Academic literature on the topic 'Thérapie CAR-T'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thérapie CAR-T.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thérapie CAR-T"
Talarmin, C., M. Mebarki, Émilie Schwartz, A. Cras, I. Madelaine, and Jérôme Larghero. "De la biologie au circuit pharmaceutique des médicaments « cellules CAR-T »." Revue de biologie médicale 349, no. 4 (August 1, 2019): 17–25. https://doi.org/10.3917/rbm.349.0017.
Full textLarghero, Jérôme, Stéphanie Decoopman, and Philippe Menasché. "La bioproduction en thérapies cellulaires : le cas des CAR-T cells par la plateforme MEARY." Annales des Mines - Réalités industrielles Novembre 2023, no. 4 (November 9, 2023): 92–94. http://dx.doi.org/10.3917/rindu1.234.0092.
Full textAlcaraz-Serna, Ana, Raphaël Porret, Lionel Trueb, Camillo Ribi, Jörg Seebach, and Yannick D. Muller. "Thérapie cellulaire CAR-T dans le traitement des maladies auto-immunes." Revue Médicale Suisse 20, no. 868 (2024): 688–93. http://dx.doi.org/10.53738/revmed.2024.20.868.688.
Full textAlcantara, Marion. "Traitement d’hémopathies malignes par des CAR T-cells." Revue de biologie médicale 349, no. 4 (August 1, 2019): 27–32. https://doi.org/10.3917/rbm.349.0027.
Full textCatros, Véronique. "Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux." médecine/sciences 35, no. 4 (April 2019): 316–26. http://dx.doi.org/10.1051/medsci/2019067.
Full textBrown, Kevin, Matthew D. Seftel, and Kevin A. Hay. "Innovations en immunothérapie anticancéreuse: thérapie par lymphocytes T porteurs de récepteurs antigéniques chimériques (cellules CAR-T)." Canadian Medical Association Journal 193, no. 42 (October 24, 2021): E1639—E1642. http://dx.doi.org/10.1503/cmaj.202907-f.
Full textCeppi, Francesco, Raffaele Renella, Manuel Diezi, Marc Ansari, Michel A. Duchosal, Caroline Arber, Lana Kandalaft, George Coukos, and Maja Beck-Popovic. "Progrès récents et orientations futures de la thérapie avec cellules CAR-T en oncologie pédiatrique." Revue Médicale Suisse 15, no. 632-33 (2019): 85–91. http://dx.doi.org/10.53738/revmed.2019.15.632-33.0085.
Full textDalle, Jean-Hugues, Etienne Baudoux, Sophie Caillat-Zucman, Fabienne Colledani, Maguy Pereira, Bénédicte Bruno, Stéphanie Nguyen, Marie Robin, Marie-Thérèse Rubio, and Jacques-Olivier Bay. "Le développement des cellules CAR-T et autre thérapie génique : tout n’est pas si simple." Bulletin du Cancer 107, no. 4 (April 2020): 408–9. http://dx.doi.org/10.1016/j.bulcan.2020.03.002.
Full textFusilier, Zoé, and Hermine Ferran. "Allier les capacités anti-tumorales des CAR-T cells aux propriétés des exosomes : une approche innovante pour combattre le cancer." médecine/sciences 36, no. 6-7 (June 2020): 655–58. http://dx.doi.org/10.1051/medsci/2020116.
Full textde Jorna, Romain, Isabelle Madelaine, Jérôme Larghero, and Miryam Mebarki. "Les médicaments de thérapie génique CAR-T cells : statuts réglementaires et circuits pharmaceutiques en Europe et en France." Bulletin du Cancer 108, no. 10 (October 2021): S162—S167. http://dx.doi.org/10.1016/j.bulcan.2021.05.004.
Full textDissertations / Theses on the topic "Thérapie CAR-T"
Wang, Valentine. "Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Full textCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease
Tremblay-Laganière, Camille. "Thérapie génique ciblant CD33 dans les cellules souches hématopoïétiques, une approche innovatrice pour le traitement de la leucémie myéloïde aiguë." Thèse, 2018. http://hdl.handle.net/1866/22328.
Full textConference papers on the topic "Thérapie CAR-T"
Maizeray, S., H. Herry, G. Valette, and S. Boisramé. "Innovation dans la communication et la gestion du stress en chirurgie orale : méthode d’analyse ProcessCom®." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602003.
Full text