Journal articles on the topic 'Therapeutic enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Therapeutic enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Städler, Brigitte, and Alexander N. Zelikin. "Enzyme prodrug therapies and therapeutic enzymes." Advanced Drug Delivery Reviews 118 (September 2017): 1. http://dx.doi.org/10.1016/j.addr.2017.10.006.
Full textZhu, Chen-Yuan, Fei-Long Li, Ye-Wang Zhang, Rahul K. Gupta, Sanjay K. S. Patel, and Jung-Kul Lee. "Recent Strategies for the Immobilization of Therapeutic Enzymes." Polymers 14, no. 7 (2022): 1409. http://dx.doi.org/10.3390/polym14071409.
Full textNoten, J. B. G. M., W. M. A. Verhoeven, S. Tuinier, and D. Touw. "Therapeutic drug monitoring." Acta Neuropsychiatrica 11, no. 1 (1999): 15–16. http://dx.doi.org/10.1017/s0924270800036309.
Full textBax, Bridget E. "Erythrocytes as Carriers of Therapeutic Enzymes." Pharmaceutics 12, no. 5 (2020): 435. http://dx.doi.org/10.3390/pharmaceutics12050435.
Full textDahikar, S. B., and S. A. Bhutada. "DNA Repair Enzymes as Therapeutic Agents: a Review." Mikrobiolohichnyi Zhurnal 84, no. 1 (2021): 65–71. http://dx.doi.org/10.15407/microbiolj84.01.065.
Full textAmber, S. Gad. "Some Important Therapeutic Enzymes and their Uses." Chemistry Research Journal 5, no. 3 (2020): 165–72. https://doi.org/10.5281/zenodo.12589362.
Full textZbar, Nedhaal Suhail. "A Review Article: Protein Engineering of Therapeutic Enzymes." International Journal for Research in Applied Sciences and Biotechnology 9, no. 1 (2022): 140–51. http://dx.doi.org/10.31033/ijrasb.9.1.16.
Full textWiederschain, G. Ya, and M. Baldry. "Directory of therapeutic enzymes." Biochemistry (Moscow) 71, no. 11 (2006): 1289–90. http://dx.doi.org/10.1134/s0006297906110162.
Full textAlisi, Anna, Sara Tomaselli, Clara Balsano, and Angela Gallo. "Hepatitis C virus therapeutics: Editing enzymes promising therapeutic targets?" Hepatology 54, no. 2 (2011): 742. http://dx.doi.org/10.1002/hep.24409.
Full textSioud, Mouldy, and Marianne Leirdal. "Therapeutic RNA and DNA enzymes." Biochemical Pharmacology 60, no. 8 (2000): 1023–26. http://dx.doi.org/10.1016/s0006-2952(00)00395-6.
Full textMaximov, V., V. Reukov, and A. A. Vertegel. "Targeted delivery of therapeutic enzymes." Journal of Drug Delivery Science and Technology 19, no. 5 (2009): 311–20. http://dx.doi.org/10.1016/s1773-2247(09)50066-4.
Full textKokotos, George. "Lipolytic enzymes as therapeutic targets." European Journal of Lipid Science and Technology 110, no. 12 (2008): 1081–83. http://dx.doi.org/10.1002/ejlt.200800249.
Full textCruz, Maria Eugénia Meirinhos, Maria Luísa Corvo, Maria Bárbara Martins, Sandra Simões, and Maria Manuela Gaspar. "Liposomes as Tools to Improve Therapeutic Enzyme Performance." Pharmaceutics 14, no. 3 (2022): 531. http://dx.doi.org/10.3390/pharmaceutics14030531.
Full textSony, Sharlet E., E. Muralinath, Naidu K. Mohan, et al. "Understanding Enzyme Inhibitors: Their Dual Role as Poisons and Drugs." Research and Reviews: Journal of Forensic Nursing 2, no. 2 (2024): 18–25. https://doi.org/10.5281/zenodo.12623888.
Full textQi, Hongzhao, Jie Yang, Jie Yu, et al. "Glucose-responsive nanogels efficiently maintain the stability and activity of therapeutic enzymes." Nanotechnology Reviews 11, no. 1 (2022): 1511–24. http://dx.doi.org/10.1515/ntrev-2022-0095.
Full textEckman, E. A., та C. B. Eckman. "Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention". Biochemical Society Transactions 33, № 5 (2005): 1101–5. http://dx.doi.org/10.1042/bst0331101.
Full textGubergrits, N. B., N. V. Byelyayeva, A. Y. Klochkov, G. М. Lukashevish, and P. G. Fomenko. "Advantages and therapeutic capacities of digestive enzymes preparations of non-animal origin." Bulletin of the Club of Pancreatologists 39, no. 1 (2018): 16–21. http://dx.doi.org/10.33149/vkp.2018.01.03.
Full textHadley, K., D. Lindemann, and P. Sato. "Heterologous immunoprecipitates also have potential for therapeutic use." Biotechnology and Applied Biochemistry 9, no. 1 (1987): 1–11. http://dx.doi.org/10.1111/j.1470-8744.1987.tb00457.x.
Full textLópez-Cortés, Georgina I., Miryam Palacios-Pérez, Margarita M. Hernández-Aguilar, Hannya F. Veledíaz, and Marco V. José. "Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets." Vaccines 11, no. 1 (2023): 174. http://dx.doi.org/10.3390/vaccines11010174.
Full textZhang, Weisheng, Min Chen, David B. West, and Anthony F. Purchio. "Visualizing Drug Efficacy In Vivo." Molecular Imaging 4, no. 2 (2005): 153535002005051. http://dx.doi.org/10.1162/15353500200505109.
Full textP, Keerthi, Lathif AK, and Nesaghi Amuthavel. "Enzyme Technology for Drug Discovery." Journal of Chemical Engineering & Process Technology 14, no. 14 (2023): 8. https://doi.org/10.35248/2157-7048.23.14.471.
Full textAzmi, Wamik, and Shabnam Chaudhary. "ARTHROBACTER AS BIOFACTORY OF THERAPEUTIC ENZYMES." International Journal of Pharmacy and Pharmaceutical Sciences 10, no. 11 (2018): 1. http://dx.doi.org/10.22159/ijpps.2018v10i11.25933.
Full textPrashith Kekuda, T. R., D. Lavanya, and Rao Pooja. "Lichens as promising resources of enzyme inhibitors: A review." Journal of Drug Delivery and Therapeutics 9, no. 2-s (2019): 665–76. http://dx.doi.org/10.22270/jddt.v9i2-s.2546.
Full textAliyev, Tofiq, and Səbrin Abdullayeva. "The Role of Enzymes in Modern Medicine: Advances, Applications, and Future Directions." Luminis Applied Science and Engineering 2, no. 1 (2025): 72–76. https://doi.org/10.69760/lumin.20250001012.
Full textHossam Abdelmonem, Basma, Noha M. Abdelaal, Eman K. E. Anwer, et al. "Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review." Biomedicines 12, no. 7 (2024): 1467. http://dx.doi.org/10.3390/biomedicines12071467.
Full textKaplan, Jeffrey B. "Therapeutic Potential of Biofilm-Dispersing Enzymes." International Journal of Artificial Organs 32, no. 9 (2009): 545–54. http://dx.doi.org/10.1177/039139880903200903.
Full textDean, Scott N., Kendrick B. Turner, Igor L. Medintz, and Scott A. Walper. "Targeting and delivery of therapeutic enzymes." Therapeutic Delivery 8, no. 7 (2017): 577–95. http://dx.doi.org/10.4155/tde-2017-0020.
Full textTandon, Siddhi, Anjali Sharma, Shikha Singh, Sumit Sharma, and Saurabh Jyoti Sarma. "Therapeutic enzymes: Discoveries, production and applications." Journal of Drug Delivery Science and Technology 63 (June 2021): 102455. http://dx.doi.org/10.1016/j.jddst.2021.102455.
Full textHaeggström, Jesper Z. "Leukotriene biosynthetic enzymes as therapeutic targets." Journal of Clinical Investigation 128, no. 7 (2018): 2680–90. http://dx.doi.org/10.1172/jci97945.
Full textNakamura, Hiroyuki. "Ceramide metabolism enzymes as therapeutic targets." Proceedings for Annual Meeting of The Japanese Pharmacological Society 96 (2022): 1—B—S09–4. http://dx.doi.org/10.1254/jpssuppl.96.0_1-b-s09-4.
Full textCouture, Frédéric. "Therapeutic Targeting of the Proteolytic Enzymes." International Journal of Molecular Sciences 24, no. 1 (2022): 521. http://dx.doi.org/10.3390/ijms24010521.
Full textMeghwanshi, Gautam Kumar, Navpreet Kaur, Swati Verma, et al. "Enzymes for pharmaceutical and therapeutic applications." Biotechnology and Applied Biochemistry 67, no. 4 (2020): 586–601. http://dx.doi.org/10.1002/bab.1919.
Full textMishra, Abhinav P., Suresh Chandra, Ruchi Tiwari, Ashish Srivastava, and Gaurav Tiwari. "Therapeutic Potential of Prodrugs Towards Targeted Drug Delivery." Open Medicinal Chemistry Journal 12, no. 1 (2018): 111–23. http://dx.doi.org/10.2174/1874104501812010111.
Full textVerstovsek, Srdan. "Therapeutic potential of JAK2 inhibitors." Hematology 2009, no. 1 (2009): 636–42. http://dx.doi.org/10.1182/asheducation-2009.1.636.
Full textBhide, Yogesh S., Jitendra Y. Nehete, and Rajendra S. Bhambar. "Extraction, Characterization and Therapeutic Evaluation of Seeds of Phaseolus vulgaris L. for Inhibition of Carbohydrate Uptake." INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY 13, no. 01 (2023): 105–11. http://dx.doi.org/10.25258/ijddt.13.1.16.
Full textNes, W. David, Minu Chaudhuri, and David J. Leaver. "Druggable Sterol Metabolizing Enzymes in Infectious Diseases: Cell Targets to Therapeutic Leads." Biomolecules 14, no. 3 (2024): 249. http://dx.doi.org/10.3390/biom14030249.
Full textDeng, Chao, Xianghai Li, Qianru Jin, and Deliang Yi. "Concentrically Encapsulated Dual-Enzyme Capsules for Synergistic Metabolic Disorder Redressing and Cytotoxic Intermediates Scavenging." Nanomaterials 12, no. 4 (2022): 625. http://dx.doi.org/10.3390/nano12040625.
Full textde la Fuente, Miguel, Laura Lombardero, Alfonso Gómez-González, et al. "Enzyme Therapy: Current Challenges and Future Perspectives." International Journal of Molecular Sciences 22, no. 17 (2021): 9181. http://dx.doi.org/10.3390/ijms22179181.
Full textDuskey, Jason Thomas, Federica da Ros, Ilaria Ottonelli, et al. "Enzyme Stability in Nanoparticle Preparations Part 1: Bovine Serum Albumin Improves Enzyme Function." Molecules 25, no. 20 (2020): 4593. http://dx.doi.org/10.3390/molecules25204593.
Full textFathi, Marziyeh, Azam Safary, and Jaleh Barar. "Therapeutic impacts of enzyme-responsive smart nanobiosystems." BioImpacts 10, no. 1 (2019): 1–4. http://dx.doi.org/10.15171/bi.2020.01.
Full textSindhu, Rakesh K., Agnieszka Najda, Prabhjot Kaur, et al. "Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges." Materials 14, no. 20 (2021): 5965. http://dx.doi.org/10.3390/ma14205965.
Full textPyatakova, N. V., and I. S. Severina. "Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs." Biomeditsinskaya Khimiya 58, no. 1 (2012): 32–42. http://dx.doi.org/10.18097/pbmc20125801032.
Full textShahri, Mahdi Abedinzadeh, Paniz Shirmast, Seyed Mohammad Ghafoori, and Jade Kenneth Forwood. "Deciphering the structure of a multi-drug resistant Acinetobacter baumannii short-chain dehydrogenase reductase." PLOS ONE 19, no. 2 (2024): e0297751. http://dx.doi.org/10.1371/journal.pone.0297751.
Full textGomez-Larrauri, Ana, Upasana Das Adhikari, Marta Aramburu-Nuñez, Antía Custodia, and Alberto Ouro. "Ceramide Metabolism Enzymes—Therapeutic Targets against Cancer." Medicina 57, no. 7 (2021): 729. http://dx.doi.org/10.3390/medicina57070729.
Full textLim, Key-Hwan, and Kwang-Hyun Baek. "Deubiquitinating Enzymes as Therapeutic Targets in Cancer." Current Pharmaceutical Design 19, no. 22 (2013): 4039–52. http://dx.doi.org/10.2174/1381612811319220013.
Full textBarghout, Samir H., and Aaron D. Schimmer. "E1 Enzymes as Therapeutic Targets in Cancer." Pharmacological Reviews 73, no. 1 (2020): 1–56. http://dx.doi.org/10.1124/pharmrev.120.000053.
Full textROSSI, J., and N. SARVER. "RNA enzymes (ribozymes) as antiviral therapeutic agents." Trends in Biotechnology 8 (1990): 179–83. http://dx.doi.org/10.1016/0167-7799(90)90169-x.
Full textLópez-Jaramillo, P., and J. P. Casas. "Blockade of endothelial enzymes: new therapeutic targets." Journal of Human Hypertension 16, S1 (2002): S100—S103. http://dx.doi.org/10.1038/sj.jhh.1001353.
Full textMartins, M. B. F., A. P. V. Conçoives, J. C. Jorge, and M. E. M. Cruz. "Acylated enzymes: properties and potential therapeutic applications." European Journal of Pharmacology 183, no. 2 (1990): 401. http://dx.doi.org/10.1016/0014-2999(90)93282-u.
Full textAlmeida, Fausto, Julie M. Wolf, and Arturo Casadevall. "Virulence-Associated Enzymes of Cryptococcus neoformans." Eukaryotic Cell 14, no. 12 (2015): 1173–85. http://dx.doi.org/10.1128/ec.00103-15.
Full text