To see the other types of publications on this topic, follow the link: Thermal Expansion.

Journal articles on the topic 'Thermal Expansion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermal Expansion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Miyagawa, Azusa, Shogo Nobukawa, and Masayuki Yamaguchi. "Thermal Expansion Behavior of Antiplasticized Polycarbonate." Nihon Reoroji Gakkaishi 42, no. 4 (2014): 255–60. http://dx.doi.org/10.1678/rheology.42.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LI, Z., and R. C. BRADT. "Thermal Expansion and Thermal Expansion Anisotropy of SiC Polytypes." Journal of the American Ceramic Society 70, no. 7 (July 1987): 445–48. http://dx.doi.org/10.1111/j.1151-2916.1987.tb05673.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thiéblot, Laurent, Jacques Roux, and Pascal Richet. "High-temperature thermal expansion and decomposition of garnets." European Journal of Mineralogy 10, no. 1 (January 26, 1998): 7–16. http://dx.doi.org/10.1127/ejm/10/1/0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jackson, Jennifer M., James W. Palko, Denis Andrault, Stanislav V. Sinogeikin, Dmitry L. Lakshtanov, Jingyun Wang, Jay D. Bass, and Chang-Sheng Zha. "Thermal expansion of natural orthoenstatite to 1473 K." European Journal of Mineralogy 15, no. 3 (June 10, 2003): 469–73. http://dx.doi.org/10.1127/0935-1221/2003/0015-0469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barrera, G. D., J. A. O. Bruno, T. H. K. Barron, and N. L. Allan. "Negative thermal expansion." Journal of Physics: Condensed Matter 17, no. 4 (January 15, 2005): R217—R252. http://dx.doi.org/10.1088/0953-8984/17/4/r03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fakhruddin, Hasan. "Thermal expansion ‘‘paradox’’." Physics Teacher 31, no. 4 (April 1993): 214. http://dx.doi.org/10.1119/1.2343727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Küchler, R., P. Gegenwart, K. Heuser, E. W. Scheidt, G. R. Stewart, and F. Steglich. "Thermal expansion of." Physica B: Condensed Matter 359-361 (April 2005): 53–55. http://dx.doi.org/10.1016/j.physb.2004.12.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haverland, Gordon Wayne. "Thermal expansion coefficient." JOM 49, no. 8 (August 1997): 6. http://dx.doi.org/10.1007/bf02914380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AZUMA, Masaki. "Zero-Thermal Expansion Composite with Giant Negative Thermal Expansion Powder." Hosokawa Powder Technology Foundation ANNUAL REPORT 23 (2015): 18–22. http://dx.doi.org/10.14356/hptf.13101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lim, Teik-Cheng. "Negative thermal expansion structures constructed from positive thermal expansion trusses." Journal of Materials Science 47, no. 1 (July 28, 2011): 368–73. http://dx.doi.org/10.1007/s10853-011-5806-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Graetsch, Heribert A. "Thermal expansion and thermally induced variations of the crystal structure of AlPO4 low cristobalite." Neues Jahrbuch für Mineralogie - Monatshefte 2003, no. 7 (July 15, 2003): 289–301. http://dx.doi.org/10.1127/0028-3649/2003/2003-0289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mehta, Krunal, and Utpal Shah. "Structural Concepts for Long (Linear) Bodies Undergoing Thermal Expansion." International Journal of Scientific Research 3, no. 5 (June 1, 2012): 171–72. http://dx.doi.org/10.15373/22778179/may2014/52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Takenaka, Koshi. "Negative thermal expansion materials: technological key for control of thermal expansion." Science and Technology of Advanced Materials 13, no. 1 (February 2012): 013001. http://dx.doi.org/10.1088/1468-6996/13/1/013001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Stephenson, D. A., M. R. Barone, and G. F. Dargush. "Thermal Expansion of the Workpiece in Turning." Journal of Engineering for Industry 117, no. 4 (November 1, 1995): 542–50. http://dx.doi.org/10.1115/1.2803532.

Full text
Abstract:
Thermal expansion of the part can be a significant source of dimensional and form errors in precision machining operations. This paper describes a method for calculating the thermal expansion of an axisymmetric workpiece. The analysis is based on a commercially available boundary element code modified to properly represent concentrated moving heat sources such as those produced in machining. The inputs required are the amount of heat entering the part from the cutting zone and the thermal properties of the workpiece material. Calculations are compared with direct measurements of expansion from tests on large diameter 2024 aluminum sleeves. The agreement between calculated and measured values is generally reasonable, although calculated expansions are consistently smaller than measured expansions. This error is probably due to errors in estimating the heat input to the part, and particularly the neglect of flank friction in heat input calculations. Sample calculations for hard turning of a wheel spindle show that expansions can approach tolerances on critical surfaces. Based on sample calculations, thermal expansion is likely to be significant when hard turning parts with tolerances on the order of 0.01 mm. For these applications, critical surfaces should be machined first, before cuts on other sections heat the part, and gaging should be carried out only after the part has cooled.
APA, Harvard, Vancouver, ISO, and other styles
15

Yang, Rui, Qing Yang, and Bin Niu. "Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 3 (November 7, 2019): 837–46. http://dx.doi.org/10.1177/0954406219884973.

Full text
Abstract:
Current studies on tailoring the coefficient of thermal expansion of metamaterials focused on either complex bending-dominated lattice or the stretching-dominated lattice which transforms the spaces of triangle and tetrahedron. This paper proposes a kind of dual-material rectangular cell of tailorable thermal expansion, which reduces the complexities of design, calculation, and manufacture of lattice materials. The theoretical derivation using the matrix displacement method is adopted to study the thermal expansion properties of rectangular cell in the direction of height, the analytical expressions of coefficient of thermal expansion and optimization model are used to design the sizes of rectangular cell, and experimental verification is carried out. It is found that the middle cell of lattice had the same thermal expansion law as that of the unit cell. The rectangular cells of negative coefficient of thermal expansion −7 ppm/℃, zero coefficient of thermal expansion, and large positive coefficient of thermal expansion 36.2 ppm/℃ in the direction of height were realized, respectively. The consistency of theory, simulation, and experiment verifies that rectangular lattice material made of two kinds of common materials with a different coefficient of thermal expansions can achieve the design of coefficient of thermal expansion in the direction of height by choosing different material distribution and geometric parameters.
APA, Harvard, Vancouver, ISO, and other styles
16

Keppler, Ulrich. "Thermal Expansion of Silicon." International Journal of Materials Research 79, no. 3 (March 1, 1988): 157–58. http://dx.doi.org/10.1515/ijmr-1988-790303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pluta, Zdzisław, and Tadeusz Hryniewicz. "Thermal Expansion of Solids." Journal of Modern Physics 03, no. 08 (2012): 793–802. http://dx.doi.org/10.4236/jmp.2012.38104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Oku, Tatsuo, and Shinichi Baba. "Coefficient of Thermal Expansion." TANSO 2002, no. 202 (2002): 90–95. http://dx.doi.org/10.7209/tanso.2002.90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Evans, J. S. O. "Negative thermal expansion materials." Acta Crystallographica Section A Foundations of Crystallography 60, a1 (August 26, 2004): s1. http://dx.doi.org/10.1107/s0108767304099982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Grzechnik, Andrzej, Hannes Krüger, Volker Kahlenberg, and Karen Friese. "Thermal expansion of Li3Na3In2F12garnet." Journal of Physics: Condensed Matter 18, no. 39 (September 15, 2006): 8925–34. http://dx.doi.org/10.1088/0953-8984/18/39/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sleight, Arthur W. "ISOTROPIC NEGATIVE THERMAL EXPANSION." Annual Review of Materials Science 28, no. 1 (August 1998): 29–43. http://dx.doi.org/10.1146/annurev.matsci.28.1.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

YAMAI, IWAO, and TOSHITAKA OTA. "Thermal Expansion of Sialon." Advanced Ceramic Materials 2, no. 4 (October 1987): 784–88. http://dx.doi.org/10.1111/j.1551-2916.1987.tb00147.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fukuda, Koichiro, and Hiroyuki Matsubara. "Thermal Expansion of SrY2O4." Journal of the American Ceramic Society 88, no. 11 (November 2005): 3205–6. http://dx.doi.org/10.1111/j.1551-2916.2005.00536.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hassan, Ishmael. "Thermal expansion of cancrinite." Mineralogical Magazine 60, no. 403 (December 1996): 949–56. http://dx.doi.org/10.1180/minmag.1996.060.403.09.

Full text
Abstract:
AbstractThermal expansion coefficients were measured for a cancrinite from Bancroft, Ontario, Canada. Measurements of cell parameters and unit-cell volumes were obtained at room temperature and at heating intervals of 50°C over the temperature range from 50 to 1400°C. The unit-cell parameters for cancrinite increase non-linearly with temperature up to 1200°C and shortly thereafter, the mineral melted. The c parameter increases more rapidly than the a parameter, and the c/a ratio increases linearly with temperature. A plausible thermal expansion mechanism for cancrinite, which is based on the framework expansion that occurs as a function of cavity content, is presented. In the thermal expansion of cancrinite, the short Na-H2O in the H2O-Na—H2O chain expands to form equal distances to the two H2O molecules in the chain. This causes the Na atoms to move towards the plane of the six-membered rings and forces the tetrahedra to rotate and the rings become more planar. The Na atoms then form bonds to all six (O1 and O2) oxygen atoms in a ring; the Na-O1 bonds become shorter and the Na-O2 bonds become longer. These effects cause an increase in both a and c, and thus an increase in the c/a ratio. A similar thermal expansion mechanism operates in the sodalite-group minerals where the six-membered rings and Na-Cl bond are involved.
APA, Harvard, Vancouver, ISO, and other styles
25

Evans, John S. O. "Negative Thermal Expansion Materials." Japanese Journal of Applied Physics 39, S1 (January 1, 2000): 535. http://dx.doi.org/10.7567/jjaps.39s1.535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Evans, John S. O. "Negative thermal expansion materials †." Journal of the Chemical Society, Dalton Transactions, no. 19 (1999): 3317–26. http://dx.doi.org/10.1039/a904297k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Viotti, Agustín Mancardo, Alejandro G. Monastra, Mariano F. Moreno, and M. Florencia Carusela. "Thermal expansion in nanoresonators." Journal of Statistical Mechanics: Theory and Experiment 2016, no. 8 (August 2, 2016): 083201. http://dx.doi.org/10.1088/1742-5468/2016/08/083201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Datta, R. K. "Thermal Expansion of 12CaOo7Al2O3." Journal of the American Ceramic Society 70, no. 10 (October 1987): C—288—C—291. http://dx.doi.org/10.1111/j.1151-2916.1987.tb04902.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Schneider, Hartmut, and Emil Eberhard. "Thermal Expansion of Mullite." Journal of the American Ceramic Society 73, no. 7 (July 1990): 2073–76. http://dx.doi.org/10.1111/j.1151-2916.1990.tb05270.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gulyaeva, R. I., E. N. Selivanov, A. D. Vershinin, and V. M. Chumarev. "Thermal expansion of CaZnSO." Inorganic Materials 42, no. 8 (August 2006): 897–900. http://dx.doi.org/10.1134/s0020168506080188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Suzuki, N., T. Kanomata, T. Suzuki, K. Sato, T. Kaneko, M. Yamagishi, and S. Endo. "Thermal expansion of MnRhP." Journal of Alloys and Compounds 281, no. 2 (December 1998): 77–80. http://dx.doi.org/10.1016/s0925-8388(98)00799-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bobev, Svilen, Darrick J. Williams, J. D. Thompson, and J. L. Sarrao. "Thermal expansion in YbGaGe." Solid State Communications 131, no. 7 (August 2004): 431–33. http://dx.doi.org/10.1016/j.ssc.2004.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Evans, J. S. O., T. A. Mary, and A. W. Sleight. "Negative thermal expansion materials." Physica B: Condensed Matter 241-243 (December 1997): 311–16. http://dx.doi.org/10.1016/s0921-4526(97)00571-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Uchida, Teppei, Takeo Sunaoshi, Kenji Konashi, and Masato Kato. "Thermal expansion of PuO2." Journal of Nuclear Materials 452, no. 1-3 (September 2014): 281–84. http://dx.doi.org/10.1016/j.jnucmat.2014.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sleight, Arthur W. "Negative thermal expansion materials." Current Opinion in Solid State and Materials Science 3, no. 2 (April 1998): 128–31. http://dx.doi.org/10.1016/s1359-0286(98)80076-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lopez de la Torre, M. A., R. Villar, S. Vieira, C. L. Seaman, and M. B. Maple. "Thermal expansion of Y0.8U0.2Pd3." Physica B: Condensed Matter 199-200 (April 1994): 386–88. http://dx.doi.org/10.1016/0921-4526(94)91846-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Klemens, P. G. "Thermal expansion of composites." International Journal of Thermophysics 7, no. 1 (January 1986): 197–206. http://dx.doi.org/10.1007/bf00503810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cort, B. "Thermal expansion of neptunium." Journal of the Less Common Metals 135, no. 1 (October 1987): L13—L17. http://dx.doi.org/10.1016/0022-5088(87)90350-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Byrappa, K., and U. D. Prahallad. "Thermal expansion of berlinite." Journal of Materials Science Letters 8, no. 9 (September 1989): 1016–18. http://dx.doi.org/10.1007/bf01730473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schulgasser, Kalman. "Thermal expansion of polycrystals." Journal of Materials Science Letters 8, no. 2 (February 1989): 228–29. http://dx.doi.org/10.1007/bf00730735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Saw, Cheng K., and Wigbert J. Siekhaus. "Thermal expansion of AuIn2." Scripta Materialia 53, no. 10 (November 2005): 1153–57. http://dx.doi.org/10.1016/j.scriptamat.2005.07.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Grzechnik, Andrzej, Zunbeltz Izaola Azcona, Pablo Bereciartua, Karen Friese, and Stephen Doyle. "Thermal expansion in Cr:LiSrGaF6." Materials Research Bulletin 40, no. 11 (November 2005): 1976–84. http://dx.doi.org/10.1016/j.materresbull.2005.05.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Matsuhira, K., T. Takikawa, T. Sakakibara, C. Sekine, and I. Shirotani. "Thermal expansion of PrRu4P12." Physica B: Condensed Matter 281-282 (June 2000): 298–99. http://dx.doi.org/10.1016/s0921-4526(99)01110-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shashikala, H. D., P. V. Mohan Rao, K. S. N. Murthy, and S. V. Suryanarayana. "Thermal expansion of V3Ga." Journal of Physics C: Solid State Physics 20, no. 14 (May 20, 1987): 2063–67. http://dx.doi.org/10.1088/0022-3719/20/14/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Miles, JR, TF Smith, and TR Finlayson. "Thermal Expansion of Fe2MnSi." Australian Journal of Physics 41, no. 6 (1988): 781. http://dx.doi.org/10.1071/ph880781.

Full text
Abstract:
Measurements of the thermal expansion of FezMnSi in the temperature range 200-300 K are reported. A large, relatively narrow peak is found at the magnetic re-ordering temperature in contrast to a broad, weak anomaly at the Curie temperature. Values for the magnetic Gruneisen parameter 'Y m are derived from the thermal expansion data and previously reported specific heat data following the subtraction of a non-magnetic background.
APA, Harvard, Vancouver, ISO, and other styles
46

Rogl, G., L. Zhang, P. Rogl, A. Grytsiv, M. Falmbigl, D. Rajs, M. Kriegisch, et al. "Thermal expansion of skutterudites." Journal of Applied Physics 107, no. 4 (February 15, 2010): 043507. http://dx.doi.org/10.1063/1.3284088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Asahi, T., H. Suzuki, M. Nakamura, H. Takano, and J. Kobayashi. "Thermal expansion of superconductingBi2Sr2CaCu2O8." Physical Review B 55, no. 14 (April 1, 1997): 9125–29. http://dx.doi.org/10.1103/physrevb.55.9125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Novikova, S. I. "Thermal-expansion anisotropy parameter." Measurement Techniques 28, no. 1 (January 1985): 79–81. http://dx.doi.org/10.1007/bf00861108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jakubinek, Michael B., Catherine A. Whitman, and Mary Anne White. "Negative thermal expansion materials." Journal of Thermal Analysis and Calorimetry 99, no. 1 (September 18, 2009): 165–72. http://dx.doi.org/10.1007/s10973-009-0458-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Neumann, H., E. Pirl, and G. Kühn. "Thermal expansion of LiGaO2." Journal of Materials Science Letters 6, no. 4 (April 1987): 495–96. http://dx.doi.org/10.1007/bf01756810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography