Journal articles on the topic 'Thermal coefficient of resistivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thermal coefficient of resistivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shao-ping Zhu. "A unified derivation of the laser energy deposition coefficient, electron thermal conduction coefficient and resistivity in the plasma." Acta Physica Sinica 74, no. 11 (2025): 0. https://doi.org/10.7498/aps.74.20250340.
Full textLisjak, Darja, Miha Drofenik, and Drago Kolar. "Composite ceramics with a positive temperature coefficient of electrical resistivity effect." Journal of Materials Research 15, no. 2 (2000): 417–28. http://dx.doi.org/10.1557/jmr.2000.0065.
Full textBahrami, Amin, Niloofar Soltani, Martin I. Pech-Canul, et al. "Bilayer graded Al/B4C/rice husk ash composite: Wettability behavior, thermo-mechanical, and electrical properties." Journal of Composite Materials 52, no. 27 (2018): 3745–58. http://dx.doi.org/10.1177/0021998318769993.
Full textHamilton, B., J. L. Adams, and J. G. Brisson. "High Accuracy Resisitivity and Temperature Coefficient Measurements of Invar Wire from 5K to 300K." IOP Conference Series: Materials Science and Engineering 1301, no. 1 (2024): 012170. http://dx.doi.org/10.1088/1757-899x/1301/1/012170.
Full textKhudhair, Nawal H., and Kareem A. Jasim. "A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass." Ibn AL-Haitham Journal For Pure and Applied Sciences 36, no. 1 (2023): 149–57. http://dx.doi.org/10.30526/36.1.2892.
Full textPhewphong, Sunti, and Tosawat Seetawan. "Thermoelectric Properties of PbTe." Advanced Materials Research 802 (September 2013): 223–26. http://dx.doi.org/10.4028/www.scientific.net/amr.802.223.
Full textРусанов, Б. А., В. Е. Сидоров, А. И. Мороз, P. Svec, Sr. та D. Janickovic. "Плотность и электросопротивление сплавов Al-Ni-Co-Sm(Tb)". Письма в журнал технической физики 47, № 15 (2021): 39. http://dx.doi.org/10.21883/pjtf.2021.15.51233.18839.
Full textXu, Yidong, Yixuan Wu, Zhiwei Chen, et al. "Thermoelectric properties of Ni-doped BaSi2." Functional Materials Letters 09, no. 01 (2016): 1650017. http://dx.doi.org/10.1142/s179360471650017x.
Full textGotoh, Tamihiro, Kosuke Yazawa, and Kento Imai. "Electrical Properties of SnS Films Deposited by Thermal Evaporation of Sulfurized Sn Powder." Key Engineering Materials 596 (December 2013): 21–25. http://dx.doi.org/10.4028/www.scientific.net/kem.596.21.
Full textAVILÉS, F., O. CEH, and A. I. OLIVA. "PHYSICAL PROPERTIES OF AU AND AL THIN FILMS MEASURED BY RESISTIVE HEATING." Surface Review and Letters 12, no. 01 (2005): 101–6. http://dx.doi.org/10.1142/s0218625x05006834.
Full textMartini, Mickey, Helena Reichlova, Yejin Lee, et al. "Magneto-thermal transport indicating enhanced Nernst response in FeCo/IrMn exchange coupled stacks." Applied Physics Letters 121, no. 21 (2022): 212405. http://dx.doi.org/10.1063/5.0113485.
Full textLiu, Xiao Yan, Ai Hua Liu, Feng Wei, and Wu Yao. "Study on the Temperature-Sensitive Properties of Carbon Fiber-Reinforced Mortar." Materials Science Forum 675-677 (February 2011): 1167–70. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.1167.
Full textSagara, Katsuhiro, Yun Lu, and Dao Cheng Luan. "FEM Analysis on Thermoelectric Properties of Metal/TiO2–x Composites with Random Distribution of Metal Powder." Materials Science Forum 750 (March 2013): 130–33. http://dx.doi.org/10.4028/www.scientific.net/msf.750.130.
Full textQu, Yingying, Ping Xu, Hu Liu, et al. "Tunable temperature-resistivity behaviors of carbon black/polyamide 6 /high-density polyethylene composites with conductive electrospun PA6 fibrous network." Journal of Composite Materials 53, no. 14 (2018): 1897–906. http://dx.doi.org/10.1177/0021998318815731.
Full textCho, Dong Choul, Cheol Ho Lim, Ki Tae Kim, et al. "Synthesis and Thermoelectric Properties of N-Type Bi2Te2.7Se0.3 Compounds by Spark Plasma Sintering." Materials Science Forum 486-487 (June 2005): 654–57. http://dx.doi.org/10.4028/www.scientific.net/msf.486-487.654.
Full textWang, Fu, Yi Zhou, Shi-Xin Gao, et al. "Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide." Acta Physica Sinica 71, no. 3 (2022): 036501. http://dx.doi.org/10.7498/aps.71.20211434.
Full textXu, Wanlu, Wenwu Wang, Xiaoshan Zhang, and Ping Yu. "(Ba0.55Sr0.45)1−xLaxTi1.01O3-Bi0.5Na0.5TiO3 Positive Temperature Coefficient Resistivity Ceramics with Low Curie Temperature (~−15 °C)." Materials 17, no. 8 (2024): 1812. http://dx.doi.org/10.3390/ma17081812.
Full textWang, Yifei, and Xiaoyang Chen. "Investigation of the Positive Temperature Coefficient Resistivity of Nb-Doped Ba0.55Sr0.45TiO3 Ceramics." Crystals 14, no. 5 (2024): 419. http://dx.doi.org/10.3390/cryst14050419.
Full textShi, Lei, Na Zhou, Jintao Wu, et al. "An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon." Micromachines 16, no. 2 (2025): 116. https://doi.org/10.3390/mi16020116.
Full textLiaqat, Khurram, Srosh Fazil, Saba Mumtaz, and Syed Asim Hussain Shah. "Influence of Graphene Oxide and Multiwalled Carbon Nanotubes on Electrical, Tribological, Mechanical and Thermal Properties of Poly (methyl methacrylate) Nanocomposites." Journal of Physical Science 36, no. 1 (2025): 37–54. https://doi.org/10.21315/jps2025.36.1.4.
Full textAlzamil, Teysir. "Comparing some physical properties of Sn93Sb5Zn2, Sn93Sb5Bi2 rapidly solidified alloys." International Journal for Scientific Research 4, no. 2 (2025): 311–25. https://doi.org/10.59992/ijsr.2025.v4n2p15.
Full textKohri, Hitoshi, and Takayoshi Yagasaki. "Thermoelectric Generating Properties of Aurivillius Compounds." Advances in Science and Technology 77 (September 2012): 285–90. http://dx.doi.org/10.4028/www.scientific.net/ast.77.285.
Full textЯпрынцев, М. Н., А. Е. Васильев та О. Н. Иванов. "Влияние температуры спекания на термоэлектрические свойства соединения Bi-=SUB=-1.9-=/SUB=-Gd-=SUB=-0.1-=/SUB=-Te-=SUB=-3-=/SUB=-". Физика и техника полупроводников 53, № 5 (2019): 620. http://dx.doi.org/10.21883/ftp.2019.05.47550.08.
Full textHuan, Zhengli, Ning Chang, Yunyun Feng, Xuan Fei, Xiang Xu, and Huiming Ji. "Simultaneously Achieved High Piezoelectricity and High Resistivity in Na0.5Bi4.5Ti4O15-Based Ceramics with High Curie Temperature." Materials 17, no. 23 (2024): 5857. http://dx.doi.org/10.3390/ma17235857.
Full textKaiser, AB, and C. Uher. "High-Tc Superconductors: Evidence on the Electron?Phonon Interaction from Transport Measurements." Australian Journal of Physics 41, no. 4 (1988): 597. http://dx.doi.org/10.1071/ph880597.
Full textSanchela, Anup V., Varun Kushwaha, Ajay D. Thakur, and C. V. Tomy. "Enhancement of Thermopower due to Deficiency of Sb in FeSb2." Advanced Materials Research 665 (February 2013): 179–81. http://dx.doi.org/10.4028/www.scientific.net/amr.665.179.
Full textSapińska-Sliwa, Aneta, Marc Rosen, Andrzej Gonet, Joanna Kowalczyk, and Tomasz Sliwa. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers." Energies 12, no. 6 (2019): 1072. http://dx.doi.org/10.3390/en12061072.
Full textLacsný, Boris, Petra Králiková, Simona Dudáková, Ivana Škorecová, and Aba Teleki. "Measurement of the thermal coefficient of electrical resistivity of a nonmagnetic metal." European Journal of Physics 38, no. 3 (2017): 035201. http://dx.doi.org/10.1088/1361-6404/aa5e0b.
Full textSzymiczek, Małgorzata, and Dawid Buła. "Polyester and Epoxy Resins with Increased Thermal Conductivity and Reduced Surface Resistivity for Applications in Explosion-Proof Enclosures of Electrical Devices." Materials 15, no. 6 (2022): 2171. http://dx.doi.org/10.3390/ma15062171.
Full textCho, Won Seung, Dong Choul Cho, Cheol Ho Lim, C. H. Lee, Woon Suk Hwang, and Yeon Chul Yoo. "Microstructure and Thermoelectric Properties of P-Type Bi0.5Sb1.5Te3 Compounds Prepared by Spark Plasma Sintering." Materials Science Forum 510-511 (March 2006): 1122–25. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.1122.
Full textPapikyan A. K, Harutyunyan S. R., Aghamalyan N. R., et al. "Thermoelectric and memristive features of the Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-/Sb-=SUB=-2-=/SUB=-S-=SUB=-3-=/SUB=-/Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=- and Ag/Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-/Ag structures." Semiconductors 56, no. 3 (2022): 264. http://dx.doi.org/10.21883/sc.2022.03.53071.9770.
Full textHuang, Xiang Yang, Li Dong Chen, X. Shi, Min Zhou, and Z. Xu. "Thermoelectric Performances of ZrNiSn/C60 Composite." Key Engineering Materials 280-283 (February 2007): 385–88. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.385.
Full textRogl, Gerda, and Peter Franz Rogl. "Filled Sb-Based Skutterudites from 1996–2022." Crystals 12, no. 12 (2022): 1843. http://dx.doi.org/10.3390/cryst12121843.
Full textJung, Jae Yong, Kwan Ho Park, Soon Chul Ur, and Il Ho Kim. "Thermoelectric and Transport Properties of In-Filled CoSb3 Skutterudites." Materials Science Forum 658 (July 2010): 17–20. http://dx.doi.org/10.4028/www.scientific.net/msf.658.17.
Full textZhang, Yang, Yun Wang, Yong Sun, Jin Sheng Jia, and Bing Qiang Zhang. "Effect of Bi2O3 Content on Properties of Lead Silicate Glass for Microchannel Plate." Key Engineering Materials 753 (August 2017): 123–28. http://dx.doi.org/10.4028/www.scientific.net/kem.753.123.
Full textFathy, Adel, Omayma Elkady, and Ahmed Abu-Oqail. "Production and properties of Cu-ZrO2 nanocomposites." Journal of Composite Materials 52, no. 11 (2017): 1519–29. http://dx.doi.org/10.1177/0021998317726148.
Full textMilošević, Nenad, Ivana Nikolić, Marc Grelard, and Bruno Hay. "Thermophysical properties of the molybdenum alloy TZM (Mo-0.5Ti-0.08Zr-0.02C) over a wide temperature range." High Temperatures-High Pressures 52, no. 5 (2023): 353–64. http://dx.doi.org/10.32908/hthp.v52.1425.
Full textLiang, Liu Qing, Ling Min Zeng, Shu Hui Liu, De Gui Li, and Ming Qin. "Thermal Expansion, Magnetic and Electrical Properties of Ternary Compound DyCo0.67Ga1.33." Materials Science Forum 848 (March 2016): 703–8. http://dx.doi.org/10.4028/www.scientific.net/msf.848.703.
Full textKisil’, O. I., A. B. Kruglov, A. V. Kuznetsov, E. A. Protasov, and V. P. Sobolev. "Anomalies in thermal expansion of YBa2Cu3O7–x superconducting ceramic." Soviet Journal of Low Temperature Physics 15, no. 9 (1989): 543–44. https://doi.org/10.1063/10.0032253.
Full textHarizanova, Sonya, Vassil Vulchev, and Radostina Stoyanova. "Graphene-Based Composites for Thermoelectric Applications at Room Temperature." Materials 16, no. 23 (2023): 7262. http://dx.doi.org/10.3390/ma16237262.
Full textПапикян, А., С. Арутюнян, Н. Агамалян та ін. "Термоэлектрические и мемристивные особенности структур Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-/Sb-=SUB=-2-=/SUB=-S-=SUB=-3-=/SUB=-/Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=- и Ag/Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=-/Ag". Физика и техника полупроводников 56, № 3 (2022): 370. http://dx.doi.org/10.21883/ftp.2022.03.52126.9770.
Full textIsotta, E., N. M. Pugno, and P. Scardi. "Nanostructured kesterite (Cu2ZnSnS4) for applications in thermoelectric devices." Powder Diffraction 34, S1 (2019): S42—S47. http://dx.doi.org/10.1017/s0885715619000277.
Full textPoliakov, Maksim, Dmitry Kovalev, Sergei Vadchenko, et al. "Amorphous/Nanocrystalline High-Entropy CoCrFeNiTix Thin Films with Low Thermal Coefficient of Resistivity Obtained via Magnetron Deposition." Nanomaterials 13, no. 13 (2023): 2004. http://dx.doi.org/10.3390/nano13132004.
Full textLin, Guo Min, and Yan Hua Li. "Research on Performance Features of Shape Memory Alloys." Advanced Materials Research 989-994 (July 2014): 652–55. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.652.
Full textNolas, G. S., J. L. Cohn, J. S. Dyck, C. Uher, G. A. Lamberton, and T. M. Tritt. "Low-temperature transport properties of polycrystalline Ba8Ga16Sn30." Journal of Materials Research 19, no. 12 (2004): 3556–59. http://dx.doi.org/10.1557/jmr.2004.0467.
Full textKim, Il Ho. "Phase Transformation and Thermoelectric Properties of Sn-Filled/Fe-Doped CoSb3 Skutterudites." Defect and Diffusion Forum 312-315 (April 2011): 223–28. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.223.
Full textLiu, Jing, and Jing Feng Li. "Bi2Te3 and Bi2Te3/Nano-SiC Prepared by Mechanical Alloying and Spark Plasma Sintering." Key Engineering Materials 280-283 (February 2007): 397–400. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.397.
Full textYuri, S., S. Ohta, S. Anzai, M. Aikawa, and K. Hatakeyama. "Magnetic susceptibility, electrical resistivity and thermal expansion coefficient of NiAs-type V1−xCrxSe." Journal of Magnetism and Magnetic Materials 70, no. 1-3 (1987): 215–17. http://dx.doi.org/10.1016/0304-8853(87)90413-6.
Full textALIEV, F. G., V. V. PRYADUN, R. VILLAR, et al. "ANOMALOUS LATTICE PROPERTIES OF ZrNiSn CAUSED BY ELECTRON LOCALIZATION." International Journal of Modern Physics B 07, no. 01n03 (1993): 383–86. http://dx.doi.org/10.1142/s0217979293000810.
Full textGao, Nai Kui, Yi Li Wang, Wen Xi Zhang, Zhao Liu, Chi Chen, and Hai Yun Jin. "Study on Electrical and Thermal Properties of Epoxy Resin/Inorganic Filler Composites for the Fully Enclosed Casting Bus Bar and its Calculation of the Temperature Field." Materials Science Forum 804 (October 2014): 191–94. http://dx.doi.org/10.4028/www.scientific.net/msf.804.191.
Full text