Academic literature on the topic 'Thermal field with phase change'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal field with phase change.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal field with phase change"
Peng, Guangjian, Guijing Dou, Yahao Hu, Yiheng Sun, and Zhitong Chen. "Phase Change Material (PCM) Microcapsules for Thermal Energy Storage." Advances in Polymer Technology 2020 (January 12, 2020): 1–20. http://dx.doi.org/10.1155/2020/9490873.
Full textGhanekar, Alok, Yanpei Tian, Matthew Ricci, Sinong Zhang, Otto Gregory, and Yi Zheng. "Near-field thermal rectification devices using phase change periodic nanostructure." Optics Express 26, no. 2 (January 18, 2018): A209. http://dx.doi.org/10.1364/oe.26.00a209.
Full textChen, Jie, Feng Jiao Liu, and Yi Fei Zheng. "Review on Phase Change Material Slurries." Advanced Materials Research 860-863 (December 2013): 946–51. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.946.
Full textGhanekar, Alok, Jun Ji, and Yi Zheng. "High-rectification near-field thermal diode using phase change periodic nanostructure." Applied Physics Letters 109, no. 12 (September 19, 2016): 123106. http://dx.doi.org/10.1063/1.4963317.
Full textGoodrich, L. E. "Field measurements of soil thermal conductivity." Canadian Geotechnical Journal 23, no. 1 (February 1, 1986): 51–59. http://dx.doi.org/10.1139/t86-006.
Full textHu, Tao, Yan Li, Duo Su, and Hai Xia Lv. "Thermal Modeling Solid-Liquid Phase Change Materials (PCMs)." Advanced Materials Research 746 (August 2013): 161–66. http://dx.doi.org/10.4028/www.scientific.net/amr.746.161.
Full textGuo, Z., Jia Wei Mi, and Patrick S. Grant. "Phase Field Modelling of Dendrite Fragmentation during Thermal Shock." Materials Science Forum 654-656 (June 2010): 1524–27. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1524.
Full textKanimozhi, B., Amit Arnav, Eluri Vamsi Krishna, and R. Thamarai Kannan. "Review on Phase Change Materials in Thermal Energy Storage System." Applied Mechanics and Materials 766-767 (June 2015): 474–79. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.474.
Full textKlemenčič, Eva, and Mitja Slavinec. "Liquid Crystals as Phase Change Materials for Thermal Stabilization." Advances in Condensed Matter Physics 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/1878232.
Full textVance, Ian W., and Paul C. Millett. "Phase-field simulations of pore migration and morphology change in thermal gradients." Journal of Nuclear Materials 490 (July 2017): 299–304. http://dx.doi.org/10.1016/j.jnucmat.2017.04.027.
Full textDissertations / Theses on the topic "Thermal field with phase change"
Li, Yichen. "Phase-field Modeling of Phase Change Phenomena." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99148.
Full textMaster of Science
Phase change phenomena, such as freezing and melting, are ubiquitous in our everyday life. Mathematically, this is a moving boundary problem where the phase front evolves based on the local temperature. The phase change is usually accompanied with the release or absorption of latent heat, which in turn affects the temperature. In this work, we develop a phase-field model, where the phase front is treated as a diffuse interface, to simulate the liquid-solid transition. This model is consistent with the second law of thermodynamics. Our finite-element simulations successfully capture the solidification and melting processes including the interesting phenomenon of recalescence.
Bugaje, Idris M. "Thermal energy storage in phase change materials." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335920.
Full textOliver, David Elliot. "Phase-change materials for thermal energy storage." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/17910.
Full textKotze, Johannes Paulus. "Thermal energy storage in metallic phase change materials." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96049.
Full textENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid. Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation. To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation.
AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof. Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing. Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
Hong, Yan. "Encapsulated nanostructured phase change materials for thermal management." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4929.
Full textID: 029809237; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 164-191).
Ph.D.
Doctorate
Mechanical Materials and Aerospace Engineering
Engineering and Computer Science
Wang, Chaoming. "THERMAL DETECTION OF BIOMARKERS USING PHASE CHANGE NANOPARTICLES." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3877.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Pustějovský, Michal. "Optimalizace teplotního pole s fázovou přeměnou." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232173.
Full textSakai, Kazushige. "A study of phase field models for phase change of alloys." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145320.
Full text0048
新制・論文博士
博士(情報学)
乙第11593号
論情博第57号
新制||情||31(附属図書館)
22892
UT51-2004-U490
京都大学大学院工学研究科応用システム科学専攻
(主査)教授 野木 達夫, 教授 藤坂 博一, 教授 磯 祐介
学位規則第4条第2項該当
Pendyala, Swetha. "Macroencapsulation of Phase Change Materials for Thermal Energy Storage." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4200.
Full textGowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.
Full textBooks on the topic "Thermal field with phase change"
Delgado, João M. P. Q., Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, and Vitor Abrantes. Thermal Energy Storage with Phase Change Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97499-6.
Full textFleischer, Amy S. Thermal Energy Storage Using Phase Change Materials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20922-7.
Full textFarid, Mohammed, Amar Auckaili, and Gohar Gholamibozanjani. Thermal Energy Storage with Phase Change Materials. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699.
Full textPalmiter, Larry S. Development of a simple device for field air flow measurement of residential air handling equipment: Phase II. Seattle, WA: Ecotope, 2000.
Find full textHuang, Ming Jun. The application of computational fluid dynamics (CFD) to predict the thermal performance of phase change materials for the control of photovoltaic cell temperature in buildings. [S.l: University of Ulster, 2002.
Find full textAmerican Society of Mechanical Engineers. Winter Meeting. Radiation, phase change heat transfer, and thermal systems: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1987.
Find full textRadchenko, Tat'yana, and Yuriy Shevcov. The creation of protective and strengthening coatings by methods of electron beam processing in vacuum. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1000599.
Full textAdvanced Phase Change Materials for Thermal Storage. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0865-8.
Full textTay, Steven, Luisa Cabeza, and N. H. Steven Tay. High Temperature Thermal Storage Systems Using Phase Change Materials. Elsevier Science & Technology Books, 2017.
Find full textBook chapters on the topic "Thermal field with phase change"
Kumar, Navin, and Debjyoti Banerjee. "Phase Change Materials." In Handbook of Thermal Science and Engineering, 2213–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_53.
Full textKumar, Navin, and Debjyoti Banerjee. "Phase Change Materials." In Handbook of Thermal Science and Engineering, 1–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_53-1.
Full textBanaszek, Jerzy, and Miroslaw Seredynski. "Phase Change Heat Transfer Problems." In Encyclopedia of Thermal Stresses, 3647–66. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_900.
Full textTominaga, Junji. "4th Generation Optical Memories Based on Super-resolution Near-field structure (Super-RENS) and Near-field Optics." In Phase Change Materials, 285–98. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7_13.
Full textBoniardi, Mattia. "Thermal Model and Remarkable Temperature Effects on the Chalcogenide Alloy." In Phase Change Memory, 41–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_3.
Full textUmantsev, Alexander. "Thermal Effects of Phase Transformations." In Field Theoretic Method in Phase Transformations, 201–44. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1487-2_9.
Full textProvatas, Nikolas, Tatu Pinomaa, and Nana Ofori-Opoku. "Thermal Fluctuations in Phase Field Equations." In Quantitative Phase Field Modelling of Solidification, 43–48. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003204312-8.
Full textRemsburg, Ralph. "Heat Transfer With Phase Change." In Advanced Thermal Design of Electronic Equipment, 437–98. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4419-8509-5_6.
Full textFleischer, Amy S. "Fundamental Thermal Analysis." In Thermal Energy Storage Using Phase Change Materials, 75–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20922-7_5.
Full textGarg, H. P., S. C. Mullick, and A. K. Bhargava. "Latent Heat or Phase Change Thermal Energy Storage." In Solar Thermal Energy Storage, 154–291. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5301-7_3.
Full textConference papers on the topic "Thermal field with phase change"
Shi, L. P., W. L. Teo, T. C. Chong, and J. M. Li. "Thermal analysis of Super-Resolution Near-Field Phase Change Optical Disk." In Optical Data Storage. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ods.2003.mb5.
Full textSu, Che-Fu, Xinrui Xiang, Hamed Esmaeilzadeh, Jirui Wang, Edward Fratto, Majid Charmchi, Zhiyong Gu, and Hongwei Sun. "A New Composite Phase Change Material for Thermal Energy Storage." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10457.
Full textShi, L. P., Z. J. Liu, J. C. Lee, Tow Chong Chong, and Jia J. Ho. "Three-dimensional thermal modeling and analysis of near-field rewritable phase-change optical disks." In International Symposium on Optical Memory and Optical Data Storage. SPIE, 1999. http://dx.doi.org/10.1117/12.997660.
Full textShokohmand, Hossein, Alireza Jafari, and Parisa Amiri. "Comparison of Different Formulation Methods in Phase Change Heat Transfer." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32530.
Full textBasavanna, Abhishek, Prajakta Khapekar, and Navdeep Singh Dhillon. "Effect of a High Electric Field on the Thermal and Phase Change Characteristics of an Impacting Drop." In ASME 2019 Heat Transfer Summer Conference collocated with the ASME 2019 13th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ht2019-3649.
Full textGhanekar, Alok, Jun Ji, Mingdi Sun, Zongqin Zhang, and Yi Zheng. "Enhanced Thermal Rectification of Near-Field Thermal Diode Using Surface Gratings." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65369.
Full textXu, Zifu, Longqiu Li, and Jiaxin Li. "Two-Phase Thermal Metamaterial." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22158.
Full textLiu, Fang, Hao Liang, Hang Yu, and Xiaomei Tang. "Research Development and Application of Solar Thermal Storage With Phase Change Materials." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90331.
Full textSu, Che-Fu, Junwei Su, Hamed Esmaeilzadeh, Jirui Wang, Edward Fratto, Majid Charmchi, Zhiyong Gu, and Hongwei Sun. "Thermal Conductivity Enhancement of Phase Change Materials Through Aligned Metallic Nanostructures." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72202.
Full textTian, Y., and C. Y. Zhao. "Thermal Analysis in Phase Change Materials (PCMs) Embedded With Metal Foams." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22452.
Full textReports on the topic "Thermal field with phase change"
Henninges, J., J. Schrötter, K. Erbas, and E. Huenges. Temperature field of the Mallik gas hydrate occurrence - implications on phase changes and thermal properties. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220890.
Full textCraig, Timothy D., Edward I. Wolfe, and Mingyu Wang. Electric Phase Change Material Assisted Thermal Heating System (ePATHS). Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1467444.
Full textChio, Y. I., E. Choi, and H. G. Lorsch. Thermal analysis of n-alkane phase change material mixtures. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/6619165.
Full textFeustel, H. E., and C. Stetiu. Thermal performance of phase change wallboard for residential cooling application. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/486124.
Full textDouglas C. Hittle. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/820428.
Full textSingh, D., W. Yu, and D. France. Integrated Heat Exchanger-Phase Change Material Thermal Energy Storage System. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1814238.
Full textQiu, Songgang. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1087080.
Full textBiswas, Kaushik, Phillip W. Childs, and Jerald Allen Atchley. Field Testing of Low-Cost Bio-Based Phase Change Material. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1072152.
Full textCampbell, Kevin. Phase Change Materials as a Thermal Storage Device for Passive Houses. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.201.
Full textSinghvi, Punit, Javier García Mainieri, Hasan Ozer, and Brajendra Sharma. Rheology-Chemical Based Procedure to Evaluate Additives/Modifiers Used in Asphalt Binders for Performance Enhancements: Phase 2. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-020.
Full text