Journal articles on the topic 'Therapeutic potential of anticancer immunotoxins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Therapeutic potential of anticancer immunotoxins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Choudhary, Swati, Mrudula Mathew, and Rama S. Verma. "Therapeutic potential of anticancer immunotoxins." Drug Discovery Today 16, no. 11-12 (2011): 495–503. http://dx.doi.org/10.1016/j.drudis.2011.04.003.
Full textAhmad, Zuhaida Asra, Swee Keong Yeap, Abdul Manaf Ali, Wan Yong Ho, Noorjahan Banu Mohamed Alitheen, and Muhajir Hamid. "scFv Antibody: Principles and Clinical Application." Clinical and Developmental Immunology 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/980250.
Full textOszajca, Katarzyna, Łukasz Wieteska, Magdalena Cybula, and Janusz Szemraj. "The assessment of prokaryotic addictive modules’ activity in the context of seeking novel immunotoxins." Postępy Polskiej Medycyny i Farmacji 5 (June 26, 2017): 59–63. http://dx.doi.org/10.5604/01.3001.0011.6195.
Full textStone, Marvin J. "Immunotoxins as Potential Anticancer Agents." Baylor University Medical Center Proceedings 3, no. 4 (1990): 35–37. http://dx.doi.org/10.1080/08998280.1990.11929736.
Full textPincus, Seth H. "Therapeutic potential of anti-HIV immunotoxins." Antiviral Research 33, no. 1 (1996): 1–9. http://dx.doi.org/10.1016/s0166-3542(96)00995-3.
Full textKawakami, Koji, Oumi Nakajima, Ryuichi Morishita, and Ryozo Nagai. "Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties." Scientific World JOURNAL 6 (2006): 781–90. http://dx.doi.org/10.1100/tsw.2006.162.
Full textWeldon, John E., Laiman Xiang, Oleg Chertov, et al. "A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity." Blood 113, no. 16 (2009): 3792–800. http://dx.doi.org/10.1182/blood-2008-08-173195.
Full textNarbona, Javier, Rubén G. Gordo, Jaime Tomé-Amat та Javier Lacadena. "A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin". Cancers 15, № 4 (2023): 1114. http://dx.doi.org/10.3390/cancers15041114.
Full textBalalaeva, I. V., E. A. Sokolova, A. D. Puzhikhina, A. A. Brilkina, and S. M. Deyev. "Spheroids of HER2-Positive Breast Adenocarcinoma for Studying Anticancer Immunotoxins In Vitro." Acta Naturae 9, no. 1 (2017): 38–44. http://dx.doi.org/10.32607/20758251-2017-9-1-38-44.
Full textRuiz-de-la-Herrán, Javier, Jaime Tomé-Amat, Rodrigo Lázaro-Gorines, José G. Gavilanes та Javier Lacadena. "Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins". Toxins 11, № 10 (2019): 593. http://dx.doi.org/10.3390/toxins11100593.
Full textSanz, Laura, Raquel Ibáñez-Pérez, Patricia Guerrero-Ochoa, Javier Lacadena, and Alberto Anel. "Antibody-Based Immunotoxins for Colorectal Cancer Therapy." Biomedicines 9, no. 11 (2021): 1729. http://dx.doi.org/10.3390/biomedicines9111729.
Full textLee, Ji Won, Hyun Jung Kim, and Kyun Heo. "Therapeutic aptamers: developmental potential as anticancer drugs." BMB Reports 48, no. 4 (2015): 234–37. http://dx.doi.org/10.5483/bmbrep.2015.48.4.277.
Full textToole, Bryan, Shibnath Ghatak, and Suniti Misra. "Hyaluronan Oligosaccharides as a Potential Anticancer Therapeutic." Current Pharmaceutical Biotechnology 9, no. 4 (2008): 249–52. http://dx.doi.org/10.2174/138920108785161569.
Full textPanigrahy, Dipak, Lucy Q. Shen, Mark W. Kieran, and Arja Kaipainen. "Therapeutic potential of thiazolidinediones as anticancer agents." Expert Opinion on Investigational Drugs 12, no. 12 (2003): 1925–37. http://dx.doi.org/10.1517/13543784.12.12.1925.
Full textYing, Hua-Zhong, Chen-Huan Yu, Hao-Kun Chen, et al. "Quinonoids: Therapeutic Potential for Lung Cancer Treatment." BioMed Research International 2020 (April 7, 2020): 1–13. http://dx.doi.org/10.1155/2020/2460565.
Full textGuerrero-Ochoa, Patricia, Raquel Ibáñez-Pérez, Germán Berbegal-Pinilla, et al. "Preclinical Studies of Granulysin-Based Anti-MUC1-Tn Immunotoxins as a New Antitumoral Treatment." Biomedicines 10, no. 6 (2022): 1223. http://dx.doi.org/10.3390/biomedicines10061223.
Full textÇetinkaya, Melisa, and Yusuf Baran. "Therapeutic Potential of Luteolin on Cancer." Vaccines 11, no. 3 (2023): 554. http://dx.doi.org/10.3390/vaccines11030554.
Full textAhmed, Salman, Haroon Khan, Michael Aschner, Hamed Mirzae, Esra Küpeli Akkol, and Raffaele Capasso. "Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects." International Journal of Molecular Sciences 21, no. 16 (2020): 5622. http://dx.doi.org/10.3390/ijms21165622.
Full textBolhassani, Azam, and Farnaz Zahedifard. "Therapeutic live vaccines as a potential anticancer strategy." International Journal of Cancer 131, no. 8 (2012): 1733–43. http://dx.doi.org/10.1002/ijc.27640.
Full textTovmasyan, Artak, Romulo S. Sampaio, Mary-Keara Boss, et al. "Anticancer therapeutic potential of Mn porphyrin/ascorbate system." Free Radical Biology and Medicine 89 (December 2015): 1231–47. http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.416.
Full textNandini, Pathak, Rani Anju, Singh Chhaya, Chauhan Neha, and Singh Raj. "Fermented Foods: The Pharmacological and Anticancer Therapeutic Potential." International Journal of Zoological Investigations 08, no. 02 (2022): 613–22. http://dx.doi.org/10.33745/ijzi.2022.v08i02.075.
Full textGallagher, W. J., and M. W. Burk. "Monoclonal antibody-ricin a chain conjugates (immunotoxins): Potential therapeutic agents for human colon carcinoma." Journal of Surgical Research 40, no. 2 (1986): 159–66. http://dx.doi.org/10.1016/0022-4804(86)90118-6.
Full textLehman, H. P., U. Zangemeister-Wittke, E. J. Wawrzynczak, A. Collinson, R. Waibel, and R. A. Stahel. "Cytotoxicity and therapeutic potential of immunotoxins recognizing different antigens of small cell lung cancer." Lung Cancer 7 (January 1991): 186. http://dx.doi.org/10.1016/0169-5002(91)92044-j.
Full textBannu, Saira M., Dakshayani Lomada, Surendra Gulla, Thummala Chandrasekhar, Pallu Reddanna, and Madhava C. Reddy. "Potential Therapeutic Applications of C-Phycocyanin." Current Drug Metabolism 20, no. 12 (2020): 967–76. http://dx.doi.org/10.2174/1389200220666191127110857.
Full textHussain, Hidayat, Ivan R. Green, Muhammad Saleem, Muhammad Liaquat Raza, and Mamona Nazir. "Therapeutic Potential of Iridoid Derivatives: Patent Review." Inventions 4, no. 2 (2019): 29. http://dx.doi.org/10.3390/inventions4020029.
Full textAaghaz, Shams, Vivek Gohel, and Ahmed Kamal. "Peptides as Potential Anticancer Agents." Current Topics in Medicinal Chemistry 19, no. 17 (2019): 1491–511. http://dx.doi.org/10.2174/1568026619666190125161517.
Full textHagerty, Brendan L., Guillaume J. Pegna, Jian Xu, Chin-Hsien Tai, and Christine Alewine. "Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors." Biomolecules 10, no. 7 (2020): 973. http://dx.doi.org/10.3390/biom10070973.
Full textSzczepanek, Joanna, Monika Skorupa, and Andrzej Tretyn. "MicroRNA as a Potential Therapeutic Molecule in Cancer." Cells 11, no. 6 (2022): 1008. http://dx.doi.org/10.3390/cells11061008.
Full textMezo, Gabor, Marilena Manea, Ildiko Szabo, Borbala Vincze, and Magdolna Kovacs. "New Derivatives of GnRH as Potential Anticancer Therapeutic Agents." Current Medicinal Chemistry 15, no. 23 (2008): 2366–79. http://dx.doi.org/10.2174/092986708785909157.
Full textKamran, Sareh, Ajantha Sinniah, Mahfoudh A. M. Abdulghani, and Mohammed Abdullah Alshawsh. "Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review." Cancers 14, no. 5 (2022): 1100. http://dx.doi.org/10.3390/cancers14051100.
Full textTeixeira, Thaiz Rodrigues, Gustavo Souza dos Santos, Lorene Armstrong, Pio Colepicolo, and Hosana Maria Debonsi. "Antitumor Potential of Seaweed Derived-Endophytic Fungi." Antibiotics 8, no. 4 (2019): 205. http://dx.doi.org/10.3390/antibiotics8040205.
Full textReang, Jurnal, Prabodh Chander Sharma, Vijay Kumar Thakur, and Jaseela Majeed. "Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer." Biomolecules 11, no. 8 (2021): 1130. http://dx.doi.org/10.3390/biom11081130.
Full textAlven, Sibusiso, Xhamla Nqoro, Buhle Buyana, and Blessing A. Aderibigbe. "Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer." Pharmaceutics 12, no. 5 (2020): 406. http://dx.doi.org/10.3390/pharmaceutics12050406.
Full textLombrea, Adelina, Alexandra Denisa Scurtu, Stefana Avram, et al. "Anticancer Potential of Betulonic Acid Derivatives." International Journal of Molecular Sciences 22, no. 7 (2021): 3676. http://dx.doi.org/10.3390/ijms22073676.
Full textGovindaraj, Jayamathi. "A review on the therapeutic potential of Banana flower." Bioinformation 18, no. 4 (2022): 349–53. http://dx.doi.org/10.6026/97320630018349.
Full textKronke, M., JM Depper, WJ Leonard, ES Vitetta, TA Waldmann, and WC Greene. "Adult T cell leukemia: a potential target for ricin A chain immunotoxins." Blood 65, no. 6 (1985): 1416–21. http://dx.doi.org/10.1182/blood.v65.6.1416.bloodjournal6561416.
Full text殷, 方田. "Regulatory T Cells as Potential Therapeutic Targets for Anticancer Therapy." Advances in Clinical Medicine 12, no. 10 (2022): 9267–72. http://dx.doi.org/10.12677/acm.2022.12101340.
Full textG. Ranieri and G. Gasparini. "Angiogenesis and Angiogenesis Inhibitors: a New Potential Anticancer Therapeutic Strategy." Current Drug Target - Immune, Endocrine & Metabolic Disorders 1, no. 3 (2001): 241–53. http://dx.doi.org/10.2174/1568008013341073.
Full textCatanzaro, Elena, Cinzia Calcabrini, Eleonora Turrini, Piero Sestili, and Carmela Fimognari. "Nrf2: a potential therapeutic target for naturally occurring anticancer drugs?" Expert Opinion on Therapeutic Targets 21, no. 8 (2017): 781–93. http://dx.doi.org/10.1080/14728222.2017.1351549.
Full textKuriakose, Robin K., Rakesh C. Kukreja, and Lei Xi. "Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs." Oxidative Medicine and Cellular Longevity 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/8139861.
Full textAlshehri, Mohammed M., Javad Sharifi-Rad, Jesús Herrera-Bravo, et al. "Therapeutic Potential of Isoflavones with an Emphasis on Daidzein." Oxidative Medicine and Cellular Longevity 2021 (September 9, 2021): 1–15. http://dx.doi.org/10.1155/2021/6331630.
Full textKumar, Rajnish, Chanchal Singh, Avijit Mazumder, et al. "Synthetic Approach to Potential Anticancer Benzimidazole Derivatives: A Review." Mini-Reviews in Medicinal Chemistry 22, no. 9 (2022): 1289–304. http://dx.doi.org/10.2174/1389557521666211001122118.
Full textJin, Jun-O., Pallavi Singh Chauhan, Ananta Prasad Arukha, Vishal Chavda, Anuj Dubey, and Dhananjay Yadav. "The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles." Marine Drugs 19, no. 5 (2021): 265. http://dx.doi.org/10.3390/md19050265.
Full textFakhri, Sajad, Sadaf Abdian, Seyed Zachariah Moradi, Blake E. Delgadillo, Carmela Fimognari, and Anupam Bishayee. "Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus." Marine Drugs 20, no. 10 (2022): 625. http://dx.doi.org/10.3390/md20100625.
Full textHasan, Mohammad Raghibul, Bader Saud Alotaibi, Ziyad Mohammed Althafar, Ahmed Hussain Mujamammi, and Jafar Jameela. "An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: “Elixir of Life”." Molecules 28, no. 3 (2023): 1193. http://dx.doi.org/10.3390/molecules28031193.
Full textPalkina, Kseniia A., Daria A. Ipatova, Ekaterina S. Shakhova, Anastasia V. Balakireva, and Nadezhda M. Markina. "Therapeutic Potential of Hispidin—Fungal and Plant Polyketide." Journal of Fungi 7, no. 5 (2021): 323. http://dx.doi.org/10.3390/jof7050323.
Full textDong, Wenjuan, Hu Wang, Hailin Liu, et al. "Potential of Black Phosphorus in Immune-Based Therapeutic Strategies." Bioinorganic Chemistry and Applications 2022 (July 11, 2022): 1–18. http://dx.doi.org/10.1155/2022/3790097.
Full textLiubota, R. V., Zh P. Yakovets, R. I. Vereshchako, M. F. Anikusko, and I. I. Liubota. "Clinical significance of anticancer vaccines (literature review)." Practical oncology 4, no. 2 (2021): 14–24. http://dx.doi.org/10.22141/2663-3272.4.2.2021.238669.
Full textJo, Hyein, Kyeonghee Shim, and Dooil Jeoung. "The Potential of Senescence as a Target for Developing Anticancer Therapy." International Journal of Molecular Sciences 24, no. 4 (2023): 3436. http://dx.doi.org/10.3390/ijms24043436.
Full textMatos, Cristina P., Yasemin Yildizhan, Zelal Adiguzel, et al. "New ternary iron(iii) aminobisphenolate hydroxyquinoline complexes as potential therapeutic agents." Dalton Transactions 48, no. 24 (2019): 8702–16. http://dx.doi.org/10.1039/c9dt01193e.
Full text