Academic literature on the topic 'Théorie du contrôle géométrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Théorie du contrôle géométrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Théorie du contrôle géométrique"
Jonckheere, Edmond, and Pascal Ray. "Contrôle du trafic sur les réseaux à géométrie hyperbolique. Vers une théorie géométrique de la sécurité de l'acheminement de l'information." Journal Européen des Systèmes Automatisés 37, no. 2 (February 2003): 145–59. http://dx.doi.org/10.3166/jesa.37.145-159.
Full textSaby, Nicolas. "Théorie d'Iwasawa Géométrique: Un Théorème de Comparaison." Journal of Number Theory 59, no. 2 (August 1996): 225–47. http://dx.doi.org/10.1006/jnth.1996.0096.
Full textBouche, Daniel. "Théorie géométrique de la diffraction et réciprocité." Annales des Télécommunications 46, no. 7-8 (July 1991): 382–87. http://dx.doi.org/10.1007/bf02999409.
Full textBERGINC, G. "THÉORIE GÉOMÉTRIQUE DE LA DIFFRACTION EN ACOUSTIQUE SOUS-MARINE." Le Journal de Physique Colloques 51, no. C2 (February 1990): C2–367—C2–377. http://dx.doi.org/10.1051/jphyscol:1990288.
Full textDucrot, Vincent, and Pascal Frey. "Contrôle de l'approximation géométrique d'une interface par une métrique anisotrope." Comptes Rendus Mathematique 345, no. 9 (November 2007): 537–42. http://dx.doi.org/10.1016/j.crma.2007.10.008.
Full textCoulouvrat, François. "Théorie géométrique non linéaire de la diffraction en zone d'ombre." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 325, no. 2 (July 1997): 69–75. http://dx.doi.org/10.1016/s1251-8069(97)83248-4.
Full textBonnet, C., and S. Cherraf. "Faiblesses de la « théorie unifiée » du contrôle postural." Neurophysiologie Clinique/Clinical Neurophysiology 42, no. 6 (December 2012): 390. http://dx.doi.org/10.1016/j.neucli.2012.09.017.
Full textBonnard, Bernard, and Emmanuel Trélat. "Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 179–222. http://dx.doi.org/10.1051/cocv:2002008.
Full textMillon, Célia, Arnaud Vanhoye, and Anne-Françoise Obaton. "Ultrasons laser pour la détection de défauts sur pièces de fabrication additive métallique." Photoniques, no. 94 (November 2018): 34–37. http://dx.doi.org/10.1051/photon/20189434.
Full textVelloso1, João. "Le contrôle plurinormatif des gangs de rue." Criminologie 49, no. 1 (April 18, 2016): 153–78. http://dx.doi.org/10.7202/1036198ar.
Full textDissertations / Theses on the topic "Théorie du contrôle géométrique"
Lazrag, Ayadi. "Théorie de contrôle et systèmes dynamiques." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4060/document.
Full textThis thesis is devided into three parts. In the first part we begin by describing some well known results in geometric control theory such as the Chow Rashevsky Theorem, the Kalman rank condition, the End-Point Mapping and the linear test. Moreover, we define and study briefly local controllability around a reference control at first and second order. In the second part we provide an elementary proof of the Franks lemma for geodesic flows using basic tools of geometric control theory. In the last part, given a compact Riemannian manifold, we prove a uniform Franks' lemma at second order for geodesic flows and apply the result in persistence theory. In this part we introduce with more details notions of local controllability at first and second order. In fact, we provide a second order controllability result whose proof is long and technical
Matei, Cornel-Marius. "Comparaison entre les approches statistique et géométrique dans la détection des détection des défaillances." Lille 1, 2000. http://www.theses.fr/2000LIL10125.
Full textHafassa, Boutheina. "Deux problèmes de contrôle géométrique : holonomie horizontale et solveur d'esquisse." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS017/document.
Full textWe study two problems arising from geometric control theory. The Problem I consists of extending the concept of horizontal holonomy group for affine manifolds. More precisely, we consider a smooth connected finite-dimensional manifold M, an affine connection ∇ with holonomy group H∇ and ∆ a smooth completely non integrable distribution. We define the ∆-horizontal holonomy group H∆∇ as the subgroup of H∇ obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set elementary properties of H∆∇ and show how to study it using the rolling formalism. In particular, it is shown that H∆∇ is a Lie group. Moreover, we study an explicit example where M is a free step-two homogeneous Carnot group with m≥2 generators, and ∇ is the Levi-Civita connection associated to a Riemannian metric on M, and show in this particular case that H∆∇ is compact and strictly included in H∇ as soon as m≥3. The Problem II is studying the modeling of the problem of solver sketch. This problem is one of the steps of a CAD/CAM software. Our goal is to achieve a well founded mathematical modeling and systematic the problem of solver sketch. The next step is to understand the convergence of the algorithm, to improve the results and to expand the functionality. The main idea of the algorithm is to replace first the points of the space of spheres by displacements (elements of the group) and then use a Newton's method on Lie groups obtained. In this thesis, we classified the possible displacements of the groups using the theory of Lie groups. In particular, we distinguished three sets, each set containing an object type: the first one is the set of points, denoted Points, the second is the set of lines, denoted Lines, and the third is the set of circles and lines, we note that ∧. For each type of object, we investigated all the possible movements of groups, depending on the desired properties. Finally, we propose to use the following displacement of groups for the displacement of points, the group of translations, which acts transitively on Lines ; for the lines, the group of translations and rotations, which is 3-dimensional and acts transitively (globally but not locally) on Lines ; on lines and circles, the group of anti-translations, rotations and dilations which has dimension 4 and acts transitively (globally but not locally) on ∧
Harrivel, Dikanaina. "Théorie des champs : approche multisymplectique de la quantification, théorie perturbative et application." Phd thesis, Université d'Angers, 2005. http://tel.archives-ouvertes.fr/tel-00011761.
Full textNous nous interessons tout d'abord à l'équation linéaire et nous proposons une description multisymplectique de la quantification canonique par le biais d'une representation des symétries, de la quantification par deformation et enfin nous introduisons la notion de quatification par déformation multisymplectique.
Ensuite nous traitons le champ en interaction. Nous construisons dans un premier temps des observables sous la forme de séries sur les arbres plans puis nous montrons comment elles peuvent être reliées aux séries de Butcher. Enfin nous voyons comment appliquer nos résultats à la théorie du contrôle.
Pasillas-Lépine, William. "Systèmes de contact et structures de Goursat : Théorie et application au contrôle des systèmes mécaniques non holonomes." Rouen, 2000. http://www.theses.fr/2000ROUES025.
Full textIn the first part of this Ph. D. Thesis, we give necessary and sufficient conditions for a Pfaffian system to be locally equivalent to the canonical contact system on the jet space Jⁿ (R, Rm). Those conditions, which are both geometric and intrinsic, can be checked explicitly and extend in a natural way classical characterizations of certain contact systems obtained by Darboux, Cartan, Bryant and Murray. When our regularity conditions does not hold, we show that Pfaffian system can nevertheless be converted into a normal form that generalizes that introduced by Kumpera and Ruiz in their work on Goursat structures. In the second part, we introduce a new local invariant for Goursat structures. This invariant, called the singularity type, contains an important part of the local geometry of Goursat structures. For example, the growth vector and abnormal curves of any Goursat structure are determined by the singularity type. We also show that any Goursat structure is locally equivalent to the n-trailer system, considered in a neighbourhood of a well-chosen point of its configuration space. In the third part, we apply our results on Goursat structures to the nonholonomic motion planning problem for the n-trailer system in a neighbourhood of a singular configuration. In our study, we also show that any Goursat structure admits locally a pair of generators that span a nilpotent Lie algebra
Picot, Gautier. "Contrôle optimal géométrique et numérique appliqué au problème de transfert Terre-Lune." Thesis, Dijon, 2010. http://www.theses.fr/2010DIJOS067/document.
Full textThis PhD thesis provides a numerical study of space trajectories in the Earth-Moon system when low-thrust is applied. Our computations are based on fundamental results from geometric control theory. The spacecraft's motion is modelled by the equations of the controlled restricted three-body problem. We focus on minimizing energy cost and transfer time. Optimal trajectories are found among a set of extremal curves, solutions of the Pontryagin's maximum principle, which can be computed solving a shooting equation thanks to a Newton algorithm. In this framework, initial conditions are found using homotopic methods or studying the linearized control system. We check local optimality of the trajectories using the second order optimality conditions related to the concept of conjugate points. In the case of the energy minimization problem, we also describe the principle of approximating Earth-Moon optimal transfers by concatening optimal keplerian trajectories around The Earth and the Moon and an energy-minimal solution of the linearized system in the neighbourhood of the equilibrium point L1
Jeannin, Pierre. "Contrôle des courbes et surfaces rationnelles par vecteurs massiques." Lille 1, 1988. http://www.theses.fr/1988LIL10111.
Full textSigal-Pauchard, Marie. "Application de la théorie de l'optimisation à certains problèmes de relativité générale." Rouen, 1986. http://www.theses.fr/1986ROUES004.
Full textTrélat, Emmanuel. "Etude asymptotique et transcendance de la fonction valeur en contrôle optimal. Catégorie log-exp en géométrie sous-riemannienne dans le cas Martinet." Dijon, 2000. http://www.theses.fr/2000DIJOS076.
Full textNowicki, Marcin. "Feedback linearization of mechanical control systems Geometry and flatness of m-crane systems A classification of feedback linearizable mechanical systems with 2 degrees of freedom." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR15.
Full textThis thesis is devoted to a study of mechanical control systems, which are defined in local coordinates x = (x¹, . . . , xⁿ) on a smooth configuration manifold Q. They take the form of second-order differential equations¹ … where…are the Christoffel symbols corresponding to Coriolis and centrifugal terms, e(x) is an uncontrolled vector field on Q representing the influence of external positional forces acting on the system (e.g. gravitational or elasticity), and … are controlled vector fields in Q. Equivalently, a mechanical control system can be described by a first-order system on the tangent bundle TQ which is the state space of the system using coordinates (x,y) = (x¹, ..., xⁿ, y¹, ..., yⁿ) : … The main problem considered in this thesis is mechanical feedback linearization (shortly MF-linearization) by applying to the mechanical system the following transformations : (i) changes of coordinates given by diffeomorphisms … (ii) mechanical feedback transformations, denoted (α,β,γ), of the form … such that the transformed system is linear and mechanica
Books on the topic "Théorie du contrôle géométrique"
Hecquard-Théron, Maryvonne. Solidarités, perspectives juridiques: Théorie des actes et du contrôle des institutions publiques, 3 et 4 mars 2008. Toulouse: Presses de l'université des sciences sociales de Toulouse, 2009.
Find full textDeluzurieux, Alain. Cours d'électronique numérique et échantillonnée: BTS, IUT, Écoles d'ingénieurs. Paris: Eyrolles, 1991.
Find full textLe suivi du respect des droits de l'homme au sein du Conseil de l'Europe: Contribution à la théorie du contrôle international. Paris: Éditions Pedone, 2012.
Find full textMartin, Lynn Rona M. L' influence de la théorie personnelle des déterminants du comportement, du lieu de contrôle, et du sexe sur l'attitude envers l'homosexualité. Sudbury, Ont: Département de psychologie, Université Laurentienne, 1998.
Find full text1956-, Huston Geoff, ed. Quality of service: Delivering QoS on the Internet and in corporate networks. New York: Wiley, 1998.
Find full textE, Witten, ed. Lecture notes on Chern-Simons-Witten theory. Singapore: World Scientific, 2001.
Find full textBook chapters on the topic "Théorie du contrôle géométrique"
"Contrôle ou participation." In La théorie du chaos en images, 134. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1-089.
Full text"Contrôle ou participation." In La théorie du chaos en images, 134. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2358-1.c089.
Full text"4.5 La relativité générale, une théorie géométrique." In Voyage dans les mathématiques de l'espace-temps, 104–6. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2278-2-024.
Full text"4.5 La relativité générale, une théorie géométrique." In Voyage dans les mathématiques de l'espace-temps, 104–6. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2278-2.c024.
Full text"2. Applications lipschitziennes et théorie géométrique de la mesure." In Analyse dans les espaces métriques, 107–224. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2257-7-004.
Full text"2. Applications lipschitziennes et théorie géométrique de la mesure." In Analyse dans les espaces métriques, 107–224. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2257-7.c004.
Full textDressen, Marnix. "6. Autonomie et contrôle, terminologie et relations." In La théorie de la régulation sociale de Jean-Daniel Reynaud, 89–101. La Découverte, 2003. http://dx.doi.org/10.3917/dec.terss.2003.01.0089.
Full textChanial, Philippe. "Ce que donner aux pauvres veut dire. Théorie du don et protection sociale." In AEMO, AED : contrôle social des pauvres ?, 281–98. Érès, 2020. http://dx.doi.org/10.3917/eres.leboy.2020.01.0281.
Full textKOROLIOUK, Dimitri, and Vladimir S. KOROLIUK. "Approximation de la diffusion des systèmes et réseaux de files d’attente." In Théorie des files d’attente 1, 75–110. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9001.ch3.
Full textBorzeix, Anni. "12. Autonomie et contrôle à l'épreuve d'une « rationalité externe »." In La théorie de la régulation sociale de Jean-Daniel Reynaud, 197–206. La Découverte, 2003. http://dx.doi.org/10.3917/dec.terss.2003.01.0197.
Full text