symbols which are trivial for any local Hilbert symbol. Etale wild kernels are $\mathbb{Z}_p$-modules which are known to be finite if $i\geq1$ (and even if $i=0$, depending on the chosen convention): actually they are conjectured to be always finite (the Schneider conjecture). In the following we will suppose that this is always the case. Two problems are studied in detail. The first, which is analyzed in Chapter 2 and Chapter 3, is to determine which group structures are realizable for étale wild kernels. In other words, given a number field $F$, a finite abelian $p$-group $X$ and $i\in \mathbb{Z}$, one can ask if there exists a finite extension $E/F$ such that $WK^{ét}_{2i}(E)\cong X$. A similar problem has been studied for $p$-class groups and there are precise relations between the $p$-class group and étale wild kernels. Therefore one may expect to translate results from $p$-class groups to étale wild kernels. It is maybe useful to give here a short account on the classical realizability problem for $p$-class groups. Essentially two kind of techniques are used. On the one hand, for a fixed number field $F$, one studies the Hilbert $p$-class field tower of $F$: it has been shown by Yahagi that the Hilbert $p$-class tower of $F$ is infinite if and only if there is no finite extension $E/F$ whose $p$-class group is trivial. Furthermore, if the Hilbert $p$-class tower of $F$ is finite, then every finite abelian $p$-group structure appears as $p$-class group of some finite extension $E/F$. On the other hand, once we know that for a fixed number field $F$ there exists a finite extension whose $p$-class group is trivial, then class field theory and genus theory are used to exhibit, for any finite abelian $p$-group $X$, a finite extension $E/F$ such that the $p$-class group of $E$ is isomorphic to $X$. Actually, the translation of Yahagi's result in terms of étale wild kernels is not immediate: the relation between the class groups and étale wild kernels of a number field $F$ is expressed in terms of $\Gamma$-modules structures, where $\Gamma$ is the Galois group over $F$ of the cyclotomic $\mathbb{Z}_p$-extension of $F(\mu_p)$. The most natural way to approach the problem is then to consider the realizability problem for Iwasawa modules. This problem is studied (among many others) by Ozaki: he proved that for any finite $\Lambda$-module $X$, there exists a number field $k$ such that the Iwasawa module of $k$ (i.e. the projective limit of $p$-class groups along the cyclotomic $\mathbb{Z}_p$-extension) is isomorphic to $X$. The techniques used are inspired to those by Yahagi and actually Ozaki makes fundamental use of the fact that $p$ does not divide the class number of $\mathbb{Q}$. To get the translation of this result in terms of étale wild kernels one has to consider $\mathbb{Q}(\mu_p)$ -more precisely a suitable subfield of $\mathbb{Q}(\mu_p)$ depending on $i$- instead of $\mathbb{Q}$. Here the problem is that the class number of this suitable subfield is no more coprime with $p$ (as $p$ may be irregular). If this is not the case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2
Akriche, Mouadh. "Nombres de Betti des surfaces elliptiques réelles." Chambéry, 2005. http://www.theses.fr/2005CHAMS054.
Full textReal surfaces of Kodaira dimension 1, or more precisely the slightly larger class of real elliptic surfaces, form the only class of real algebraic surfaces of special type whose topological classification is not achieved. We give a complete answer to the question of possible values of Betti numbers of the real part of real regular elliptic surfaces with real section, for each complex family. In particular, we find again well-known answers for this question, in the case of rational elliptic or elliptic K3 surfaces
Grandet, Marc. "Sur les Zl-extensions d'un corps de nombres." Toulouse 3, 1990. http://www.theses.fr/1990TOU30041.
Full textNilsson, Johan. "On numbers badly approximable by q-adic rationals [Sur les nombres mal approximables par les nombres q-adiques]." Phd thesis, Toulon, 2007. https://theses.hal.science/tel-00273870/fr/.
Full textThe thesis takes as starting point diophantine approximation with focus on the area of badly approximate numbers. For the special kind of rationals, the q-adic rationals, we consider two types of approimations models, a one-sided and a two-sided model, and the sets of badly approximable numbers they give rise to. We prove with elementary methods that the Hausdorff dimension of these two sets depends continuously on a defining parameter, is constant Lebesgue almost every and self similar. Hence they are fractal sets. Moreover, we give the complete description of the intervals where the dimension remains unchanged. The methods and techniques in the proofs uses ideas form symbolic dynamics, combinatorics on words and the beta-shift
Nilsson, Johan. "On numbers badly approximable by q-adic rationals [Sur les nombres mal approximables par les nombres q-adiques]." Phd thesis, Université du Sud Toulon Var, 2007. http://tel.archives-ouvertes.fr/tel-00273870.
Full textHanna, Gautier. "Blocs des chiffres des nombres premiers." Electronic Thesis or Diss., Université de Lorraine, 2016. http://www.theses.fr/2016LORR0162.
Full textThroughout this thesis, we are interested in asymptotic orthogonality (in the sense that the scale product of the discrete torus of length N tends to zero as N tend to infinity) between some functions related to the blocks of digits of integers and the Möbius function (and also the von Mangoldt function). Our work extends previous results of Mauduit and Rivat, and gives a partial answer to a question posed by Kalai in 2012. Chapter 1 provides estimates in the case of the function is the exponential of a function taking values on the blocks (with and without wildcards) of length k (k fixed) in the digital expansion of n in base q. We also give a large class of polynomials acting on the digital blocks that allow to get a prime number theorem and asymptotic orthogonality with the Möbius function. In Chapter 2, we get an asymptotic formula in the case of our function is the exponential of the function which counts blocks of consecutive ‘1’s in the expansion of n in base 2, where the length of the block is an increasing function that tends (slowly) to infinity. In the extremal case, which we cannot handle, this problem is connected to estimating the number of primes in the sequences of Mersenne numbers. In Chapter 3, we provides estimates on the case of the function is the exponential of a function which count the blocks of k ‘1’s in the expansion of n in base 2 where k is large with respect to log N. A consequence of Chapter 3 is that the results of Chapter 1 are quasi-optimal
Vauclair, David. "Conjecture de Greenberg généralisée et capitulation dans les Zp-extensions d'un corps de nombres." Phd thesis, Université de Franche-Comté, 2005. http://tel.archives-ouvertes.fr/tel-00012074.
Full textparticulièrement à la conjecture de Greenberg généralisée (multiple) (GG). Après avoir relié celle-ci à différents problèmes de capitulation pour certains groupes de cohomologie p-adiques en degré 2, nous proposons une version faible (GGf) de (GG) dont nous montrons la validité, pour tout corps de nombres F contenant une racine primitive p-ième de l'unité et un corps quadratique imaginaire dans lequel (p) se décompose, du moment que F vérifie la conjecture de Leopoldt. Les outils développés permettent de retrouver et de généraliser (notamment dans des Zp-extensions autre que la Zp-extension
cyclotomique) un certain nombre de résultats classiques en théorie d'Iwasawa.
Herreng, Thomas. "Étude de la structure galoisienne des unités dans les corps de nombres." Caen, 2007. http://www.theses.fr/2007CAEN2065.
Full textThe well-known normal basis theorem gives the Galois structure of a Galois number field extension, thus raising the question for arithmetic modules within. This dissertation is concerned with two fundamental such objects, namely the ring of integers and the group of units linked to the class group. We start with recalling the Galois structure of the former. The study of the latter requires different techniques and occupies the major part of the dissertation. At first, using Iwasawa theory, we obtain results on the Galois structure of isotypical components for a certain class of extensions. Susenquently, we construct new groups of units by means of Euler systems and prove that they coincide with the cyclotomic units in some cases
Gagné, Marie 1961. "1968, théorie et praxis de "Tel quel" dans "Logiques" et "Nombres" de Sollers." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63765.
Full textHennecart, François. "Contribution à la théorie additive des nombres : quelques questions sur les bases d'entiers." Bordeaux 1, 1991. http://www.theses.fr/1991BOR10507.
Full textIslim, Iman. "Sur les unités et les polyèdres de Klein en théorie algèbrique des nombres." Aix-Marseille 2, 2001. http://www.theses.fr/2001AIX22032.
Full textMarie-Jeanne, Frédéric. "Propriétés arithmétiques de la fonction d’Euler et généralisations." Nancy 1, 1998. http://www.theses.fr/1998NAN10296.
Full textGama, Nicolas. "Géométrie des nombres et cryptanalyse de NTRU." Paris 7, 2008. http://www.theses.fr/2008PA077199.
Full textPublic-key cryptography, invented by Diffie and Hellman in 1976, is now part of everyday life: credit cards, game consoles and electronic commerce are using public key schemes. The security of certain cryptosystems, like NTRU, is based on problems arising from the geometry of numbers, including the shortest vector problem or the closest vector problem in Euclidean lattices. While these problems are mostly NP-hard, it is still possible to compute good approximations in practice. In this thesis, we study approximation algorithms for these lattice reduction problems, which operate either in proved polynomial time, or more generally in reasonable time. We first analyze the functioning of these algorithms from a theoretical point of view, which allows us to build for example, the best proved algorithm for its complexity and the quality of its results. But we also study the practical aspects, through a lot of simulations, which allows us to highlight an important difference between properties of complexity and quality that we can prove, and those (much better) that can be achieved in practice. These simulations also allow us to correctly predict the actual behavior of lattice reduction algorithms. We study these algorithms first in the general case, and then we show how to make specialized versions for the very particular lattices drawn from NTRU cryptosystem
Chen, Gongliang. "Méthode de Baker pour les grands degrés de transcendance et relations de dépendance linéaire pour des logarithmes de nombres algébriques." Saint-Etienne, 1993. http://www.theses.fr/1993STET4023.
Full textBarat, Guy. "Echelles de numération et fonctions arithmétiques associées." Aix-Marseille 1, 1995. http://www.theses.fr/1995AIX11057.
Full textHindry, Marc. "Géométrie et hauteurs dans les groupes algébriques." Paris 6, 1987. http://www.theses.fr/1987PA066011.
Full textGambini, Ian. "Quant aux carrés carrelés." Aix-Marseille 2, 2001. http://www.theses.fr/1999AIX22083.
Full textDaili, Noureddine. "Contribution à l'étude des densités." Université Louis Pasteur (Strasbourg) (1971-2008), 1991. http://www.theses.fr/1991STR13116.
Full textVarescon, Firmin. "Calculs explicites en théorie d'Iwasawa." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2019/document.
Full textIn the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture
Ferenczi, Sébastien. "Systèmes de rang fini." Aix-Marseille 2, 1990. http://www.theses.fr/1990AIX22016.
Full textOon, Shea Ming. "Construction des suites binaires pseudo-aléatoires." Nancy 1, 2005. http://docnum.univ-lorraine.fr/public/SCD_T_2005_0017_OON.pdf.
Full textThis thesis presents some constructions of pseudo-random sequences inspired by natural questions in number theory. We use two measures introduced by A. Sárközy et C. Mauduit to discuss some aspects of a priori testing of these sequences. They are the well-distribution measure and correlation measure of order k. On the one hand, thanks to a work of A. Weil, some Dirichlet characters give a large family of interesting examples of constructions. On the other hand, our study on a construction based on the distribution of the greatest prime factors do not supply any sufficiently exploitable estimate. However, we observe the bias on some congruence classes of prime factors. We also discuss some probability aspects of both measures. A brief history on the randomness is presented to help better comprehension, as well as some subjects in cryptology which are given in an appendix
Juin, Gérard. "Autour de la fonction [omega]/." Limoges, 1996. http://www.theses.fr/1996LIMO0053.
Full textLe, Borgne Jérémy. "Représentations galoisiennes et φ-modules : aspects algorithmiques." Rennes 1, 2012. https://tel.archives-ouvertes.fr/tel-00720023.
Full textWe study algorithmic aspects of the theory of modular representations of p-adic Galois groups. For this purpose, one of the tools introduced by Fontaine is the theory of φ-modules. A φ-module over a field K of positive characteristic is the data of a finite-dimensional vector space over K, endowed with an endomorphism φ that is semilinear with respect to the Frobenius morphism on K. The category of representations of the absolute galois group of K with coefficients in a finite field is equivalent to that of étale φ-modules over K. The aim of the works collected here is to give algorithms to describe the representation associated to a given φ-module as completely as possible. First, we study the φ-modules over finite fields, which allows us new results describing the so-called skew polynomials over a finite field. These are objets used for example in the theory of error-correcting codes. We improve a part of the algorithm of Giesbrecht for the factorizations of these polynomials. We consider the category of φ-modules over a field of formal power series of characteristic p. We give a classification of the simple objects of this category when the residue field is algebraically closed. We describe an efficient algorithm to decompose a φ-module with isocline φ-modules. We give applications to the algorithmic study of p-torsion representations of p-adic Galois groups
Bourgade, Paul. "À propos des matrices aléatoires et des fonctions L." Paris, ENST, 2009. http://tel.archives-ouvertes.fr/tel-00373735.
Full textA probabilistic view of the Keating Snaith conjecture, about the moments of the number theoretic L-functions, is given. Our method is also applied to models of particle systems with an asymetric repulsion. Finally, we give the mesoscopic fluctuations of the zeros of the Riemann zeta function, confirming the analogy with the statistics of eigenvalues of random matrices
Fontanella, Laura. "Grandes propriétés pour petits cardinaux." Paris 7, 2012. http://www.theses.fr/2012PA077158.
Full textThe result is presented in this thesis concem two combinatorial properties called the "Strong tree property" and the "Super tree property". These properties provide a useful characterization of the two notions of strong compactness and supercompactness. Indeed, an inaccessible cardinal is strongly compact if and only if it has the strong tree property; it is supercompact if and only if it has the super tree property. Nevertheless, the strong and the super tree properties can be satisfied even by small cardinals. In this thesis we prove two theorems. The first one establishes that if we assume the existence of infinitely many supercompact cardinals, then there is a model of set theory wliere the super tree property holds at every cardinal of the form aleph_n, where n is an integer larger than one. The second theorem establishes that if we assume the existence of infinitely many compact cardinals, then there is a model of set theory where even aleph omega-plus-one has the strong tree property
Sutanto. "Sur la décroissance de la fonction de concentration de la somme de variables aléatoires indépendantes." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12405.
Full textRazafindrasoanaivolala, A. Arthur Bonkli. "Sur les diviseurs milieux d'un entier." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/68973.
Full textChampagne, Jérémy. "Approximation diophantienne avec contrainte d’angles." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42504.
Full textFleckinger, Vincent. "Fonctions elliptiques et génération d'anneaux d'entiers." Bordeaux 1, 1987. http://www.theses.fr/1987BOR10507.
Full textHerblot, Mathilde. "Sur le théorème de Schneider-Lang." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00659675.
Full textStambul, Pierre. "Contribution à l'étude des propriétés arithmétiques des fractions continuées." Aix-Marseille 1, 1994. http://www.theses.fr/1994AIX11002.
Full textMenares, Ricardo. "Nombres d'intersection arithmétiques et opérateurs de Hecke sur les courbes modulaires." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00360171.
Full textCette thèse s'inscrit dans l'étude des opérateurs de Hecke en tant que correspondances sur les courbes modulaires X_0(N). D'une part, nous étudions la relation entre l'algèbre de Hecke et la théorie d'Arakelov; d'autre part, nous entreprenons un début d'étude de la dynamique de l'action des opérateurs de Hecke sur l'ensemble des courbes elliptiques supersingulières.
On considère la courbe modulaire X_0(N) munie de la métrique de Poincaré (métrique hyperbolique). Cette métrique présente des singularités aux points elliptiques et pointes. On suppose que N est sans facteurs carrés. On note XN le modèle entier de cette courbe donné par l'interprétation modulaire étudiée par Deligne et Rapoport. On définit un groupe de Chow arihmétique généralisé CH(N) tel que ses éléments sont représentés par des couples (D,g) avec D un diviseur de Weil sur XN et g un courant de Green admissible pour la métrique de Poincaré. J.-B. Bost et U. Kühn ont développé, de manière indépendante, des généralisations de la théorie d'intersection arithmétique d'Arakelov qui fournissent une forme bilinéaire à valeurs réelles sur CH(N) x CH(N) dans ce cadre où la métrique est singulière. On étudie aussi une version à coefficients réels et à équivalence numérique près de CH(N), que l'on note CH(N)*.
Nous montrons dans cette thèse que les correspondances de Hecke agissent sur CH(N) et que cette action est autoadjointe par rapport à la forme bilinéaire de Bost-Kühn. Ceci permet de diagonaliser cette action sur CH(N)* et de définir ses sous-espaces propres. Ensuite nous étudions le faisceau dualisant relatif, considéré comme un élément de CH(N)*, ainsi que sa décomposition selon les sous-espaces propres. Nous calculons l'auto-intersection de la composante propre correspondante à la pointe à l'infini en utilisant des résultats d'Ulf Kühn.
L'action des opérateurs de Hecke sur les fibres spéciales de XN définit une dynamique qui preserve les points supersinguliers. Nous nous intéressons à étudier cette action sur les points supersinguliers des fibres de bonne réduction et nous calculons, à l'aide des résultats de Deuring et Eichler, la fréquence asymptotique avec laquelle un point supersingulier donné visite un autre point du même type.
Rassemusse-Genet, Gwenaëlle. "Inclusion d'algèbres de Hecke et nombres de décomposition." Paris 7, 2004. https://tel.archives-ouvertes.fr/tel-00006398.
Full textSalle, Landry. "Présentation de groupes de Galois de pro-p-extensions de corps de nombres." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/862/.
Full textIn this thesis we determine new situations where some algebraic invariants of the Galois group of a pro-p-extension of a number field can be estimated. First we consider the Galois groups of extensions with restricted ramification above the cyclotomic -extension of a number field. By class field theory, we generalize Jaulent's results on the -rank of the abelianization of such a group. Then, we make use of Chafarevitch and Koch's methods to give the number of generators and to bound the number of relations. We are led to introduce a so-called Kummer group, which gives a bound of the defect of a local-global principle, and we find some sufficient conditions to annihilate it. In the second part, we intend to find some new mild pro-p-groups : such groups, which have been studied in an arithmetical setting by Labute, have cohomological dimension lower than 2. We generalize results by Wingberg on groups with restricted ramification and prescribed decomposition. In particular, such groups are exhibited in the case of mixed ramification. The method applies as well in the case of function fields. In the last part we focus on the case p=2 with an imaginary quadratic field as a base field. First we generalize results of Ferrero and Kida on Iwasawa invariants to the case of tamely ramified extensions. Then we give, in some special cases, a presentation of the Galois group of the maximal S-ramified pro-2-extension over the cyclotomic-extension of the base field, using a method of Mizusawa
Duverney, Daniel. "Approximation diophantienne et irrationalité de la somme de certaines séries de nombres rationnels." Lille 1, 1993. http://www.theses.fr/1993LIL10089.
Full textLe, Yaouanc Erwan. "Problèmes de type Kummer-Vandiver dans les corps de fonctions." Caen, 2006. http://www.theses.fr/2006CAEN2067.
Full textLet us fix a prime number p. The famous conjecture of Vandiver predicts the nullity of the p-Sylow of the class group of the maximum totally real subfield of the pth cyclotomic number field. We study here analogues of this conjecture within the framework of the function fields over a finite field, or in other words, in positive characteristic. We recall in a first part the construction of the zeta functions of the functions fields over a finite field, then the construction of cyclotomic function fields. In a second part, we develop arithmetic technics specific to function fields. In particular, the use of Bernoulli's numbers enables us to transform the conjectures of algebraic nature, i. E. Concerning the fields, to conjectures of arithmetic nature, i. E. Formulated in terms of polynomials and numbers. This enables us, by the case of the quadratic fields to show the disability of a strong version of the analogue of the conjecture of Vandiver. We then state the conjecture of Goss that is a shrewd analogue of the conjecture of Vandiver which deals with to the components isotypic of the group of class. In a last part, we show that this conjecture is expressed in a simple and natural way within the framework of the Iwasawa's theory