Academic literature on the topic 'Thermal Expansion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal Expansion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal Expansion"
Miyagawa, Azusa, Shogo Nobukawa, and Masayuki Yamaguchi. "Thermal Expansion Behavior of Antiplasticized Polycarbonate." Nihon Reoroji Gakkaishi 42, no. 4 (2014): 255–60. http://dx.doi.org/10.1678/rheology.42.255.
Full textLI, Z., and R. C. BRADT. "Thermal Expansion and Thermal Expansion Anisotropy of SiC Polytypes." Journal of the American Ceramic Society 70, no. 7 (July 1987): 445–48. http://dx.doi.org/10.1111/j.1151-2916.1987.tb05673.x.
Full textThiéblot, Laurent, Jacques Roux, and Pascal Richet. "High-temperature thermal expansion and decomposition of garnets." European Journal of Mineralogy 10, no. 1 (January 26, 1998): 7–16. http://dx.doi.org/10.1127/ejm/10/1/0007.
Full textJackson, Jennifer M., James W. Palko, Denis Andrault, Stanislav V. Sinogeikin, Dmitry L. Lakshtanov, Jingyun Wang, Jay D. Bass, and Chang-Sheng Zha. "Thermal expansion of natural orthoenstatite to 1473 K." European Journal of Mineralogy 15, no. 3 (June 10, 2003): 469–73. http://dx.doi.org/10.1127/0935-1221/2003/0015-0469.
Full textBarrera, G. D., J. A. O. Bruno, T. H. K. Barron, and N. L. Allan. "Negative thermal expansion." Journal of Physics: Condensed Matter 17, no. 4 (January 15, 2005): R217—R252. http://dx.doi.org/10.1088/0953-8984/17/4/r03.
Full textFakhruddin, Hasan. "Thermal expansion ‘‘paradox’’." Physics Teacher 31, no. 4 (April 1993): 214. http://dx.doi.org/10.1119/1.2343727.
Full textKüchler, R., P. Gegenwart, K. Heuser, E. W. Scheidt, G. R. Stewart, and F. Steglich. "Thermal expansion of." Physica B: Condensed Matter 359-361 (April 2005): 53–55. http://dx.doi.org/10.1016/j.physb.2004.12.054.
Full textHaverland, Gordon Wayne. "Thermal expansion coefficient." JOM 49, no. 8 (August 1997): 6. http://dx.doi.org/10.1007/bf02914380.
Full textAZUMA, Masaki. "Zero-Thermal Expansion Composite with Giant Negative Thermal Expansion Powder." Hosokawa Powder Technology Foundation ANNUAL REPORT 23 (2015): 18–22. http://dx.doi.org/10.14356/hptf.13101.
Full textLim, Teik-Cheng. "Negative thermal expansion structures constructed from positive thermal expansion trusses." Journal of Materials Science 47, no. 1 (July 28, 2011): 368–73. http://dx.doi.org/10.1007/s10853-011-5806-z.
Full textDissertations / Theses on the topic "Thermal Expansion"
Miller, Wayne. "Negative Thermal Expansion Materials." Thesis, University of Exeter, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531676.
Full textHansen, Glenn Alexander. "TWO ULTRAPRECISE THERMAL EXPANSION INVESTIGATIONS: SODIUM SILICATE - A LOW-EXPANSION CEMENT, AND THERMAL EXPANSION UNIFORMITY OF ZERODUR." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291814.
Full textMaksimova, E. M., and A. I. Zamkovskaya. "Visualization of Thermal Crystals Expansion." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40672.
Full textGreyling, Guillaume Hermanus. "Negative thermal expansion of organic compounds." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/6896.
Full textENGLISH ABSTRACT: The primary objective of the work was to investigate the negative thermal expansion of organic materials and to determine the mechanisms governing this phenomenon by using the principles of crystal engineering. To this end, the following three compounds were studied in detail: • 4,4'-Diiodobiphenyl • 4-Iodobenzoic acid • Methyl Paraben The rationale behind this work was to determine the mechanisms responsible for the observed negative thermal expansion and to uncover the structural factors that induce negative thermal expansion. Single-crystal X-ray diffraction was employed as the primary analytical tool, owing to the unique information it can provide regarding intermolecular interactions in the solid state. A total of twenty organic compounds were analysed, of which three exhibited negative thermal expansion. Each compound employs a specific mechanism for negative thermal expansion, two of which are closely related and the third distinct.
AFRIKAANSE OPSOMMING: Die hoof doel van hierdie studie was om ondersoek in te stel in die verskynsel van ‘negative thermal expansion’ in organiese materiale en gevolglik die meganisme vas te stel deur die beginsels van kristalmanipulsie (‘crystal engineering’) te gebruik. Gevolglik was drie organise stowwe ondersoek: • 4,4'-Diiodobiphenyl /4,4'-Diiodobifeniel • 4-Iodobenzoic acid /4-Iodobensoësuur • Methyl Paraben Die redenasie hieragter is om die meganisme verantwoordelik vir die ‘negative thermal expansion’ vas te stel en die verskillende faktore wat bydra tot dit te bevestig. Enkel-kristal diffraksie word benut as die primêre analitiese tegniek as gevolg van die unieke inligting wat verkry kan word met betrekking tot die intermolekulêre interaksies. 'n Totaal van twintig stowwe is geanaliseer waarvan drie die spesifieke termisie eienskap besit. Elk van die drie stowwe het ‘n ander meganisme te vore laat kom waarvan twee baie ooreenstem en die derde verskil.
Tu, Jie. "Thermal expansion of chemically modified mullite." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43063.
Full textMaster of Science
Greve, Benjamin K. "Exploring the thermal expansion of fluorides and oxyfluorides with ReO₃-type structures: from negative to positive thermal expansion." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43753.
Full textRuschman, Chad. "Chemical tuning of thermal expansion in oxides." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34778.
Full textMackenzie, D. S. "Modeling negative thermal expansion in network structures." Thesis, University of Exeter, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441808.
Full textRimmer, Leila Heather Najla. "Negative thermal expansion in flexible framework materials." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707927.
Full textLind, Cora. "Negative thermal expansion materials related to cubic zirconium tungstate." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/30861.
Full textBooks on the topic "Thermal Expansion"
1928-, Ho C. Y., and Taylor R. E. 1934-, eds. Thermal expansion of solids. Materials Park, OH: ASM International, 1998.
Find full textBach, Hans, ed. Low Thermal Expansion Glass Ceramics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03083-7.
Full textBach, Hans, and Dieter Krause, eds. Low Thermal Expansion Glass Ceramics. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-28245-9.
Full text1930-, Bach Hans, and Krause Dieter 1933-, eds. Low thermal expansion glass ceramics. 2nd ed. Berlin: Springer, 2005.
Find full text1930-, Bach Hans, ed. Low thermal expansion glass ceramics. Berlin: Springer, 1995.
Find full textEllis, David L. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Find full textradiomettalurgist, Sengupta A. K., and Bhabha Atomic Research Centre, eds. Thermal expansion data of (Th,U)O2 fuels. Mumbai: Bhabha Atomic Research Centre, 2000.
Find full textBarron, T. H. K. Heat capacity and thermal expansion at low temperatures. New York: Kluwer Academic/Plenum, 1999.
Find full textBarron, T. H. K., and G. K. White. Heat Capacity and Thermal Expansion at Low Temperatures. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4695-5.
Full textJackson, Douglas Anthony. The thermal expansion characteristics of fibre reinforced thermoplastics. Salford: University of Salford, 1989.
Find full textBook chapters on the topic "Thermal Expansion"
Hummel, Rolf E. "Thermal Expansion." In Electronic Properties of Materials, 291–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02424-9_22.
Full textHummel, Rolf E. "Thermal Expansion." In Electronic Properties of Materials, 358–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-4914-5_22.
Full textVentura, Guglielmo, and Mauro Perfetti. "Thermal Expansion." In Thermal Properties of Solids at Room and Cryogenic Temperatures, 81–91. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8969-1_4.
Full textHummel, Rolf E. "Thermal Expansion." In Electronic Properties of Materials, 397–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-86538-1_22.
Full textMörner, Nils-Axel. "Thermal Expansion." In Encyclopedia of Earth Sciences Series, 1692–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93806-6_375.
Full textGooch, Jan W. "Thermal Expansion." In Encyclopedic Dictionary of Polymers, 741–42. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11747.
Full textMörner, Nils-Axel. "Thermal Expansion." In Encyclopedia of Earth Sciences Series, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48657-4_375-1.
Full textJanssen, Jules J. A. "Thermal expansion." In Mechanical Properties of Bamboo, 11. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3236-7_2.
Full textGodovsky, Yuli K. "Thermal Expansion." In Thermophysical Properties of Polymers, 75–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51670-2_3.
Full textFei, Yingwei. "Thermal Expansion." In AGU Reference Shelf, 29–44. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/rf002p0029.
Full textConference papers on the topic "Thermal Expansion"
GOETZE, PITT, SIMON HUMMEL, RHENA WULF, TOBIAS FIEBACK, and ULRICH GROSS. "Challenges of Transient-Plane-Source Measurements at Temperatures Between 500K and 1000K." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30332.
Full textHUME, DALE, ANDREY SIZOV, BESIRA M. MIHIRETIE, DANIEL CEDERKRANTZ, SILAS E. GUSTAFSSON, and MATTIAS K. GUSTAVSSON. "Specific Heat Measurements of Large-Size Samples with the Hot Disk Thermal Constants Analyser." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30333.
Full textSONG, ZHUORUI, TYSON WATKINS, and HENG BAN. "Measurement of Thermal Diffusivity at High Temperature by Laser Flash Method." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30334.
Full textCASTIGLIONE, PAOLO, and GAYLON CAMPBELL. "Improved Transient Method Measures Thermal Conductivity of Insulating Materials." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30335.
Full textGARDNER, LEVI, TROY MUNRO, EZEKIEL VILLARREAL, KURT HARRIS, THOMAS FRONK, and HENG BAN. "Laser Flash Measurements on Thermal Conductivity of Bio-Fiber (Kenaf) Reinforced Composites." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30336.
Full textDEHN, SUSANNE, ERIK RASMUSSEN, and CRISPIN ALLEN. "Round Robin Test of Thermal Conductivity for a Loose Fill Thermal Insulation Product in Europe." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30337.
Full textILLKOVA, KSENIA, RADEK MUSALEK, and JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.
Full textLAGER, DANIEL, CHRISTIAN KNOLL, DANNY MULLER, WOLFGANG HOHENAUER, PETER WEINBERGER, and ANDREAS WERNER. "Thermal Conductivity Measurements of Calcium Oxalate Monohydrate as Thermochemical Heat Storage Material." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30339.
Full textYARBROUGH, DAVID W., and MICHEL P. DROUIN. "Long-Term Thermal Resistance of Thin Cellular Plastic Insulations." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30340.
Full textKANTHARAJ, RAJATH, ISHAN SRIVASTAVA, AMY M. MARCONNET, and TIMOTHY S. FISHER. "Granular Jamming and Thermal Modeling in Faceted Particle Packings." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30341.
Full textReports on the topic "Thermal Expansion"
Menikoff, Ralph. Thermal Expansion of PBX 9502. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441276.
Full textSchonfeld, F. W., and R. E. Tate. The thermal expansion behavior of unalloyed plutonium. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/385588.
Full textTucker, Laura, and Philip Schembri. Calculating the Secant Coefficient of Thermal Expansion. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1924392.
Full textThompson, Darla Graff, and Racci DeLuca. Coefficient of Thermal Expansion of Pressed PETN Pellets. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1172824.
Full textBerthelot, Y. Laser Generation of Sound by Nonlinear Thermal Expansion. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada276955.
Full textKautz, D. D., R. L. Sites, and W. R. Cobb. WPH-6112A thermal expansion test of PRESS tubulation. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10170478.
Full textC.B. Skidmore, T.A. Butler, and C.W. Sandoval. The Elusive Coefficients of Thermal Expansion in PBX 9502. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/809945.
Full textEash, D. T. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1087006.
Full textThompson, Darla Graff, Caitlin Savanna Woznick, and Racci DeLuca. The Volumetric Coefficient of Thermal Expansion of PBX 9502. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1425787.
Full textFeng, W., and T. Hoheisel. Coefficients of thermal expansion for a carbon-carbon composite. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5244635.
Full text