Journal articles on the topic 'Theory, Machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Theory, Machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CHASE, HUNTER, and JAMES FREITAG. "MODEL THEORY AND MACHINE LEARNING." Bulletin of Symbolic Logic 25, no. 03 (2019): 319–32. http://dx.doi.org/10.1017/bsl.2018.71.
Full textPetrova, O., and K. Bobriekhova. "DEVELOPING ADISTANCECOURSE «THEORY OF SYSTEMSIN MACHINE LEARNING PROBLEMS»." Transactions of Kremenchuk Mykhailo Ostrohradskyi National University 6 (December 27, 2019): 54–59. http://dx.doi.org/10.30929/1995-0519.2019.6.54-59.
Full textHuang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine: Theory and applications." Neurocomputing 70, no. 1-3 (2006): 489–501. http://dx.doi.org/10.1016/j.neucom.2005.12.126.
Full textTze-Leung Lai and S. Yakowitz. "Machine learning and nonparametric bandit theory." IEEE Transactions on Automatic Control 40, no. 7 (1995): 1199–209. http://dx.doi.org/10.1109/9.400491.
Full textVanchurin, Vitaly. "Toward a theory of machine learning." Machine Learning: Science and Technology 2, no. 3 (2021): 035012. http://dx.doi.org/10.1088/2632-2153/abe6d7.
Full textJackson, A. H. "Machine learning." Expert Systems 5, no. 2 (1988): 132–50. http://dx.doi.org/10.1111/j.1468-0394.1988.tb00341.x.
Full textKhare, Ashish, Moongu Jeon, Ishwar K. Sethi, and Benlian Xu. "Machine Learning Theory and Applications for Healthcare." Journal of Healthcare Engineering 2017 (2017): 1–2. http://dx.doi.org/10.1155/2017/5263570.
Full textTanaka, Toshiyuki. "Mean-field theory of Boltzmann machine learning." Physical Review E 58, no. 2 (1998): 2302–10. http://dx.doi.org/10.1103/physreve.58.2302.
Full textE, Weinan. "Machine Learning: Mathematical Theory and Scientific Applications." Notices of the American Mathematical Society 66, no. 11 (2019): 1. http://dx.doi.org/10.1090/noti1994.
Full textBianco, Michael J., Peter Gerstoft, James Traer, et al. "Machine learning in acoustics: Theory and applications." Journal of the Acoustical Society of America 146, no. 5 (2019): 3590–628. http://dx.doi.org/10.1121/1.5133944.
Full textDing, Shifei, Han Zhao, Yanan Zhang, Xinzheng Xu, and Ru Nie. "Extreme learning machine: algorithm, theory and applications." Artificial Intelligence Review 44, no. 1 (2013): 103–15. http://dx.doi.org/10.1007/s10462-013-9405-z.
Full textHerrera-Ibatá, Diana M. "Machine Learning and Perturbation Theory Machine Learning (PTML) in Medicinal Chemistry, Biotechnology, and Nanotechnology." Current Topics in Medicinal Chemistry 21, no. 7 (2021): 649–60. http://dx.doi.org/10.2174/1568026621666210121153413.
Full textHoward Miller, Alfred. "Using unsupervised machine learning to model tax practice learning theory." International Journal of Engineering & Technology 7, no. 2.4 (2018): 109. http://dx.doi.org/10.14419/ijet.v7i2.4.13019.
Full textSuppes, Patrick, and Michael Böttner. "Robotic machine learning of anaphora." Robotica 16, no. 4 (1998): 425–31. http://dx.doi.org/10.1017/s0263574798000022.
Full textLim, Daniel. "Philosophy through Machine Learning." Teaching Philosophy 43, no. 1 (2020): 29–46. http://dx.doi.org/10.5840/teachphil202018116.
Full textBleidorn, Wiebke, and Christopher James Hopwood. "Using Machine Learning to Advance Personality Assessment and Theory." Personality and Social Psychology Review 23, no. 2 (2018): 190–203. http://dx.doi.org/10.1177/1088868318772990.
Full textAi, Lun, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, and Ute Schmid. "Beneficial and harmful explanatory machine learning." Machine Learning 110, no. 4 (2021): 695–721. http://dx.doi.org/10.1007/s10994-020-05941-0.
Full textMolina, Mario, and Filiz Garip. "Machine Learning for Sociology." Annual Review of Sociology 45, no. 1 (2019): 27–45. http://dx.doi.org/10.1146/annurev-soc-073117-041106.
Full textProcaccia, Arieal D. "Towards a theory of incentives in machine learning." ACM SIGecom Exchanges 7, no. 2 (2008): 1–5. http://dx.doi.org/10.1145/1399589.1399595.
Full textAlzubi, Jafar, Anand Nayyar, and Akshi Kumar. "Machine Learning from Theory to Algorithms: An Overview." Journal of Physics: Conference Series 1142 (November 2018): 012012. http://dx.doi.org/10.1088/1742-6596/1142/1/012012.
Full textForeman, Sam, Joel Giedt, Yannick Meurice, and Judah Unmuth-Yockey. "RG-inspired machine learning for lattice field theory." EPJ Web of Conferences 175 (2018): 11025. http://dx.doi.org/10.1051/epjconf/201817511025.
Full textYakowitz, S., and J. Mai. "Methods and theory for off-line machine learning." IEEE Transactions on Automatic Control 40, no. 1 (1995): 161–65. http://dx.doi.org/10.1109/9.362878.
Full textCoqueret, Guillaume. "Machine Learning in Finance: From Theory to Practice." Quantitative Finance 21, no. 1 (2020): 9–10. http://dx.doi.org/10.1080/14697688.2020.1828609.
Full textChen, Ziheng, and Hongshik Ahn. "Item Response Theory Based Ensemble in Machine Learning." International Journal of Automation and Computing 17, no. 5 (2020): 621–36. http://dx.doi.org/10.1007/s11633-020-1239-y.
Full textErtuğrul, Ömer Faruk, and Mehmet Emin Tağluk. "A novel machine learning method based on generalized behavioral learning theory." Neural Computing and Applications 28, no. 12 (2016): 3921–39. http://dx.doi.org/10.1007/s00521-016-2314-8.
Full textJin, Chi, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. "On Nonconvex Optimization for Machine Learning." Journal of the ACM 68, no. 2 (2021): 1–29. http://dx.doi.org/10.1145/3418526.
Full textSpagnolo, Nicolò, Alessandro Lumino, Emanuele Polino, Adil S. Rab, Nathan Wiebe, and Fabio Sciarrino. "Machine Learning for Quantum Metrology." Proceedings 12, no. 1 (2019): 28. http://dx.doi.org/10.3390/proceedings2019012028.
Full textRzeszótko, Jarosław, and Sinh Hoa Nguyen. "Machine Learning for Traffic Prediction." Fundamenta Informaticae 119, no. 3-4 (2012): 407–20. http://dx.doi.org/10.3233/fi-2012-745.
Full textAmari, Shun-ichi, and Noboru Murata. "Statistical Theory of Learning Curves under Entropic Loss Criterion." Neural Computation 5, no. 1 (1993): 140–53. http://dx.doi.org/10.1162/neco.1993.5.1.140.
Full textAn, Chang. "Student Status Supervision in Ideological and Political Machine Teaching Based on Machine Learning." E3S Web of Conferences 275 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202127503028.
Full textAmali, Said, Nour-eddine EL Faddouli, and Ali Boutoulout. "Machine Learning and Graph Theory to Optimize Drinking Water." Procedia Computer Science 127 (2018): 310–19. http://dx.doi.org/10.1016/j.procs.2018.01.127.
Full textElacio, Alexen A. "Machine Learning Integration of Herzberg’s Theory using C4.5 Algorithm." International Journal of Advanced Trends in Computer Science and Engineering 9, no. 1.1 S I (2020): 57–63. http://dx.doi.org/10.30534/ijatcse/2020/1191.12020.
Full textBlay, Vincent, Toshiyuki Yokoi, and Humbert González-Díaz. "Perturbation Theory–Machine Learning Study of Zeolite Materials Desilication." Journal of Chemical Information and Modeling 58, no. 12 (2018): 2414–19. http://dx.doi.org/10.1021/acs.jcim.8b00383.
Full textLópez Kleine, Liliana. "Principles and Theory for Data Mining and Machine Learning." Journal of the Royal Statistical Society: Series A (Statistics in Society) 173, no. 3 (2010): 691–92. http://dx.doi.org/10.1111/j.1467-985x.2010.00646_3.x.
Full textVeronese, Elisa, Umberto Castellani, Denis Peruzzo, Marcella Bellani, and Paolo Brambilla. "Machine Learning Approaches: From Theory to Application in Schizophrenia." Computational and Mathematical Methods in Medicine 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/867924.
Full textZobeiry, Navid, Johannes Reiner, and Reza Vaziri. "Theory-guided machine learning for damage characterization of composites." Composite Structures 246 (August 2020): 112407. http://dx.doi.org/10.1016/j.compstruct.2020.112407.
Full textBrehmer, Johann, Kyle Cranmer, Irina Espejo, et al. "Constraining effective field theories with machine learning." EPJ Web of Conferences 245 (2020): 06026. http://dx.doi.org/10.1051/epjconf/202024506026.
Full textHopkins, Richard. "David Kolb's Experiential Learning Machine." Journal of Phenomenological Psychology 24, no. 1 (1993): 46–62. http://dx.doi.org/10.1163/156916293x00035.
Full textMoeslund, Thomas B., Sergio Escalera, Gholamreza Anbarjafari, Kamal Nasrollahi, and Jun Wan. "Statistical Machine Learning for Human Behaviour Analysis." Entropy 22, no. 5 (2020): 530. http://dx.doi.org/10.3390/e22050530.
Full textGolden, Richard M. "Adaptive Learning Algorithm Convergence in Passive and Reactive Environments." Neural Computation 30, no. 10 (2018): 2805–32. http://dx.doi.org/10.1162/neco_a_01117.
Full textShi, Lei, Xin Ming Ma, and Xiao Hong Hu. "Combination with Machine Learning Algorithms for the Classification in E-Bussiness." Advanced Materials Research 230-232 (May 2011): 625–28. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.625.
Full textMohr, Felix, Marcel Wever, Alexander Tornede, and Eyke Hullermeier. "Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence 43, no. 9 (2021): 3055–66. http://dx.doi.org/10.1109/tpami.2021.3056950.
Full textDeist, Timo M., Andrew Patti, Zhaoqi Wang, David Krane, Taylor Sorenson, and David Craft. "Simulation-assisted machine learning." Bioinformatics 35, no. 20 (2019): 4072–80. http://dx.doi.org/10.1093/bioinformatics/btz199.
Full textBezerra, Arthur Coelho, and Marco Antônio de Almeida. "Rage against the machine learning." Brazilian Journal of Information Science 14, no. 2 Abr-Jun (2020): 06–23. http://dx.doi.org/10.36311/1981-1640.2020.v14n2.02.p6.
Full textBrumen, Boštjan, Aleš Černezel, and Leon Bošnjak. "Overview of Machine Learning Process Modelling." Entropy 23, no. 9 (2021): 1123. http://dx.doi.org/10.3390/e23091123.
Full textVinterbo, S. A. "Privacy: a machine learning view." IEEE Transactions on Knowledge and Data Engineering 16, no. 8 (2004): 939–48. http://dx.doi.org/10.1109/tkde.2004.31.
Full textEt. al., Zakoldaev D. A. ,. "Machine Learning Methods Performance Evaluation*." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 2664–66. http://dx.doi.org/10.17762/turcomat.v12i2.2284.
Full textEt. al., Mathew Chacko,. "Cyber-Physical Quality Systems in Manufacturing." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 2006–18. http://dx.doi.org/10.17762/turcomat.v12i2.1805.
Full textRan, Zhi-Yong, and Bao-Gang Hu. "Parameter Identifiability in Statistical Machine Learning: A Review." Neural Computation 29, no. 5 (2017): 1151–203. http://dx.doi.org/10.1162/neco_a_00947.
Full textRezek, I., D. S. Leslie, S. Reece, et al. "On Similarities between Inference in Game Theory and Machine Learning." Journal of Artificial Intelligence Research 33 (October 23, 2008): 259–83. http://dx.doi.org/10.1613/jair.2523.
Full text