To see the other types of publications on this topic, follow the link: Thermal field with phase change.

Dissertations / Theses on the topic 'Thermal field with phase change'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermal field with phase change.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Yichen. "Phase-field Modeling of Phase Change Phenomena." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99148.

Full text
Abstract:
The phase-field method has become a popular numerical tool for moving boundary problems in recent years. In this method, the interface is intrinsically diffuse and stores a mixing energy that is equivalent to surface tension. The major advantage of this method is its energy formulation which makes it easy to incorporate different physics. Meanwhile, the energy decay property can be used to guide the design of energy stable numerical schemes. In this dissertation, we investigate the application of the Allen-Cahn model, a member of the phase-field family, in the simulation of phase change problems. Because phase change is usually accompanied with latent heat, heat transfer also needs to be considered. Firstly, we go through different theoretical aspects of the Allen-Cahn model for nonconserved interfacial dynamics. We derive the equilibrium interface profile and the connection between surface tension and mixing energy. We also discuss the well-known convex splitting algorithm, which is linear and unconditionally energy stable. Secondly, by modifying the free energy functional, we give the Allen-Cahn model for isothermal phase transformation. In particular, we explain how the Gibbs-Thomson effect and the kinetic effect are recovered. Thirdly, we couple the Allen-Chan and heat transfer equations in a way that the whole system has the energy decay property. We also propose a convex-splitting-based numerical scheme that satisfies a similar discrete energy law. The equations are solved by a finite-element method using the deal.ii library. Finally, we present numerical results on the evolution of a liquid drop in isothermal and non-isothermal settings. The numerical results agree well with theoretical analysis.
Master of Science
Phase change phenomena, such as freezing and melting, are ubiquitous in our everyday life. Mathematically, this is a moving boundary problem where the phase front evolves based on the local temperature. The phase change is usually accompanied with the release or absorption of latent heat, which in turn affects the temperature. In this work, we develop a phase-field model, where the phase front is treated as a diffuse interface, to simulate the liquid-solid transition. This model is consistent with the second law of thermodynamics. Our finite-element simulations successfully capture the solidification and melting processes including the interesting phenomenon of recalescence.
APA, Harvard, Vancouver, ISO, and other styles
2

Bugaje, Idris M. "Thermal energy storage in phase change materials." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oliver, David Elliot. "Phase-change materials for thermal energy storage." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/17910.

Full text
Abstract:
There is a current requirement for technologies that store heat for both domestic and industrial applications. Phase-change materials (PCMs) represent an important class of materials that offer potential for heat storage. Heat-storage systems are required to undergo multiple melt/freeze cycles without any change in melting-crystallisation point and heat output. Salt hydrates are attractive candidates on account of their high energy densities, but there are issues associated with potential crystallisation of lower-hydrates, long-term stability, and reliable nucleation. An extensive review of the PCMs in the literature, combined with an evaluation of commercially available PCMs led to the conclusion that many of the reported PCMs, lack at least one of the key requirements required for use as a heat-storage medium. The focus of this research was therefore to identify and characterise new PCM compositions with tailored properties. New PCM compositions based of sodium acetate trihydrate were developed, which showed improved properties through the use of selective polymers that retard the nucleation of undesirable anhydrous sodium acetate. Furthermore, the mechanism of nucleation of sodium acetate trihydrate by heterogeneous additives has been investigated using variable-temperature powder X-ray diffraction. This study showed that when anhydrous Na2HPO4 was introduced to molten sodium acetate trihydrate at 58°C the hydrogenphosphate salt is present as the dihydrate. On heating to temperatures in the range 75-90°C the dihydrate was observed to dehydrate to form anhydrous Na₂HPO4. This result explains the prior observation that the nucleator is deactivated on heating. The depression of melting point of sodium acetate trihydrate caused by the addition of lithium acetate dihydrate has also been investigated using differential scanning calorimetry and powder X-ray diffraction. It has been possible to tune the melting point of sodium acetate trihydrate thereby modifying its thermal properties. Studies of the nucleation of sodium thiosulfate pentahydrate, a potential PCM, led to the structural characterisation of six new hydrates using single crystal Xray diffraction. All of these hydrates can exist in samples with the pentahydrate composition at temperatures ranging from 20°C to 45°C. These hydrates are: α-Na₂S₂O₃·2H₂O, which formed during the melting of α-Na₂S₂O₃·5H₂O; two new pentahydrates, β-Na₂S₂O₃·5H₂O and γ-Na₂S₂O₃·5H₂O; Na₂S₂O₃·1.33 H₂O, β-Na₂S₂O₃·2H₂O and Na₂S₂O₃·3.67 H₂O, which formed during the melting of β- Na₂S₂O₃·5H₂O. Furthermore, new PCMs in the 75-90°C range were identified. The commercial impact and route to market of several of the PCMs are discussed in the final chapter.
APA, Harvard, Vancouver, ISO, and other styles
4

Kotze, Johannes Paulus. "Thermal energy storage in metallic phase change materials." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96049.

Full text
Abstract:
Thesis (PhD) -- Stellenbosch University, 2014.
ENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid. Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation. To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation.
AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof. Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing. Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
APA, Harvard, Vancouver, ISO, and other styles
5

Hong, Yan. "Encapsulated nanostructured phase change materials for thermal management." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4929.

Full text
Abstract:
A major challenge of developing faster and smaller microelectronic devices is that high flux of heat needs to be removed efficiently to prevent overheating of devices. The conventional way of heat removal using liquid reaches a limit due to low thermal conductivity and limited heat capacity of fluids. Adding solid nanoparticles into fluids has been proposed as a way to enhance thermal conductivity of fluids, but recent results show inconclusive anomalous enhancements in thermal conductivity. A possible way to improve heat transfer is to increase the heat capacity of liquid by adding phase change nanoparticles with large latent heat of fusion into the liquid. Such nanoparticles absorb heat during solid to liquid phase change. However, the colloidal suspension of bare phase change nanoparticles has limited use due to aggregation of molten nanoparticles, irreversible sticking on fluid channels, and dielectric property loss. This dissertation describes a new method to enhance the heat transfer property of a liquid by adding encapsulated phase change nanoparticles (nano-PCMs), which will absorb thermal energy during solid-liquid phase change and release heat during freeze. Specifically, silica encapsulated indium nanoparticles, and polymer encapsulated paraffin (wax) nanoparticles have been prepared using colloidal method, and dispersed into poly-alpha]-olefin (PAO) and water for high temperature and low temperature applications, respectively. The shell, with a higher melting point than the core, can prevent leakage or agglomeration of molten cores, and preserve the dielectric properties of the base fluids. Compared to single phase fluids, heat transfer of nanoparticle-containing fluids have been significantly enhanced due to enhanced heat capacities. The structural integrity of encapsulation allows repeated uses of nanoparticles for many cycles.; By forming porous semi crystalline silica shells obtained from water glass, supercooling has been greatly reduced due to low energy barrier of heterogeneous nucleation. Encapsulated phase change nanoparticles have also been added into exothermic reaction systems such as catalytic and polymerization reactions to effectively quench local hot spots, prevent thermal runaway, and change product distribution. Specifically, silica-encapsulated indium nanoparticles, and silica encapsulated paraffin (wax) nanoparticles have been used to absorb heat released in catalytic reaction, and to mitigate the gel effect during polymerization, respectively. The reaction rates do not raise significantly owing to thermal buffering using phase change nanoparticles at initial stage of thermal runaway. The effect of thermal buffering depends on latent heats of fusion of nanoparticles, and heat releasing kinetics of catalytic reactions and polymerizations. Micro/nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions.
ID: 029809237; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 164-191).
Ph.D.
Doctorate
Mechanical Materials and Aerospace Engineering
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Chaoming. "THERMAL DETECTION OF BIOMARKERS USING PHASE CHANGE NANOPARTICLES." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3877.

Full text
Abstract:
Most of existing techniques cannot be used to detect molecular biomarkers (i.e., protein and DNA) contained in complex body fluids due to issues such as enzyme inhibition or signal interference. This thesis describes a nanoparticle-based thermal detection method for the highly sensitive detections of multiple DNA biomarkers or proteins contained in different type of fluids such as buffer solution, cell lysate and milk by using solid-liquid phase change nanoparticles as thermal barcodes. Besides, this method has also been applied for thrombin detection by using RNA aptamer-functionalized phase change nanoparticles as thermal probes. Furthermore, using nanostructured Si surface that have higher specific area can enhance the detection sensitivity by four times compared to use flat aluminum surfaces. The detection is based on the principle that the temperature of solid will not rise above its melting temperature unless all solid is molten, thus nanoparticles will have sharp melting peak during a linear thermal scan process. A one-to-one correspondence can be created between one type of nanoparticles and one type of biomarker, and multiple biomarkers can be detected simultaneously using different type nanoparticles. The melting temperature and the heat flow reflect the type and the concentration of biomarker, respectively. The melting temperatures of nanoparticles are designed to be over 100°C to avoid interference from species contained in fluids. The use of thermal nanoparticles allows detection of multiple low concentration DNAs or proteins in a complex fluid such as cell lysate regardless of the color, salt concentration, and conductivity of the sample.
M.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
APA, Harvard, Vancouver, ISO, and other styles
7

Pustějovský, Michal. "Optimalizace teplotního pole s fázovou přeměnou." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232173.

Full text
Abstract:
This thesis deals with modelling of continuous casting of steel. This process of steel manufacturing has achieved dominant position not only in the Czech Republic but also worldwide. The solved casted bar cross-section shape is circular, because it is rarely studied in academical works nowadays. First part of thesis focuses on creating numerical model of thermal field, using finite difference method with cylindrical coordinates. This model is then employed in optimization part, which represents control problem of abrupt step change of casting speed. The main goal is to find out, whether the computation of numerical model and optimization both can be parallelized using spatial decomposition. To achieve that, Progressive Hedging Algorithm from the field of stochastic optimization has been used.
APA, Harvard, Vancouver, ISO, and other styles
8

Sakai, Kazushige. "A study of phase field models for phase change of alloys." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145320.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・論文博士
博士(情報学)
乙第11593号
論情博第57号
新制||情||31(附属図書館)
22892
UT51-2004-U490
京都大学大学院工学研究科応用システム科学専攻
(主査)教授 野木 達夫, 教授 藤坂 博一, 教授 磯 祐介
学位規則第4条第2項該当
APA, Harvard, Vancouver, ISO, and other styles
9

Pendyala, Swetha. "Macroencapsulation of Phase Change Materials for Thermal Energy Storage." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4200.

Full text
Abstract:
The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables high-energy storage density which reduces the footprint of the system and the cost. However, PCMs have very low thermal conductivities making them unsuitable for large-scale use without enhancing the effective thermal conductivity. In order to address, the low thermal conductivity of the PCMs, macroencapsulation of PCMs has been adopted as an effective technique. The macroencapsulation not only provides a self-supporting structure of PCM and separates the PCM from thermal fluids but also enhances the heat transfer rate. The current work involves study of various concepts of encapsulation of low cost inorganic PCMs. Sodium nitrate (NaNO3), a low cost PCM, was selected for thermal storage in a temperature range of 300 - 500˚C. Various techniques like electroless coatings, coatings using silicates, coatings with metal oxide (SiO2) and sand encapsulation are discussed. A novel technique of metal oxide coating was developed where firstly a high temperature polymer, such as, polymer (stable > 500˚C) was coated over PCM pellets, and cured, so that the pellet becomes insoluble in water as well as several organic solvents and later the metal oxide is coated over the pellet using self-assembly, hydrolysis, and simultaneous chemical oxidation at various temperatures. The coated PCM pellets were characterized.
APA, Harvard, Vancouver, ISO, and other styles
10

Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.

Full text
Abstract:
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
APA, Harvard, Vancouver, ISO, and other styles
11

Calvo, Schwarzwälder Marc. "Non-classical thermal transport and phase change at the nanoscale." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667237.

Full text
Abstract:
For 200 years, Fourier’s law has been used to describe heat transfer with excellent results. However, as technology advances, more and more situations arise where heat conduction is not well described by the classical equations. Examples are applications with extremely short time scales such as ultra fast laser heating, or very small length scales such as the heat conduction through nanowires or nanostructures in general. In this thesis we investigate alternative models which aim to correctly describe the non-classical effects that appear in extreme situations and which Fourier’s law fails to describe. A popular approach is the Guyer-Krumhansl equation and the framework of phonon hydrodynamics. This formalism is particularly appealing from a mathematical point of view since it is analogous to the Navier-Stokes equations of fluid mechanics, and from a physical point of view, since it is able to describe the physics in a simple and elegant way. In the first part of the thesis we use phonon hydrodynamics to predict the size-dependent thermal conductivity observed experimentally in nanostructures such as nanowires or thin films. In particular, we show that the Guyer-Krumhansl equation is suitable to capture the dependence of the thermal conductivity on the size of the physical system under consider- ation. During the modelling process we use the analogy with fluids to incorporate a slip boundary condition with a slip coefficient that depends on the ratio of the phonon mean free path to the characteristic size of the system. With only one fitting parameter we are able to accurately reproduce experimental observations corresponding to nanowires and nanorods of different sizes. The second part of the thesis consists of studying the effect of the non-classical fea- tures on melting and solidification processes. We consider different extensions and in- corporate them into the mathematical description of a solidification process in a simple, one-dimensional geometry. In chapter 5 we employ an effective Fourier law which replaces the original thermal conductivity by a size-dependent expression that accounts for non-local effects. In chapter 6 we use the Maxwell-Cattaneo and the Guyer-Krumhansl equations to formulate the Maxwell-Cattaneo-Stefan and the Guyer-Krumhansl-Stefan problems respec- tively. After performing a detailed asymptotic analysis we are able to reduce both models to a system of two ordinary differential equations and obtain excellent agreement with the cor- responding numerical solutions. In situations near Fourier resonance, which is a particular case where non-classical effects in the Guyer-Krumhansl model cancel each other out, the solidification kinetics are very similar to those described by the classical model. However, in this case we see that non-classical effects are still observable in the evolution of the heat flux through the solid, which suggests that this is a quantity which is more convenient to determine the presence of these effects in phase change processes.
La llei de Fourier ha estat una peça clau per a descriure la conducció de calor des de que fou proposada fa gairabé 200 anys. No obstant, a mesura que avança la tecnologia ens hi trobem més sovint amb situacions on les equacions clàssiques perden la seva validesa. En aquesta tesi investiguem alguns models alternatius que tenen com a objectiu descriure la conducció de calor en situacions on la llei de Fourier no és aplicable. Un model que s'ha aconseguit establir com un extensió vàlida de la llei de Fourier és l'equació de Guyer i Krumhansl i el marc de la hidrodinàmica de fonons derivat d'aquesta. Es tracta d'un model particularment interessant, ja que les equacions són anàlogues a les equacions per a fluids dins de la hidrodinàmica clàssica. A la primera part de la tesi considerem aquesta equació per a descriure la conducció de calor estàtica per nanofibres de seccions transversals circulars i rectangulars. En particular, calculem una conductivitat tèrmica efectiva i trobem que és possible reproduïr els resultats experimentals amb un sol paràmetre d'adjust. En el cas de nanofibres cilíndriques, no és necessari cap paràmetre d'adjust si es consideren unes certes condicions de vora per al flux. Una conseqüència d'haver de considerar extensions per a la llei de Fourier és que s'ha d'estudiar l'efecte que tenen aquests canvis en la descripció de processos de canvi de fase. En la segona part de la tesi investiguem els efectes que tenen diversos models sobre la solidificació d'un líquid unidimensional. Al capítol 5 estudiem el cas en el que considerem la conductivitat tèrmica com a una funció de la mida del sòlid i que incorpora característiques que són importants quan el tamany del sòlid és comparable a les longituds característiques dels fonons, mentres que al capítol 6 considerem l'equació de Guyer i Krumhansl dels capítols anteriors. En ambdós casos, un anàlisi asimptòtic ens permet reduïr la complexitat del problema i proposar models reduïts formats per un parell de'equacions diferencials ordinàries.
APA, Harvard, Vancouver, ISO, and other styles
12

Graham, M. J. "Encapsulated salt hydrate phase change materials for thermal energy storage." Thesis, University of Liverpool, 2017. http://livrepository.liverpool.ac.uk/3012709/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Al-Maghalseh, Maher. "Compact solar thermal energy storage systems using phase change materials." Thesis, Northumbria University, 2014. http://nrl.northumbria.ac.uk/23579/.

Full text
Abstract:
The present research explores numerically and experimentally the process of melting and solidification of Phase Change Materials (PCM) in a latent heat thermal energy storage system (LHTESS). Further, the study will investigate various methods of intensification of heat transfer in such materials by means of metallic fins, filling particles or nanoparticles and by choosing the optimal system geometry for a rapid development of free convection flows during the melting process. The study includes three main parts. First, 3D CFD modelling was performed for the melting performance of a shell-and-tube thermal storage system with n-Octadecane as a PCM. The predicted model was in very good agreement with experimental data published in open literature. A series of numerical calculations were then undertaken to investigate the effect of nanoparticles on the heat transfer process. Dimensionless heat transfer correlations were derived for the system with Pure PCM and PCM mixed with nano-particles. In the second part of this study the experimental studies were carried out in order to investigate the performance of the laboratory thermal storage system with paraffin as the PCM. The thermal storage system was connected to evacuated tube solar collectors and its performance was evaluated in various conditions. 3D CFD model of the system was developed and numerical simulations were run for constant heat source conditions. Computational results were compared with experimental data obtained on the test rig at Northumbria University. Comparison revealed that the developed CFD model is capable to describe process of heat transfer in the system with high accuracy and therefore can be used with high confidence for modelling further cases. Finally, 3D CFD model was developed to predict the transient behaviour of a latent heat thermal energy storage system (LHTESS) in the form of a rectangular container with a central horizontal pipe surrounded by paraffin as PCM (melting temperature is 60 oC). Water was used as a heat transfer fluid (HTF). The enhancement of heat transfer in specific geometries by using external longitudinal fins on the tube and metallic porous matrix were numerically investigated. The influence of the number of fins and porosity of the matrix on the temperature distribution, melting process, melting time and natural convection phenomena were studied. Dimensionless heat transfer correlations were derived for calculation of the Nusselt number as function of Fourier, Stefan and Rayleigh numbers. These correlations to be used in the further designing process of similar thermal storage units at Northumbria University.
APA, Harvard, Vancouver, ISO, and other styles
14

Ozdenefe, Murat. "Phase change materials and thermal performance of buildings in Cyprus." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/phase-change-materials-and-thermal-performance-of-buildings-in-cyprus(a7b37f53-22de-47d4-ad19-2596ee75a558).html.

Full text
Abstract:
This work investigates the thermal performance of buildings in Cyprus and application of a particular passive technology; Phase Change Materials (PCMs) for the ultimate aim of reducing indoor air temperatures and energy supplied for the cooling season.PCMs for passive building applications are emerging technology and have not been tested for the buildings of Cyprus neither by computer simulations nor by practical applications. In this work, particular PCM end product; wallboard, having phase change temperature of 26 oC is employed together with various construction materials and simulated for buildings of Cyprus. Description of the current state in Cyprus has been carried out in terms of low energy building studies, widely used building fabric and building statistics. There is a huge gap in Cyprus in the field of energy performance and thermal comfort of buildings, which creates big room for research. Climatic design of buildings has been abandoned resulting in poor thermal comfort and increased energy consumption. There is still no regulation in place regarding the thermal performance of buildings in North Cyprus.Recent weather data of different Cyprus locations has been investigated and compared with the simulation weather data files that are employed in this work. The author has demonstrated that Finkelstein-Schafer statistics between recent weather data of Cyprus and simulation weather data files are close enough to obtain accurate results.Dynamic thermal simulations has been carried out by using Energy Plus, which is a strong and validated thermal simulation program that can model PCMs. Simulations are done for two different building geometry; “simple building” and “typical building” by employing different construction materials. Simple building is a small size box shaped building and typical building is a real existing building and selected by investigation of the building statistics.Simulation results showed that with this particular PCM product, indoor air temperatures and cooling energies supplied to simple building is reduced up to 1.2 oC and 18.64 % when heavier construction materials are used and up to 1.6 oC and 44.12 % when lighter construction materials are used. These values for typical building are found to be 0.7 oC, 3.24 % when heavier construction materials are used and 1.2 oC, 3.64 % when lighter construction materials are used. It is also found that, if thinner walls and slabs are used in the buildings the effectiveness of the PCM lining increases in significant amount.
APA, Harvard, Vancouver, ISO, and other styles
15

Sözen, Zeki Ziya. "Thermal energy storage by agitated capsules of phase change material." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25974.

Full text
Abstract:
Thermal energy storage via the latent heat of suitable phase change materials has the advantages of higher energy storage density and relatively isothermal behaviour compared to sensible heat storage systems. Glauber's salt (Na₂S0₄∙10H₂0) is one of the most extensively studied phase change materials for solar energy systems because of its low price, suitable phase change temperature and high latent heat. However, segregation due to incongruent melting behaviour leading to loss in the heat storage efficiency upon repeated melting-freezing cycling is a serious problem which has severely limited application of Glauber's salt. In this study Glauber's salt was encapsulated in 25 mm diameter hollow spheres and agitated in different systems including a liquid fluidized bed, rotating drum and rotating tube to reduce or eliminate the Toss in its heat storage efficiency. The encapsulated mixture consisted of 96% Glauber's salt and 4% borax by weight with 5% by volume air space in the capsules. Some capsules containing 25%, 15% and 5% by weight excess sodium sulfate and 10% by weight excess water were also prepared, to test the effect of sodium sulfate concentration under different agitation conditions. The heat storage capacity of 5756 capsules, agitated by fluidizing with water in a pilot plant size (0.34 m diameter) column, showed a decrease over the first three cycles to about 60% of that theoretically possible, but there was no further decrease over the next 93 cycles under fluidization conditions. The heat storage efficiency was found to be improved by increasing the superficial water velocity and by decreasing the cooling rate. Heating rate had little or no effect. The fluidized capsules provide enhanced heat transfer rates to or from the heat storage medium, enabling the energy to be charged or discharged in about one hour with realistic inlet and outlet temperatures. The high heat transfer rates are an important advantage for the system and may open new areas of applications for thermal energy storage by encapsulated phase change material. Economic analysis of the liquid fluidized bed heat storage system shows that operating costs are almost negligible compared to fixed capital costs. The heat storage efficiency of capsules decreased to 38.4% of the theoretical capacity or 67% of the corresponding agitated (fluidized) system in only 7 cycles under fixed bed conditions, and the efficiency decreased with further cycling. 97.5% of the original heat storage-capacity was recovered within three cycles when these capsules were refluidized. Performances of the regular and different composition capsules were tested in the rotating tube, with rotation around a fixed horizontal axis passing through the capsules' centers, and in the rotating drum, with impact due to collisions in addition to rotation. The results showed that full rotation of a capsule around a horizontal axis improves the heat storage efficiency. However, full recovery of the theoretical capacity was not possible, even under vigorous mixing conditions. The efficiencies in the rotating tube were similar to those in the rotating drum for capsules subject to the same number of rotations around a horizontal axis. At high rotation speeds centrifugal force had a negative influence, especially in the rotating tube. On the basis of heat storage capacity per unit volume or weight of phase change material, 47% by weight sodium sulfate concentration was found to be optimal for the rotating drum and the rotating tube cases. Some small scale experiments were performed to determine the relative importance of different factors in the loss of heat storage capacity. Sodium sulfate concentration gradients in the capsules with different thermal cycling histories were found by thermogravimetric analysis. The results showed that bulk segregation of anhydrous sodium sulfate is not the only reason for the loss of heat storage capacity in systems using Glauber's salt. Microencapsulation of anhydrous sodium sulfate beneath a layer of Glauber's salt crystals is at least as important. Experiments to determine the degree of subcooling, believed to be another factor in the loss of heat storage capacity, showed that a mixture of 96% Glauber's salt and 4% borax by weight undergoes subcooling of about 5 K in gently agitated capsules. Nucleation and crystallization temperatures both increase with increased agitation.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
16

Boampong, James Kwadwo. "Solar thermal heating of a glasshouse using phase change material (PCM) thermal storage techniques." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12863.

Full text
Abstract:
The Royal Botanic Gardens (RGB) is used as an umbrella name for the institution that runs Kew and Wakehurst Place gardens in Sussex The RBG has a large number of glasshouses at Kew and Wakehurst sites that consume lots of heating energy which is a major concern and the group is looking for an alternative heating system that will be more efficient and sustainable to save energy, cost and reduce CO2 emissions. Glasshouse due to greenhouse effect trap solar energy in the space with the slightest solar gains but the energy trapped in the space most often is vented through the roof wasted to keep the space temperature to the required level. An environmental measurement was carried out in twenty one zones of the glasshouse to establish the temperature and humidity profiles in the zones for at least three weeks. The investigation established that large amount of heat energy is vented to the atmosphere wasted and therefore need a heating system that could absorb and store the waste thermal energy. Phase change material (PCM) thermal energy storage technique was selected to be the best options compared to the others. It has been established that active and passive solar systems could provide enough thermal energy to meet the glasshouse heating requirements. PCM filled heating pipes will be installed to absorb the heat energy trapped in the glasshouse and use it when needed. The research analysis established that 204 MWh of the trapped energy wasted could be saved. The space temperature of the glasshouse could be maintained through melting and freezing of the PCM filled in the heating pipes. The site CHP waste heat could be useful. The research results have shown that nearly zero CO2 emission heating system could be achieved and the project is technically, economically and environmentally viable.
APA, Harvard, Vancouver, ISO, and other styles
17

Gunasekara, Saman Nimali. "Phase Equilibrium-aided Design of Phase Change Materials from Blends : For Thermal Energy Storage." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212440.

Full text
Abstract:
Climate change is no longer imminent but eminent. To combat climate change, effective, efficient and smart energy use is imperative. Thermal energy storage (TES) with phase change materials (PCMs) is one attractive choice to realize this. Besides suitable phase change temperatures and enthalpies, the PCMs should also be robust, non-toxic, environmental-friendly and cost-effective. Cost-effective PCMs can be realized in bulk blends. Blends however do not have robust phase change unless chosen articulately. This thesis links bulk blends and robust, cost-effective PCMs via the systematic design of blends as PCMs involving phase equilibrium evaluations. The key fundamental phase equilibrium knowledge vital to accurately select robust PCMs within blends is established here. A congruent melting composition is the most PCM-ideal among blends. Eutectics are nearly ideal if supercooling is absent. Any incongruent melting composition, including peritectics, are unsuitable as PCMs. A comprehensive state-of-the-art evaluation of the phase equilibrium-based PCM design exposed the underinvestigated categories: congruent melting compositions, metal alloys, polyols and fats. Here the methods and conditions essential for a comprehensive and transparent phase equilibrium assessment for designing PCMs in blends are specified. The phase diagrams of the systems erythritol-xylitol and dodecane-tridecane with PCM potential are comprehensively evaluated. The erythritol-xylitol system contains a eutectic in a partially isomorphous system unlike in a non-isomorphous system as previous literature proposed. The dodecane-tridecane system forms a probable congruent minimum-melting solid solution, but not a maximum-melting liquidus or a eutectic as was previously proposed. The sustainability aspects of a PCM-based TES system are also investigated. Erythritol becomes cost-effective if produced using glycerol from bio-diesel production. Olive oil is cost-effective and has potential PCM compositions for cold storage. A critical need exists in the standardization of methods and transparent results reporting of the phase equilibrium investigations in the PCM-context. This can be achieved e.g. through international TES collaboration platforms.
Energi är en integrerad del av samhället men energiprocesser leder till miljöbelastning, och klimatförändringar. Därför är effektiv energianvändning, ökad energieffektivitet och smart energihantering nödvändigt. Värmeenergilagring (TES) är ett attraktivt val för att bemöta detta behov, där ett lagringsalternativ med hög densitet är s.k. fasomvandlingsmaterial (PCM). Ett exempel på ett billigt, vanligt förekommande PCM är systemet vatten-is, vilket har använts av människor i tusentals år. För att tillgodose de många värme- och kylbehov som idag uppstår inom ett brett temperaturintervall, är det viktigt med innovativ design av PCM. Förutom lämplig fasförändringstemperaturer, entalpi och andra termofysikaliska egenskaper, bör PCM också ha robust fasändring, vara miljövänlig och kostnadseffektiv. För att förverkliga storskaliga TES system med PCM, är måste kostnadseffektivitet och robust funktion under många cykler bland de viktigaste utmaningarna. Kostnadseffektiva PCM kan bäst erhållas från naturliga eller industriella material i bulkskala, vilket i huvudsak leder till materialblandningar, snarare än rena ämnen. Blandningar uppvisar dock komplexa fasförändringsförlopp, underkylning och/eller inkongruent smältprocess som leder till fasseparation. Denna doktorsavhandling ger ny kunskap som möjliggör att bulkblandningar kan bli kostnadseffektiva och robusta PCM-material, med hjälp av den systematiskutvärdering av fasjämvikt och fasdiagram. Arbetet visar att detta kräver förståelse av relevanta grundläggande fasjämviktsteorier, omfattande termiska och fysikalisk-kemiska karakteriseringar, och allmänt tillämpliga teoretiska utvärderingar. Denna avhandling specificerar befintlig fasjämviktsteori för PCM-sammanhang, men sikte på att kunna välja robusta PCM blandningar med specifika egenskaper, beroende på tillämpning. Analysen visar att blandningar med en sammansättning som leder till kongruent smältande, där faser i jämvikt har samma sammansättning, är ideala bland PCM-blandningar. Kongruent smältande fasta faser som utgör föreningar eller fasta lösningar av ingående komponenter är därför ideala. Eutektiska blandningar är nästan lika bra som PCM, så länge underkylning inte förekommer. Därmed finns en stor potential för att finna och karakterisera PCM-ideala blandningar som bildar kongruent smältande föreningar eller fasta lösningar. Därigenom kan blandningar med en skarp, reversibel fasändring och utan fasseparation erhållas – egenskaper som liknar rena materialens fasändringsprocess. Vidare kan man, via fasdiagram, påvisa de blandningar som är inkongruent smältande, inklusive peritektiska blandningar, som är direkt olämpliga som PCM. Denna avhandling ger grundläggande kunskap som är en förutsättning för att designa PCM i blandningar. Genom en omfattande state-of-the-art utvärdering av fas-jämviktsbaserad PCM-design lyfter arbetet de PCM-idealiska blandningarna som hittills inte fått någon uppmärksamhet, såsom kongruenta smältande blandningar, och materialkategorierna metallegeringar, polyoler och fetter. Resultatet av arbetet visar dessutom att vissa PCM-material som ibland föreslås är direkt olämpliga då fasdiagram undersöks, bl a pga underkylning och även peritektiska system med fasseparation och degradering av kapaciteten (t ex Glauber-salt och natriumacetat-trihydrat). Denna avhandling specificerar och upprättar grundläggande teori samt tekniker, tillvägagångssätt och förhållanden som är nödvändiga för en omfattande och genomsynlig fasjämviktsbedömning, för utformning av PCM från blandningar för energilagering. Med detta som bas har följande fasdiagramtagits fram fullständigt: för erytritol-xylitol och för dodekan-tridekan, med PCM-potential för låg temperaturuppvärmning (60-120 °C) respektive frysning (-10 °C till -20 °C) utvärderas fullständigt. Erytritol-xylitol systemet har funnits vara eutektiskt i ett delvis isomorft system, snarare än ett icke-isomorft system vilket har föreslagits tidigare litteratur. Dodekan-tridekan systemet bildar ett system med kongruent smältande fast lösning (idealisk som en PCM) vid en minimumtemperatur, till skillnad från tidigare litteratur som föreslagt en maximumtemperatur, eller ett eutektiskt system. Teoretisk modellering av fasjämvikt har också genomförts för att komplettera det experimentella fasdiagrammet för systemet erytritol-xylitol. Efter granskning av de metoder som använts tidigare i PCM-litteraturen har här valts ett generiskt tillvägagångssätt (CALPHAD-metoden). Denna generiska metod kan bedöma vilken typ av material och fasändring som helst, till skillnad från en tidigare använda metoder som är specifika för materialtyper eller kemiska egenskaper. Denna teoretiska studie bekräftar termodynamiskt solvus, solidus, eutektisk punkt och erytritol-xylitol fasdiagrammet i sin helhet. Vad gäller hållbarhetsaspekter med PCM-baserad TES, lyfter denna avhandling fokus på förnybara och kostnadseffektiva material (t.ex. polyoler och fetter) som PCM. Som exempel har här undersökts erytritol och olivolja, med förnybart ursprung. Erytritol skulle kunna bli ett kostnadseffektivt PCM (163 USD/kWh), om det produceras av glycerol vilket är en biprodukt från biodiesel/bioetanolframställning. Olivolja är ännu ett kostnadseffektivt material (144 USD/kWh), och som här har påvisats innehålla potentiella PCM sammansättningar med lämpliga fasändringsegenskaper för kylatillämpningar. En övergripande slutsats från denna avhandling är att det finns ett behov av att standardisera tekniker, metoder och transparent resultatrapportering när det gäller undersökningar av fasjämvikt och fasdiagram i PCM-sammanhang. Internationella samarbetsplattformar för TES är en väg att koordinera arbetet.

QC 20170830

APA, Harvard, Vancouver, ISO, and other styles
18

Bawana, Niyem Mawenbe. "Thermal Response in a Field Oriented Controlled Three-phase Induction Motor." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7740.

Full text
Abstract:
The research conducted at the department of Electrical Engineering of the University of South Florida campus in Tampa only covers the electrical aspect of electric drives. However, the performance of electric machinery is significantly impacted by temperature variation. The literature review shows three main control techniques in use today in electric drives namely, Scalar control, Direct Torque control and Field Oriented control. This thesis presents a temperature rise of rotor bars, stator winding, stator core and stator frame in a running three phase field-oriented controlled induction machine. A literature search shows that none of research has been carried out to investigate a thermal response of a field-oriented controlled induction motor. With this motivation, we were able to implement a lumped parameters thermal model of a three-phase field-oriented IM in MATLAB Simulink, which allows us to determine that rotor bars have the highest temperatures rising to 84 degrees Celsius. This confirms that rotors bars are the hottest part of a running IM as stipulated in literature.
APA, Harvard, Vancouver, ISO, and other styles
19

Gracia, Álvaro de. "Thermal analysis of a ventilated facade with phase change materials (PCM)." Doctoral thesis, Universitat de Lleida, 2013. http://hdl.handle.net/10803/117144.

Full text
Abstract:
L’objectiu d’aquesta tesis és el de analitzar el comportament tèrmic d’una façana ventilada amb material de canvi de fase macro encapsulat en el seu canal d’aire. L’ús de materials de canvi de fase incrementa la capacitat d’emmagatzematge d’energia tèrmica en la solució constructiva proposada, i intensifica l’emmagatzematge i l’operació de la façana ventilada a un rang de temperatures desitjat. El rendiment energètic d’aquest nou tipus de façana ventilada s’estudia de forma experimental per veure el seu potencial en reduir els consums energètics tant de calefacció com de refrigeració. Posteriorment, s’estudia mitjançant l’anàlisi de cicle de vida, quin és l’impacte mediambiental que suposa la manufactura i operació d’aquest sistema. Finalment, es desenvolupa un model numèric per optimitzar el funcionament i disseny d’aquesta façana. Aquest model numèric utilitza una nova correlació empírica de nombre de Nusselt, per al càlcul dels coeficients de transferència de calor entre el material de canvi de fase i el flux d’aire circulant per la cambra.
El objetivo de esta tesis es el de analizar el comportamiento térmico de una fachada ventilada con material de cambio de fase macro encapsulado en su canal de aire. El uso de materiales de cambio de fase aumenta la capacidad de almacenamiento de energía térmica en la solución constructiva propuesta, e intensifica el almacenamiento y la operación de la fachada ventilada a un rango de temperaturas deseado. El rendimiento energético de este nuevo tipo de fachada ventilada se estudia experimentalmente para ver su potencial en reducir los consumos energéticos tanto de calefacción como de refrigeración. Posteriormente, se estudia mediante el análisis de ciclo de vida, el impacto medioambiental que supone la manufactura y operación de este sistema. Finalmente, se desarrolla un modelo numérico que optimiza el funcionamiento y diseño de esta fachada. Este modelo numérico utiliza una nueva correlación empírica de número de Nusselt, para el cálculo de los coeficientes de transferencia de calor entre el material de cambio de fase y el flujo de aire circulando por la cámara.
The objective of this thesis is to analyse the thermal behaviour of a ventilated façade with macro-encapsulated phase change material in its air channel. The use of phase change materials increases the ability of thermal energy storage in the proposed constructive system, and enhances the storage and operation of the ventilated facade to a desired temperature range. The energy efficiency of this new type of ventilated facade is experimentally studied to determine its potential in reducing the energy consumption both for heating and cooling. Hereafter, the environmental impact of the manufacture and operation of this system is studied by a life cycle analysis. Finally, a numerical model is developed to optimize the operation and design of this facade. This numerical model uses a new empirical correlation for the Nusselt number to calculate the convective heat transfer coefficients between the phase change material and the air flow circulating in the chamber.
APA, Harvard, Vancouver, ISO, and other styles
20

Nath, Rupa. "Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4180.

Full text
Abstract:
Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.
APA, Harvard, Vancouver, ISO, and other styles
21

Alam, Tanvir E. "Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5632.

Full text
Abstract:
Thermal energy storage (TES) is one of the most attractive and cost effective solutions to the intermittent generation systems like solar, wind and other renewable sources, compared to alternatives. It creates a bridge between the power supply and demand during peak hours or at times of emergency to ensure the continuous supply of energy. Among all the TES systems, latent heat thermal energy storage (LHTES) draws lots of interests as it has high energy density and can store or retrieve energy isothermally. Two major technical challenges associated with the LHTES are low thermal conductivity of the phase change materials (PCMs), and corrosion tendency of the containment vessel with the PCMs. Macro-encapsulation of the PCM is one of the techniques to encounter the low thermal conductivity issue as it will maximize the heat transfer area for the given volume of the PCM and restrict the PCMs to get in contact with the containment vessel. However, finding a suitable encapsulation technique that can address the volumetric expansion problem and compatible shell material are significant barriers of this approach. In the present work, an innovative technique to encapsulate PCMs that melt in the 100-350 oC temperature range was developed for industrial and private applications. This technique did not require a sacrificial layer to accommodate the volumetric expansion of the PCMs on melting. The encapsulation consisted of coating a non-reactive polymer over the PCM pellet followed by deposition of a metal layer by a novel non-vacuum metal deposition technique. The fabricated spherical capsules were tested in different heat transfer fluid (HTF) environments like air, oil and molten salt (solar salt). Thermophysical properties of the PCMs were investigated by DSC/TGA, IR and weight change analysis before and after the thermal cycling. Also, the constrained melting and solidification of sodium nitrate PCM inside the spherical capsules of different sizes were compared to explore the charging and discharging time. To accomplish this, three thermocouples were installed vertically inside the capsule at three equidistant positions. Low-density graphene was dispersed in the PCM to increase its conductivity and compared with pure PCM capsules. A laboratory scale packed-bed LHTES system was designed and built to investigate the performance of the capsules. Sodium nitrate (m.p. 306oC) was used as the PCM and air was used as the heat transfer fluid (HTF). The storage system was operated between 286oC and 326oC and the volumetric flow rate of the HTF was varied from 110 m3/h to 151 m3/h. The temperature distribution along the bed (radially and axially) and inside the capsules was monitored continuously during charging and discharging of the system. The effect of the HTF mass flow rate on the charging and discharging time and on the pressure drop across the bed was evaluated. Also, the energy and exergy efficiencies were calculated for three different flow rates. Finally, a step-by-step trial manufacturing process was proposed to produce large number of spherical capsules.
APA, Harvard, Vancouver, ISO, and other styles
22

Caleiro, Luis Carlos Ferreira. "Dynamic simulation of strategies for thermal comfort using phase change materials." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14382.

Full text
Abstract:
Mestrado em Engenharia Civil
Nowadays, as global warming becomes one of the most urgent problems in the world, there is a need to find better ways to utilize energy: not only in the field of energy production, transmission, distribution, and consumption, but also in the area of energy storage. With energy storage technologies, it is possible to overcome the contradiction between the energy production and consumption, alleviate the tense production load of power plants at peak hours, and reduce consumers’ electricity costs by avoiding higher peak hour tariffs. Thermal energy storage, or heat and cold storage, allows the storage of heat or cold to be used later. This method needs to be reversible so it allows for multiple cycles. The technology that was studied for this effect was Phase Change Materials or PCMs. With that in mind, and with the help of dynamic building simulation software, EnergyPlus, several scenarios of an existing build that has PCM incorporated were studied in order to ascertain the real effect the technology is having on the case study, including thermal comfort.
Hoje em dia, com o aquecimento global a tornar-se um dos problemas mais urgentes da Terra, há necessidade de encontrar melhores maneiras de utilizar energia: não apenas no campo da produção de energia, transmissão, distribuição e consumo, mas também na área de armazenamento de energia. Com tecnologias de armazenamento de energia, é possível de ultrapassar a contradição entre a produção e consumo, aliviar a tensão que existe na produção nas estações de energia nas horas de pico e reduzir o custo de electricidade aos utentes ao evitar as tarifas nas horas de pico. A armazenagem de energia calorífica, do calor e frio, permite o armazenamento de calor ou frio para ser usado mais tarde. Este método precisa de ser reversível para permitir vários ciclos deste processo. A tecnologia estudada para este efeito foi os materiais que mudam de fase, ou PCMs (Phase Change Materials). Com isto em mente, e com a ajuda de software de simulação dinâmica, EnergyPlus, vários cenários de um edifício existente que tem PCM incorporado foram estudados em ordem de poder concluir o verdadeiro efeito que a tecnologia está a ter no caso estudo, incluindo o conforto térmico.
APA, Harvard, Vancouver, ISO, and other styles
23

Johansson, Elin, and Filip Norrman. "Life cycle analysis on phase change materials for thermal energy storage." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264526.

Full text
Abstract:
Sustainable energy sources and utilization is a large area of interest and the developments are moving fast. Recently, thermal energy storage in the form of phase change materials other than water have caught more interest and a need of analysis for the entire life cycle of the materials have appeared. Previous work in the area shows that health and safety aspects of the products’ life cycle have been neglected and comparisons between different phase change materials other than water are sparsely researched. The objectives for this report are to compare three different phase change material intended for thermal energy storage in a life cycle analysis point of view with both environmental and health and safety aspects. A screening process of materials was subsequently performed in order to find suited materials given the objective (Octadecane, Xylitol and Manganese Nitrate Hexahydrate), taking into consideration the relevance in the scientific community amongst other criteria. The life cycle is in this work bounded from cradle to grave without recycling and for a thermal energy storage heating system operating in Scandinavian climates assuming 52 cycles per year. The results indicate that Octadecane are preferable in terms of global warming potential over 100 years (ca 4.5 kg CO2/kg Octadecane produced) and Xylitol more preferable in terms of cumulative energy demand (ca 21.5 MJ per kg Xylitol produced) and energy payback time (1.17 years). The health and safety aspects are difficult to evaluate in terms of working conditions and ecotoxicity but a simple scale have been put to use to give an overview of the health risk associated with each material. In the health and safety aspects Xylitol also show the most promise but further development of a methodology for evaluating these terms are recommended.
Hållbar energiteknik är ett omtalat och snabbt utvecklande område där fasomvandlandematerial för termisk energiförvaring har dragit till sig uppmärksamhet. På grund av denna uppmärksamhet har behovet för en fullständig livscykelanalys för de relevanta materialen uppkommit. Föregående rapporter och journaler om ämnet har visat brister i fokus på hälso- och säkerhetsaspekter och i jämförelse med andra fasomvandlandematerial än paraffiner och vatten. Målet med denna rapport är att utföra och jämföra livscykelanalyser för tre olika fasomvandlandematerial med både miljöaspekter och hälso- och säkerhetsaspekter. En urvalsprocess av intressanta material har därmed genomförts för att hitta lämpliga kandidater att undersöka (Oktadekan, Xylitol och Mangan nitrat hexahydrat), med avseende på bl.a. hur mycket materialen studerats inom termisk energiförvaring. Livscykeln inom denna rapport är bunden från Cradle-to-grave utan återvinning av material och opererar under skandinaviska förhållanden med 52 värmecykler per år. Resultaten indikerar att Oktadekan är mest lämpad för globaluppvärmnings potential över 100 år (ca 4,5 kg CO2/kg Oktadekan producerad) och Xylitol mest lämpad för kumulativt energikrav (ca 21,5 MJ per kg Xylitol producerad) samt återbetalningstid för energi (1,17 år). De hälso- och säkerhetsaspekterna är svåra att definiera inom arbetsförhållanden och ekotoxicitet men en enkel skala baserad på ’GHS hazard statements’ har etablerats för att få en överblick över materialens hälsorisk. Även här visade Xylitol vara mest lämpad men fortsatt utveckling av en metodik för att analysera dessa aspekter rekommenderas.
APA, Harvard, Vancouver, ISO, and other styles
24

Elsanusi, Omer. "THERMAL ENERGY STORAGE WITH MULTIPLE FAMILIES OF PHASE CHANGE MATERIALS (PCM)." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1852.

Full text
Abstract:
The world is facing a major challenge when it comes to proper energy utilization. The increasing energy demand, the depleting fossil fuel resources and the growing environmental and ecological concerns are factors that drive the need for creative solutions. Renewable energy resources such as solar sit in the center of these solutions. Due to their intermittent nature, development of energy storage systems is crucial. This dissertation focused on the latent thermal energy storage systems that incorporate phase change materials (PCM). The main goal was to enhance the heat transfer rates in these systems to address the low melting (energy storage stage) and solidification (recovery stage) rates that are caused by the PCMs’ low thermal conductivity values. The application of multiple PCMs (m-PCMs) with varying melting temperatures in several arrangements was investigated. The effects of applying m-PCMs on the conduction heat transfer and on the natural convection heat transfer in both horizontally and vertically oriented heat exchangers were studied. This was followed by an optimization study of the PCMs’ melting temperatures and the working fluid flow rate. Further heat transfer enhancement using metal fins was also investigated. Numerical models were developed and validated. Results are reported and discussed. Significant enhancement in both complete melting time and energy storage capacity was obtained by the m-PCMs in series arrangement. This enhancement is more pronounced in the vertically oriented system. The working fluid flow rate was found to have a limited effect during the melting stage. However, it seems to be crucial in the solidification stage.
APA, Harvard, Vancouver, ISO, and other styles
25

Campbell, Kevin Ryan. "Phase Change Materials as a Thermal Storage Device for Passive Houses." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/201.

Full text
Abstract:
This study describes a simulation-based approach for informing the incorporation of Phase Change Materials (PCMs) in buildings designed to the "Passive House" standard. PCMs provide a minimally invasive method of adding thermal mass to a building, thus mitigating overheating events. Phase change transition temperature, quantity, and location of PCM were all considered while incrementally adding PCM to Passive House simulation models in multiple climate zones across the United States. Whole building energy simulations were performed using EnergyPlus from the US Department of Energy. A prototypical Passive House with a 1500 Watt electric heater and no mechanical cooling was modeled. The effectiveness of the PCM was determined by comparing the zone-hours and zone-degree-hours outside the ASHRAE defined comfort zone for all PCM cases against a control simulation without PCM. Results show that adding PCM to Passive Houses can significantly increase thermal comfort so long as the house is in a dry or marine climate. The addition of PCM in moist climates will not significantly increase occupant comfort because the majority of discomfort in these climates arises due to latent load. For dry or marine climates, PCM has the most significant impact in climates with lower cooling degree-days, reducing by 93% the number of zone-hours outside of thermal comfort and by 98% the number of zone-degree-hours uncomfortable in Portland, Oregon. However, the application of PCM is not as well suited for very hot climates because the PCM becomes overcharged. Only single digit reductions in discomfort were realized when modeling PCM in a Passive House in Phoenix, Arizona. It was found that regardless of the climate PCM should be placed in the top floor, focusing on zones with large southern glazing areas. Also, selecting PCM with a melt temperature of 25°C resulted in the most significant increases in thermal comfort for the majority of climates studied.
APA, Harvard, Vancouver, ISO, and other styles
26

Ali, Rashid. "Phase Change Phenomena During Fluid Flow in Microchannels." Doctoral thesis, KTH, Tillämpad termodynamik och kylteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26796.

Full text
Abstract:
Phase change phenomena of a fluid flowing in a micro channel may be exploited to make the heat exchangers more compact and energy efficient. Compact heat exchangers offer several advantages such as light weight, low cost, energy efficiency, capability of removing high heat fluxes and charge reduction are a few to mention. Phase change phenomena in macro or conventional channels have been investigated since long but in case of micro channels, fewer studies of phase change have been conducted and underlying phenomena during two-phase flow in micro channels are not yet fully understood. It is clear from the literature that the two-phase flow models developed for conventional channels do not perform well when extrapolated to micro scale. In the current thesis, the experimental flow boiling results for micro channels are reported. Experiments were conducted in circular, stainless steel and quartz tubes in both horizontal and vertical orientations. The internal diameters of steel tubes tested were 1.70 mm, 1.224 mm and the diameter of quartz tube tested was 0.781 mm. The quartz tube was coated with a thin, electrically conductive, transparent layer of Indium-Tin-Oxide (ITO) making simultaneous heating and visualization possible. Test tubes were heated electrically using DC power supply. Two refrigerants R134a and R245fa were used as working fluids during the tests. Experiments were conducted at a wide variety of operating conditions. Flow visualization results obtained with quartz tube clearly showed the presence of confinement effects and consequently an early transition to annular flow for micro channels. Several flow pattern images were captured during flow boiling of R134a in quartz tube. Flow patterns recorded during the experiments were presented in the form of Reynolds number versus vapour quality and superficial liquid velocity versus superficial gas velocity plots. Experimental flow pattern maps so obtained were also compared with the other flow pattern maps available in the literature showing a poor agreement. Flow boiling heat transfer results for quartz and steel tubes indicate that the heat transfer coefficient increases with heat flux and system pressure but is independent on mass flux and vapour quality. Experimental flow boiling heat transfer coefficient results were compared with those obtained using different correlations from the literature. Heat transfer experiments with steel tubes were continued up to dryout condition and it was observed that dryout conditions always started close to the exit of the tube. The dryout heat flux increased with mass flux and decreased with exit vapour quality. The dryout data were compared with some well known CHF correlations available in the literature. Two-phase frictional pressure drop for the quartz tube was also obtained under different operating conditions. As expected, two-phase frictional pressure drop increased with mass flux and exit vapour quality.
QC 20101206
APA, Harvard, Vancouver, ISO, and other styles
27

Bandhauer, Todd Matthew. "Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42900.

Full text
Abstract:
Energy-storing electrochemical batteries are the most critical components of high energy density storage systems for stationary and mobile applications. Lithium-ion batteries have received considerable interest for hybrid electric vehicles (HEV) because of their high specific energy, but face inherent thermal management challenges that have not been adequately addressed. In the present investigation, a fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. This work represents the first ever study of these coupled electrochemical-thermal phenomena in batteries from the electrochemical heat generation all the way to the dynamic heat removal in actual HEV drive cycles. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO4) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity (~1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.
APA, Harvard, Vancouver, ISO, and other styles
28

Pitié, Frédéric. "High temperature thermal energy storage : encapsulated phase change material particles : determination of thermal and mechanical properties." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/57108/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Malik, Amer. "Phase change with stress effects and flow." Doctoral thesis, KTH, Fysiokemisk strömningsmekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118451.

Full text
Abstract:
In this thesis two kinds of phase change i.e., solid state phase transformation in steels and solid-to-liquid phase transformation in paraffin, have been modeled and numerically simulated. The solid state phase transformation is modeled using the phase field theory while the solid-to-liquid phase transformation is modeled using the Stokes equation and exploiting the viscous nature of the paraffin, by treating it as a liquid in both states.The theoretical base of the solid state, diffusionless phase transformation or the martensitic transformation comes from the Khachaturyan's phase field microelasticity theory. The time evolution of the variable describing the phase transformation is computed using the time dependent Ginzburg-Landau equation. Plasticity is also incorporated into the model by solving another time dependent equation. Simulations are performed both in 2D and 3D, for a single crystal and a polycrystal. Although the model is valid for most iron-carbon alloys, in this research an Fe-0.3\%C alloy is chosen.In order to simulate martensitic transformation in a polycrystal, it is necessary to include the effect of the grain boundary to correctly capture the morphology of the microstructure. One of the important achievements of this research is the incorporation of the grain boundary effect in the Khachaturyan's phase field model. The developed model is also employed to analyze the effect of external stresses on the martensitic transformation, both in 2D and 3D. Results obtained from the numerical simulations show good qualitative agreement with the empirical observations found in the literature.The microactuators are generally used as a micropump or microvalve in various miniaturized industrial and engineering applications. The phase transformation in a paraffin based thermohydraulic membrane microactuator is modeled by treating paraffin as a highly viscous liquid, instead of a solid, below its melting point.  The fluid-solid interaction between paraffin and the enclosing membrane is governed by the ALE technique. The thing which sets apart the presented model from the previous models, is the use of geometry independent and realistic thermal and mechanical properties. Numerical results obtained by treating paraffin as a liquid in both states show better conformity with the experiments, performed on a similar microactuator. The developed model is further employed to analyze the time response of the system, for different input powers and geometries of the microactuator.

QC 20130219

APA, Harvard, Vancouver, ISO, and other styles
30

Green, Craig Elkton. "Composite thermal capacitors for transient thermal management of multicore microprocessors." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44772.

Full text
Abstract:
While 3D stacked multi-processor technology offers the potential for significant computing advantages, these architectures also face the significant challenge of small, localized hotspots with very large heat fluxes due to the placement of asymmetric cores, heterogeneous devices and performance driven layouts. In this thesis, a new thermal management solution is introduced that seeks to maximize the performance of microprocessors with dynamically managed power profiles. To mitigate the non-uniformities in chip temperature profiles resulting from the dynamic power maps, solid-liquid phase change materials (PCMs) with an embedded heat spreader network are strategically positioned near localized hotspots, resulting in a large increase in the local thermal capacitance in these problematic areas. Theoretical analysis shows that the increase in local thermal capacitance results in an almost twenty-fold increase in the time that a thermally constrained core can operate before a power gating or core migration event is required. Coupled to the PCMs are solid state coolers (SSCs) that serve as a means for fast regeneration of the PCMs during the cool down periods associated with throttling events. Using this combined PCM/SSC approach allows for devices that operate with the desirable combination of low throttling frequency and large overall core duty cycles, thus maximizing computational throughput. The impact of the thermophysical properties of the PCM on the device operating characteristics has been investigated from first principles in order to better inform the PCM selection or design process. Complementary to the theoretical characterization of the proposed thermal solution, a prototype device called a "Composite Thermal Capacitor (CTC)" that monolithically integrates micro heaters, PCMs and a spreader matrix into a Si test chip was fabricated and tested to validate the efficacy of the concept. A prototype CTC was shown to increase allowable device operating times by over 7X and address heat fluxes of up to ~395 W/cm2. Various methods for regenerating the CTC have been investigated, including air, liquid, and solid state cooling, and operational duty cycles of over 60% have been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
31

Oró, Prim Eduard. "Thermal energy storage (TES) using phase change materials (PCM) for cold applications." Doctoral thesis, Universitat de Lleida, 2013. http://hdl.handle.net/10803/110542.

Full text
Abstract:
L’objectiu d’aquesta tesis doctoral és el desenvolupament d’un sistema d’emmagatzematge d’energia tèrmica (TES) mitjançant la utilització de materials de canvi de fase (PCM) per aplicacions a baixa temperatura, en particular, per a congeladors comercials. Es provarà tant experimental com numèricament la millora de les condicions de l’emmagatzematge i també la millora de la qualitat dels aliments emmagatzemats/transportats. També inclou la investigació de nous PCMs, estudiant la modificació de la temperatura de canvi de fase i analitzant velocitats de degradació i corrosió amb els materials recipients. Els resultats obtinguts a les diferents aplicacions estudiades demostren el clarament el benefici de la utilització de PCM, reduint les fluctuacions i les caigudes de temperatura tant al interior dels sistemes com del producte, i per tant millorant la qualitat d’aquests.
El objetivo de esta tesis doctoral es el desarrollo de un sistema de almacenamiento de energía térmica (TES) mediante la utilización de materiales de cambio de fase (PCM) para aplicaciones a baja temperatura, en particular, para los congeladores comerciales. Se probará experimental y numéricamente la mejora de las condiciones de almacenamiento, y también la mejora de la calidad de los alimentos almacenados/transportados. También incluye la investigación de nuevos PCM, estudiando la modificación de la temperatura de cambio de fase y analizando velocidades de degradación y corrosión con los materiales contenedores. Los resultados obtenidos en las diferentes aplicaciones demuestran el beneficio de usar PCM, reduciendo las fluctuaciones y las caídas de temperatura tanto del interior de los sistemas como del producto almacenado y por tanto la mejoría de la calidad de éstos.
The aim of this PhD thesis is to develop a thermal energy storage (TES) system using phase change materials (PCM) for cold temperature applications in particular for commercial freezers testing experimentally and numerically the improvement of its thermal performance and the food quality stored. This thesis also includes the research on PCM with attractive properties for low temperature applications such as controllable phase change temperature and low corrosion and degradation rate. The results obtained in the proposed applications have proved the benefit of using PCM in the proposed cold applications based on reduction of the interior/product temperature fluctuations and
APA, Harvard, Vancouver, ISO, and other styles
32

Yang, Jia. "Melting and solidification models and thermal characteristics of microencapsulated phase change materials." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58140/.

Full text
Abstract:
Microencapsulated phase change material (MPCM) as a new thermal energy storage material and a heat transfer medium have attracted considerable attention in the thermal energy storage field. Solidification and melting models of a single PCM particle are constructed in this thesis. An effective numerical method for the problem of a spherical particle with a moving boundary was developed and validated by an iterative analytical series solution. A new liquid-solid interface model was proposed for modelling the effect of binary phase composition on the solidification of an alloy and a mixture PCM particle based on solid fraction. A full two-phase melting model of differentlysized micro/nano particles was also built. The initial melting point of particles is defined and depends on the minimum melting temperature of particles measured by DSC, the particle size and the Gibbs-Thomson equation. The model can predict the melting time of micro-particles flowing in a heat transfer channel, which agrees with the group melting behaviour of MPCM as observed by experiments. A test rig was built to explore the melting heat transfer behaviour of microcapsule phase change slurry (MPCS) flowing through a circular tube for a given constant heat flux. DPNT06-0182 slurries were investigated on the test rig. The experimental results indicate that the flow rate is a key factor in determining heat transfer coefficients of slurries. For the same energy efficiency, and in the situation of low flow rate and phase change, the pressure drop and local heat transfer coefficients of 10% DPNT slurry are lower compared with water, but the most heat energy is stored during the passage through the heated test section. However, in the case of high flow rates and no phase change, the local heat transfer coefficients of 10% DPNT slurry are higher with comparison to water under turbulent flows.
APA, Harvard, Vancouver, ISO, and other styles
33

Mustaffar, Ahmad Fadhlan Bin. "Irregular aluminium foam and phase change material composite in transient thermal management." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3338.

Full text
Abstract:
Traction systems generate high loads of waste heat, which need to be removed for efficient operations. A new transient heat sink is proposed, which is based on salt hydrate phase change material (PCM). The heat sink would absorb heat during the short stationary phase i.e. at stations in which the PCM melts, a process accelerated by aluminium foam as it increases the rate of heat transfer within the PCM. When the train moves, the PCM is solidified via a forced convection stack. This creates a passive and efficient thermal solution, especially once heat pipe is employed as heat conduit. At the outset, the characteristics of the foam needed to be accurately determined. The foam was uncommon as its pore morphology was irregular, therefore it was scanned in a medical computed tomography (CT) scanner, which allowed for the construction of a three dimensional (3D) model. The model accuracy was enhanced by software, resulting in an extremely useful analytical tool. The model enabled important structural parameters to be measured e.g. porosity and specific surface area, which were crucial for the subsequent thermal and fluid flow analyses. A defect dense region was also detected, the effect of which was further investigated. Interestingly in the volume devoid of this defect, the porosity and specific surface area were uniform. A test rig was constructed that mimicked liquid cooling (or in the planned application, heat pipe cooling) in power electronics. At the core was a heat sink of salt hydrate PCM, impregnated within the foam. The sink with its current specifications (with liquid cooling) was able to absorb a thermal load consistent from a group of 4-5 IGBTs, which dissipated a low power of 20W per module during stops. The heating period of 1600-3500s per cycle meant the sink could be fitted to intercity locomotives. The foam increased the effective thermal conductivity by a factor of 24, from 0.45 to 10.83 W/m.K. 3D volume averaged numerical simulation was validated by experiment, which could be used to facilitate scale up or redesign for further optimization. As well as a support structure for the storage component of the system, the foam could replace conventional fins in forced convection, adding value to the potential manufacturer of the system. Heat transfer coefficient calculation incorporated the actual surface area that was derived from the 3D model, a first for metal foam studies. Results have shown a good Nu/Re correlation, comparable with other metal foam works.
APA, Harvard, Vancouver, ISO, and other styles
34

Quant, Colón Laura Marcela. "Study of a urea-based phase change material for thermal energy storage." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3010.

Full text
Abstract:
La technologie de stockage de l'énergie thermique par chaleur latente (LHTES) est abordée en travaillant à la fois sur les matériaux à changement de phase MCP utilisés et sur les systèmes de stockage techniquement et économiquement viables pour leur intégration dans les bâtiments. En ce qui concerne le matériau MCP, un mélange eutectique d'urée et de nitrate de sodium a été précédemment identifié comme un bon candidat pour les applications eau chaude sanitaire et chauffage. L'un des principaux objectifs de la thèse de doctorat était la caractérisation de ces aspects pour évaluer l’utilisation à long terme du mélange eutectique d'urée et de nitrate de sodium comme MCP. L'étude du matériau comprend le développement de méthodologies qui sont plus représentatives de son utilisation dans l'application finale que celles traditionnellement rencontrées pour la caractérisation des MCP. La caractérisation de l'hygroscopicité ou de l'absorption d'eau du mélange eutectique d'urée et de nitrate de sodium a été réalisée dans différentes conditions. Une méthode de préparation des échantillons et des conditions de manipulation sont proposées pour éviter l'absorption d'eau du mélange.La dégradation thermique du mélange eutectique d'urée et de nitrate de sodium a été évaluée en étudiant le comportement thermo-physique après un temps d'exposition à températures élevées. Des mesures DSC ont été effectuées pour déterminer la variation des propriétés directement liées au stockage de l'énergie thermique du MCP et à sa stabilité à long terme. En outre, les produits obtenus lors de la dégradation et leur influence sur la variation des propriétés du MCP ont été étudiés.Le mélange eutectique a montré une ségrégation imprévue à des températures supérieures au point de fusion lors des cycles de fusion et de solidification. Plusieurs tests ont été effectués, notamment le cyclage thermique, la diffraction par rayons X des phases due à la ségrégation, DSC après la redissolution de ces phases dans le matériau liquide et la microscopie (PLM et MEB) d'échantillons refroidis dans différentes conditions. Les expériences ont permis d'établir une relation entre les conditions de fonctionnement, et les structures cristallines résultantes qui expliquent la ségrégation de phase dans le mélange eutectique, et la manière de la réduire et d'inverser le processus.L'étude de la surfusion comprenait l'utilisation de deux MCPs : l’eutectique urée - nitrate de sodium et le PEG 10000. Les expériences ont été réalisées dans différentes conditions: des récipients de géométrie et de volume différents, diverses vitesses de refroidissement et divers fluides de transfert thermique. Les résultats ont servi à évaluer la relation entre le degré de surfusion et les paramètres associés. Après, des modèles de régression linéaire ont été définis pour chaque matériau puis pour les deux matériaux. L'objectif spécifique de ce chapitre est de faire un pas de plus dans la compréhension et la prédiction de la surfusion, afin de concevoir efficacement des systèmes LHTES utilisant des matériaux qui peuvent présenter une surfusion.Enfin, en ce qui concerne le système de stockage, un échangeur de chaleur à tubes-calandre est étudié afin d'évaluer l'utilisation de ce type de dispositifs déjà commercialisés comme dispositifs de stockage de l'énergie thermique latente (LHTES). Le premier objectif était de mieux comprendre le comportement thermique de l’échangeur. L’étude a été réalisée en utilisant, dans la calandre, de la paraffine RT60 comme MCP, un matériau commercial bien connu assurant ainsi la reproductibilité des résultats, et de l'eau comme fluide de transfert de chaleur dans les tubes. Plusieurs débits et plages de température ont été envisagés pour réaliser l’étude complète du fonctionnement de l’échangeur. Le travail a inclus la détermination des pertes thermiques et l'étude des cycles de charge et de décharge avec différentes températures initiales et finales et différents débits
This work presents a contribution to the latent heat thermal energy storage LHTES technology by working on both phase change materials PCMs and storage systems that are technically and economically viable for their integration in buildings. Regarding the PCM material, the urea and sodium nitrate eutectic mixture has been previously identified as a good candidate for the Domestic Heating Water (DHW) and heating applications. One of the main objectives of the PhD thesis was the characterization of these aspects to evaluate the urea and sodium nitrate eutectic mixture long term feasibility to be used as a PCM in application. The study of the material includes the development of methodologies that are more practical and representative of the operation in the final application than the traditionally used in PCM characterization. The characterization of the hygroscopicity or water uptake of the urea and sodium nitrate eutectic mixture under different conditions was performed. A sample preparation method and handling conditions are proposed for avoiding the mixture water uptake.The thermal degradation of the urea and sodium nitrate eutectic mixture was evaluated by measuring the thermo-physical behavior after exposure time at different defined temperatures. DSC measurements were carried out to determine the variation of parameters that are directly related to the thermal energy storage of the PCM and its long-term stability. In addition, the degradation products and their influence on the variation of the system properties were assessed.The eutectic mixture showed unforeseen segregation at temperatures above the melting point upon melting and solidification cycles. Several tests were done including thermal cycling, XRD of the segregates, DSC after the redissolution of the segregates in the liquid material, and microscopy (PLM and SEM) of samples cooled down under different conditions. The experiments permitted to stablish a relationship between the operation conditions, more specifically the cooling rates, with the resulting crystal structures which explains the phase segregation in the eutectic mixture, and how to reduce it and how to reverse the process.The study of the supercooling comprised the use of the urea and sodium nitrate eutectic mixture and PEG10000. The experiments were performed in different conditions: sample containers (with different geometries and volumes), cooling rates and heat transfer fluids (HTF) were implemented. Finally, the results served to evaluate the relationship of the supercooling degree with parameters associated with the sample volume, cooling media and PCM parameters. Afterwards, linear regression models were gathered for each material and one for both materials. The specific aim of the chapter is to get a step further into the supercooling understanding and prediction, in order to efficiently design LHTES systems to be used with materials that show supercooling.Finally, regarding the storage system a shell and tubes heat exchanger is studied in order to evaluate the use of devices already commercially available the use as latent heat energy storage LHTES devices. The first objective was to get a deeper understanding of the thermal behavior of the device. The characterization was performed using RT60 paraffin as PCM inside the shell, a well known commercial material, to assure the reproducibility of the results, and water as heat transfer fluid in the tubes. Several flow rates and temperature ranges were used to obtain a greater scope of the operation of the device as LHTES. The work included the determination of the thermal losses, and the study of charging and discharging cycles, initial and final temperatures and flow rates
APA, Harvard, Vancouver, ISO, and other styles
35

Viry, Cédric. "Silica micro-encapsulation of organic phase-change materials for thermal energy storage." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122084.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 99-107).
Renewable energy production and storage are our main levers to fight climate change. As the battery industry struggles to manufacture cheap, cyclable and safe systems, thermal energy storage recently became a more active area of research, promising cheap and cyclable storage materials. In the U.S., nearly 70% of the energy input ends up as thermal losses. More than a third of these losses are generated at electricity production plants and another third in the transportation sector. Combined, these two sectors waste nearly 50% of the total U.S. energy feed. Thermal energy storage can help take advantage of this opportunity by allowing to revalorize waste heat. High-temperature thermal energy storage can be used to generate electricity but requires large and expensive systems that can only be charged with high-grade energy sources (usually electricity or solar energy).
This study focuses on organic Phase-Change Materials for use with low-grade heat sources for domestic heating applications. Engineering organic phase-change material energy storage systems is complicated because of their very low thermal conductivity, the leakage of the liquid phase and the thermal expansion that comes with phase-change. Micro-encapsulation is an elegant solution to all of these problems. Polymer micro-encapsulation of these phase-change materials has been achieved with success but other classes of shell materials such as metals and ceramics can offer more desirable thermal properties. In this study, we use the sol-gel process of tetraethyl orthosilicate to synthesize silica microcapsules containing a variety of organic phase-change materials. We characterize these capsules to compare their thermal and protective properties to the bulk phase-change material in order to assess their viability as a heat storage medium.
Our results show that it is possible to synthesize microcapsules containing several types of phase-change materials with this process. The synthesis leads to porous microcapsules which would require additional processing to achieve all of the micro-encapsulation goals. However, we also show that the main thermal properties are conserved and that for some materials such as sugar alcohols, some thermal properties can even be enhanced.
by Cédric Viry.
S.M.
S.M. Massachusetts Institute of Technology, Department of Materials Science and Engineering
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Guangyao. "An Investigation of Phase Change Material (PCM)-Based Ocean Thermal Energy Harvesting." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100989.

Full text
Abstract:
Phase change material (PCM)-based ocean thermal energy harvesting is a relatively new method, which extracts the thermal energy from the temperature gradient in the ocean thermocline. Its basic idea is to utilize the temperature variation along the ocean water depth to cyclically freeze and melt a specific kind of PCM. The volume expansion, which happens in the melting process, is used to do useful work (e.g., drive a turbine generator), thereby converting a fraction of the absorbed thermal energy into mechanical energy or electrical energy. Compared to other ocean energy technologies (e.g., wave energy converters, tidal current turbines, and ocean thermal energy conversion), the proposed PCM-based approach can be easily implemented at a small scale with a relatively simple structural system, which makes it a promising method to extend the range and service life of battery-powered devices, e.g, autonomous underwater vehicles (AUVs). This dissertation presents a combined theoretical and experimental study of the PCM-based ocean thermal energy harvesting approach, which aims at demonstrating the feasibility of the proposed approach and investigating possible methods to improve the overall performance of prototypical systems. First, a solid/liquid phase change thermodynamic model is developed, based on which a specific upperbound of the thermal efficiency is derived for the PCM-based approach. Next, a prototypical PCM-based ocean thermal energy harvesting system is designed, fabricated, and tested. To predict the performance of specific systems, a thermo-mechanical model, which couples the thermodynamic behaviors of the fluid materials and the elastic behavior of the structural system, is developed and validated based on the comparison with the experimental measurement. For the purpose of design optimization, the validated thermo-mechanical model is employed to conduct a parametric study. Based on the results of the parametric study, a new scalable and portable PCM-based ocean thermal energy harvesting system is developed and tested. In addition, the thermo-mechanical model is modified to account for the design changes. However, a combined analysis of the results from both the prototypical system and the model reveals that achieving a good performance requires maintaining a high internal pressure, which will complicate the structural design. To mitigate this issue, the idea of using a hydraulic accumulator to regulate the internal pressure is proposed, and experimentally and theoretically examined. Finally, a spatial-varying Robin transmission condition for fluid-structure coupled problems with strong added-mass effect is proposed and investigated using fluid structure interaction (FSI) model problems. This can be a potential method for the future research on the fluid-structure coupled numerical analysis of AUVs, which are integrated with and powered by the PCM-based thermal energy harvesting devices.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
37

Barhemmati, Rajab Nastaran. "Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752408/.

Full text
Abstract:
In this research thermal properties enhancement of phase change material (PCM) using boron nitride nanomaterials such as nanoparticles and nanotubes is studied through experimental measurements, finite element method (FEM) through COMSOL 5.3 package and molecular dynamics simulations via equilibrium molecular dynamics simulation (EMD) with the Materials and Process Simulations (MAPS 4.3). This study includes two sections: thermal properties enhancement of inorganic salt hydrate (CaCl2∙6H2O) as the phase change material by mixing boron nitride nanoparticles (BNNPs), and thermal properties enhancement of organic phase change material (paraffin wax) as the phase change material via encapsulation into boron nitride nanotubes (BNNTs). The results of the proposed research will contribute to enhance the thermal transport properties of inorganic and organic phase change material applying nanotechnology for increasing energy efficiency of systems including electronic devices, vehicles in cold areas to overcome the cold start problem, thermal interface materials for efficient heat conduction and spacecraft in planetary missions for efficient thermal managements.
APA, Harvard, Vancouver, ISO, and other styles
38

Ma, Yunwei. "A Thermal Switch from Thermoresponsive Polymer Aqueous Solutions." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/86837.

Full text
Abstract:
Thermal switch is very important in today’s world and it has varies of applications including heat dissipation and engine efficiency improving. The commercial thermal switch based on mechanical design is very slow and the structure is too complicated to make them smaller. To enable fast thermal switch as well as to make thermal switch more compact, I try to use second-order phase transition material to enable our thermal switch. Noticing the transition properties of thermoresponsive polymer for drug delivery, its potential in thermal switch can be expected. I used Poly(N-isopropylacrylamide) (PNIPAM) as an example to show the abrupt thermal conductivity change of thermoresponsive polymer solutions below and above their phase transition temperature. A novel technique, transition grating method, is used to measure the thermal conductivity. The ratio of thermal switch up to 1.15 in transparent PNIPAM solutions after the transition is observed. This work will demonstrate the new design of using second-order phase transition material to enable fast and efficient thermal switch.
Master of Science
Controllable thermal conductivity (thermal switching) is very important to thermal management area and useful in a wide area of applications. Nowadays, mechanical thermal conductivity controller device suffers from large scale and slow transition speeds. To solve these problems, I tired the phase transition thermoresponsive polymers to create quick thermal switching because the thermal conductivity will change with the phase. Thermoresponsive polymers show sharp phase changes upon small changes in temperature. Such polymers are already widely used in biomedical-like applications, the thermal switch applications are not well-studied. In this work, I tested Poly(N-isopropylacrylamide) (the abbreviation is PNIPAM) as an example to show the quick thermal conductivity changing ability of thermoresponsive polymer when the transition was happened .I used a novel approach, called the TTG, transient thermal grating. It has easy setup and high sensitivity. The thermal conductivity switching ratio as high as 1.15 in transparent PNIPAM solutions after transition is observed. This work will give new opportunities to control thermal switches using the phase change of thermoresponsive material or abrupt other phase change material in general.
APA, Harvard, Vancouver, ISO, and other styles
39

Sharma, Shivangi. "Performance enhancement of building-integrated concentrator photovoltaic system using phase change materials." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/33859.

Full text
Abstract:
Building-integrated Concentrator Photovoltaic (BICPV) technology produces noiseless and pollution free electricity at the point of use. With a potential to contribute immensely to the increasing global need for a sustainable and low carbon energy, the primary challenges such as thermal management of the panels are overwhelming. Although significant progress has been made in the solar cell efficiency increase, the concentrator photovoltaic industry has still to go a long way before it becomes competitive and economically viable. Experiencing great losses in their electrical efficiencies at high temperatures that may eventually lead to permanent degradation over time, affects the market potential severely. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperatures could theoretically lead to a 5 % electricity efficiency improvement resulting in 15 GW increase in electricity production worldwide. However, due to a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques both individually and working in tandem, this lucrative potential is yet to be realised. The work presented in this thesis has been focussed on incremental performance improvement of BICPV by developing innovative solutions for passive cooling of the low concentrator based BICPV. Passive cooling approaches are selected as they are generally simpler, more cost-effective and considered more reliable than active cooling. Phase Change Materials (PCM) have been considered as the primary means to achieve this. The design, fabrication and the characterisation of four different types of BIPCV-PCM assemblies are described. The experimental investigations were conducted indoors under the standard test conditions. In general, for all the fabricated and assembled BICPV-PCM systems, the electrical power output showed an increase of 2 %-17 % with the use of PCM depending on the PCM type and irradiance. The occurrence of hot spots due to thermal disequilibrium in the PV has been a cause of high degradation rates for the modules. With the use of PCM, a more uniform temperature within the module could be realised, which has the potential to extend the lifetime of the BICPV in the long-term. Consequentially, this may minimise the intensive energy required for the production of the PV cells and mitigate the associated environmental impacts. Following a parallel secondary approach to the challenge, the design of a micro-finned back plate integrated with a PCM containment has been proposed. This containment was 3D printed to save manufacturing costs and time and for reducing the PCM leakage. An organic PCM dispersed with high thermal conductivity nanomaterial was successfully tested. The cost-benefit analysis indicated that the cost per degree temperature reduction (£/°C) with the sole use of micro-fins was the highest at 1.54, followed by micro-fins + PCM at 0.23 and micro-fins + n-PCM at 0.19. The proposed use of PCM and application of micro-finned surfaces for BICPV heat dissipation in combination with PCM and n-PCM is one the novelties reported in this thesis. In addition, an analytical model for the design of BICPV-PCM system has been presented which is the only existing model to date. The results from the assessment of thermal regulation benefits achieved by introducing micro-finning, PCM and n-PCM into BICPV will provide vital information about their applicability in the future. It may also influence the prospects for how low concentration BICPV systems will be manufactured in the future.
APA, Harvard, Vancouver, ISO, and other styles
40

Chiu, Justin NingWei. "Heat Transfer Aspects of Using Phase Change Material in Thermal Energy Storage Applications." Licentiate thesis, KTH, Kraft- och värmeteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34263.

Full text
Abstract:
Innovative methods for providing sustainable heating and cooling through thermal energy storage (TES) have gained increasing attention as heating and cooling demands in the built environment continue to climb. As energy prices continue to soar and systems reach their maximal capacity, there is an urgent need for alternatives to alleviate peak energy use. TES systems allow decoupling of energy production from energy utilization, both in location and in time. It is shown in this thesis that successful implementation of TES in the built environment alleviates peak energy load and reduces network expansion as well as the marginal energy production cost. This thesis analyzes phase change material (PCM) based TES systems in terms of material property characterization, numerical modeling and validation of thermal storage, as well as case specific techno-economic feasibility studies of system integration. The difficulties identified in latent heat TES design, such as heat transfer aspects, subcooling and identification of phase separation, have been analyzed through Temperature-History mapping and TES numerical modeling with experimental validation. This work focuses on the interdependency between resource availability, thermal charge/discharge power and storage capacity. In a situation where resource availability is limited, e.g. when using free cooling, waste heat or off-peak storage, the thermal power and storage capacity are strongly interrelated and should always be considered in unison to reach an acceptable techno-economic solution. Furthermore, when considering TES integration into an existing thermal energy distribution network, three adverse aspects are revealed in the Swedish case study: the single tariff system, the low-return temperature penalty, and the low storage utilization rate. These issues can be overcome through better adapted policies and optimized storage control strategies. Finally, despite the currently unfavorable conditions in the Swedish energy system, it is shown that TES has the potential to mitigate climate change through greenhouse gas emission reduction by displacing fossil-fuel based marginal thermal energy production.
QC 20110629
Cold Thermal Energy Storage
APA, Harvard, Vancouver, ISO, and other styles
41

Gates, Jonathan Roger. "Solar thermal storage using phase change material for space heating in residential buildings." Thesis, University of Brighton, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507199.

Full text
Abstract:
In 2007 the domestic sector was responsible for 27% of all energy consumed by final users in the UK, yet only 1.5% of this energy was met by renewables. The utilisation of renewable energy systems such as active solar water heating with Phase Change Material (PCM) thermal storage, offers vast potential for reducing energy use and CO2 emissions in the domestic energy sector in the UK. Previous research indicated that the incorporation of PCMs in underfloor heating had the potential to make energy savings, but their use in combination with renewable energy had not been explored in the UK. Consequently this was identified as a gap in the current knowledge that the current research would fill. A shortage was also identified in real life performance data on PCM space heating system performance in the UK. The current work successfully addresses this shortfall in data and in doing so provides a significant contribution to knowledge in the area of using solar thermal storage for space heating of residential buildings. An in depth literature review was undertaken as part of the research programme, which identified the key shortcomings in existing PCM based thermal storage systems for space heating. An underfloor space heating system for residential buildings was therefore developed that addresses the weaknesses of the existing systems highlighted in the literature review. The system stores solar thermal energy during the day and then uses this to provide space heating in the evening, thus addressing the problem of matching solar availability to demand. An experimental approach was adopted for the study as numerous researchers (Kauranen et al., 1991, Hasnian, 1998, Kenisarin and Mahkamov, 2007), have demonstrated the unreliability of manufacturer's published thermophysical properties of PCM. Therefore, this research chose to adopt an experimental model approach instead of a mathematical modelling approach. A model consisting of a full size solar collector 4m2 in area and a PCM filled underfloor heating panel was constructed in the laboratory. A methodology was developed to measure the performance of the key modules which allowed the performance of the system to be evaluated. The experimental data indicated that it was possible to use a low flow rate of 2.52 litres per minute, without a detrimental effect on the performance of the PCM panel. The use of a low flow rate minimises parasitic losses and produces significant energy savings in comparison to the use of higher flow rates. The experimental results indicated that the system was able to provide adequate thermal comfort with a maximum floor heat emission of 158 W/m using a flow rate temperature of 50°C. Comparisons of the annual space heating energy of the developed integrated system versus a wet central heating system in the UK revealed a significant reduction of energy use and associated CO2 emissions by as much as 52%.
APA, Harvard, Vancouver, ISO, and other styles
42

Mahdi, Jasim M. "ENHANCEMENT OF PHASE CHANGE MATERIAL (PCM) THERMAL ENERGY STORAGE IN TRIPLEX-TUBE SYSTEMS." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1533.

Full text
Abstract:
The major challenge associated with renewable-energy systems especially solar, is the supply intermittency. One effective solution is to incorporate thermal energy storage components utilizing phase change materials (PCMs). These materials have the potential to store large amounts of energy in relatively small volumes and within nearly an isothermal storage process. The primary drawback of today’s PCMs is that their low thermal conductivity values critically limit their energy storage applications. Also, this grossly reduces the melting/ solidification rates, thus making the system response time to be too long. So, the application of heat transfer enhancement is very important. To improve the PCM storage performance, an efficient performing containment vessel (triplex-tube) along with applications of various heat transfer enhancement techniques was investigated. The techniques were; (i) dispersion of solid nanoparticles, (ii) incorporation of metal foam with nanoparticle dispersion, and (iii) insertion of longitudinal fins with nanoparticle dispersion. Validated simulation models were developed to examine the effects of implementing these techniques on the PCM phase-change rate during the energy storage and recovery modes. The results are presented with detailed model description, analysis, and conclusions. Results show that the use of nanoparticles with metal foam or fins is more efficient than using nanoparticles alone within the same volume usage. Also, employing metal foam or fins alone results in much better improvement for the same system volume.
APA, Harvard, Vancouver, ISO, and other styles
43

Nguyen, Huu tan. "Thermal Characterization of In-Sb-Te thin films for Phase Change Memory Application." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0112/document.

Full text
Abstract:
Les matériaux à changement de phase (PCM) sont utilisés pour la réalisation de mémoire non volatile. Ces matériaux possèdent la particularité de passer d’un état cristallin à un état amorphe à l’aide d’une impulsion de chaleur, créant ainsi un processus propre au stockage de l’information. Les PCMs sont généralement basés sur des composés ternaires de type Ge-Sb-Te (GST) avec une température de transition de l’ordre de 125°C, rendent ces matériaux inutilisable dans le domaine de l’automobile et pour des applications militaires. Pour contourner cette limitation, le GST est remplacé par le composé In-Sb-Te (IST) possèdent une température de transition plus élevé et un temps de transition beaucoup plus rapide (nanoseconde). Les propriétés thermiques de l’IST et de ses interfaces au sein de la cellule PCM peuvent influencer la température de transition. C’est pourquoi la mesure de la conductivité thermique nous donnera une estimation de la valeur de cette transition.Différentes techniques ont été misent en oeuvre pour mesurer la conductivité thermique des couches minces d’IST en fonction de la concentration en Te, à savoir ; la radiométrie photo-thermique modulée (MPTR) et la méthode 3ω dans une gamme de température allant de l’ambiant jusqu'à 550°C.Les résultats obtenus par les deux techniques de caractérisation thermiques démontrent que la conductivité thermique de l'IST diminue lorsque l'on augmente la teneur en Te. L'augmentation de la teneur en Te pourrait donc conduire à un alliage thermiquement plus résistif, qui est censé apporter l'avantage d'un flux de chaleur plus confiné et limiter la cross-talk thermique dans le dispositif de mémoire à changement de phase
Phase change memories (PCM) are typically based on compounds of the Ge-Sb-Te (GST) ternary system. Nevertheless, a major drawback of PCM devices is the failure to fulfill automotive-level or military-grade requirements (125°C continuous operation), due to the low crystallization temperature of GST. To overcome this limitation, alloys belonging to the In-Sb-Te (IST) system have been proposed, which have demonstrated high crystallization temperature, and fast switching. Thermal properties of the chalcogenide alloy and of its interfaces within the PCM cell can influence the programming current, reliability and optimized scaling of PCM devices. The two methods, namely: 3ω and Modulated Photothermal Radiometry (MPTR) technique was implemented to measure the thermal conductivity of IST thin films as well as the thermal boundary resistance at the interface with other surrounding materials (a metal and a dielectric). The experiment was carried outin situ from room temperature up to 550oC in order to investigate the intrinsic thermal properties at different temperatures and the significant structural rearrangement upon the phase transition.The results obtained from the two thermal characterization techniques demonstrate that the thermal conductivity of IST decreases when increasing the Te content. Increasing the Te content could thus lead to a more thermally resistive alloy, which is expected to bring the advantage of a more confined heat flow and limiting the thermal cross-talk in the phase change memory device
APA, Harvard, Vancouver, ISO, and other styles
44

Irwin, Matthew A. "Testing of Carbon Foam with a Phase Change Material for Thermal Energy Storage." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1399489817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fredi, Giulia. "Multifunctional polymer composites for thermal energy storage and thermal management." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/265328.

Full text
Abstract:
Thermal energy storage (TES) consists in storing heat for a later use, thereby reducing the gap between energy availability and demand. The most diffused materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin waxes, which accumulate and release a high amount of latent heat through a solid-liquid phase change, at a nearly constant temperature. To avoid leakage and loss of material, PCMs are either encapsulated in inert shells or shape-stabilized with porous materials or a nanofiller network. Generally, TES systems are only a supplementary component added to the main structure of a device, but this could unacceptably rise weight and volume of the device itself. In the applications where weight saving and thermal management are both important (e.g. automotive, portable electronics), it would be beneficial to embed the heat storage/management in the structural components. The aim of this thesis is to develop polymer composites that combine a polymer matrix, a PCM and a reinforcing agent, to reach a good balance of mechanical and TES properties. Since this research topic lacks a systematic investigation in the scientific literature, a wide range of polymer/PCM/reinforcement combinations were studied in this thesis, to highlight the effect of PCM introduction in a broad range of matrix/reinforcement combinations and to identify the best candidates and the key properties and parameters, in order to set guidelines for the design of these materials. The thesis in divided in eight Chapters. Chapter I and II provide the introduction and the theoretical background, while Chapter III details the experimental techniques applied on the prepared composites. The results and discussion are then described in Chapters IV-VII. Chapter IV presents the results of PCM-containing composites having a thermoplastic matrix. First, polyamide 12 (PA12) was melt-compounded with either a microencapsulated paraffin (MC) or a paraffin powder shape-stabilized with carbon nanotubes (ParCNT), and these mixtures were used as matrices to produce thermoplastic laminates with a glass fiber fabric via hot-pressing. MC was proven more suitable to be combined with PA12 than ParCNT, due to the higher thermal resistance. However, also the MC were considerably damaged by melt compounding and the two hot-pressing steps, which caused paraffin leakage and degradation, as demonstrated by the relative enthalpy lower than 100 %. Additionally, the PCM introduction decreased the mechanical properties of PA12 and the tensile strength of the laminates, but for the laminates containing MC the elastic modulus and the strain at break were not negatively affected by the PCM. Higher TES properties were achieved with the production of a semi-structural composite that combined PA12, MC and discontinuous carbon fibers. For example, the composite with 50 wt% of MC and 20 wt% of milled carbon fibers exhibited a total melting enthalpy of 60.4 J/g and an increase in elastic modulus of 42 % compared to the neat PA. However, the high melt viscosity and shear stresses developed during processing were still responsible for a not negligible PCM degradation, as also evidenced by dynamic rheological tests. Further increases in the mechanical and TES properties were achieved by using a reactive thermoplastic matrix, which could be processed as a thermosetting polymer and required considerably milder processing conditions that did not cause PCM degradation. MC was combined with an acrylic thermoplastic resin and the mixtures were used as matrices to produce laminates with a bidirectional carbon fabric, and for these laminates the melting enthalpy increased with the PCM weight fraction and reached 66.8 J/g. On the other hand, the increased PCM fraction caused a rise in the matrix viscosity and so a decrease in the fiber volume fraction in the final composite, thereby reducing the elastic modulus and flexural strength. Dynamic-mechanical investigation evidenced the PCM melting as a decreasing step in ’; its amplitude showed a linear trend with the melting enthalpy, and it was almost completely recovered during cooling, as evidenced by cyclic DMA tests. Chapter V presents the results of PCM-containing thermosetting composites. A further comparison between MC and ParCNT was performed in a thermosetting epoxy matrix. First, ParCNT was mixed with epoxy and the mixtures were used as matrices to produce laminates with a bidirectional carbon fiber fabric. ParCNT kept its thermal properties also in the laminates, and the melting enthalpy was 80-90 % of the expected enthalpy. Therefore, ParCNT performed better in thermosetting than in thermoplastic matrices due to the milder processing conditions, but the surrounding matrix still partially hindered the melting-crystallization process. Therefore, epoxy was combined with MC, but the not optimal adhesion between the matrix and the MC shell caused a considerable decrease in mechanical strength, as also demonstrated by the fitting with the Nicolais-Narkis and Pukanszky models, both of which evidenced scarce adhesion and considerable interphase weakness. However, the Halpin-Tsai and Lewis-Nielsen models of the elastic modulus evidenced that at low deformations the interfacial interaction is good, and this also agrees with the data of thermal conductivity, which resulted in excellent agreement with the Pal model calculated considering no gaps at the interface. These epoxy/MC mixtures were then reinforced with either continuous or discontinuous carbon fibers, and their characterization confirmed that the processing conditions of an epoxy composite are mild enough to preserve the integrity of the microcapsules and their TES capability. For continuous fiber composites, the increase in the MC fraction impaired the mechanical properties mostly because of the decrease in the final fiber volume fraction and because the MC phase tends to concentrate in the interlaminar region, thereby lowering the interlaminar shear strength. On the other hand, a small amount of MC enhanced the mode I interlaminar fracture toughness (Gic increases of up to 48 % compared to the neat epoxy/carbon laminate), as the MC introduced other energy dissipation mechanisms such as the debonding, crack deflection, crack pinning and micro-cracking, which added up to the fiber bridging. Chapter VI introduces a fully biodegradable TES composite with a thermoplastic starch matrix, reinforced with thin wood laminae and containing poly(ethylene glycol) as the PCM. The wood laminae successfully acted as a multifunctional reinforcement as they also stabilized PEG in their inner pores (up to 11 wt% of the whole laminate) and prevent its leakage. Moreover PEG was proven to increase the stiffness and strength of the laminate, thereby making the mechanical and TES properties synergistic and not parasitic. Finally, Chapter VII focused on PCM microcapsules. The synthesis of micro- and nano-capsules with an organosilica shell via a sol-gel approach clarified that the confinement in small domains and the interaction with the shell wall modified the crystallization behavior of the encapsulated PCM, as also evidenced by NMR and XRD studies and confirmed by DSC results. In the second part of Chapter VII, a coating of polydpamine (PDA) deposited onto the commercial microcapsules MC. The resulting PDA coating was proven effective to enhance the interfacial adhesion with an epoxy matrix, as evidenced by SEM micrographs. XPS demonstrated that the PDA layer was able to react with oxirane groups, thereby evidencing the possibility of forming covalent bond with the epoxy matrix during the curing step.
APA, Harvard, Vancouver, ISO, and other styles
46

Yu, Xianhui. "Numerical solution of multiple front phase change problems for modeling ice thermal storage systems." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-163715/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pourakbar, Sharifi Naser. "Application of Phase Change Materials to Improve the Thermal Performance of Buildings and Pavements." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/22.

Full text
Abstract:
In recent decades, much research has investigated the efficiency of Phase Change Materials (PCMs) in improving the thermal performance of buildings and pavements. In buildings, increasing the thermal inertia of structural elements by incorporating PCMs decreases the energy required to keep the inside temperature in the comfort range. In concrete pavements, using PCMs decreases the number of freeze/thaw cycles experienced by the pavement and thus increases service life. However, PCMs cannot be added to cementitious binders directly, because they interfere with the hydration reactions between cement and water that produce strength-bearing phases. Therefore different carriers have been proposed to indirectly incorporate PCMs in cementitious materials. Lightweight Aggregate (LWA) is one of the materials that has been proposed as PCM carrier agent. However, it was not studied in depth before. Various experiments were conducted to investigate the problems associated with incorporating LWA presoaked in PCM in cementitious media. The results show that a portion of PCM leaks out of the LWA’s structure and subsequently affects different chemical, physical, and mechanical properties of the binder. In addition, the applicability of Rice Husk Ash (RHA), a common material never before used to encapsulate PCM, as a PCM carrier agent was investigated. The results show that RHA can absorb and contain liquids in its porous structure; and regarding its compatibility with the cementitious media, it can be used as PCM carrier. Different computational simulations using Typical Meteorological Year data were conducted to evaluate the efficiency of PCMs in improving the thermal performance of buildings. Utilizing PCM-incorporated gypsum boards was shown to be a promising strategy to achieve the governmental plans of “Zero Net Energy� buildings. The results show that using a PCM with a melting point near the occupant comfort zone delays and reduces the inside peak temperature, increases the duration of time during which the inside temperature stays in the comfort zone, and decreases the cost and energy required by HVAC system to keep the inside temperature in this range. However, PCMs’ efficiency is completely dependent on the input temperature profile.
APA, Harvard, Vancouver, ISO, and other styles
48

Malekzadeh, Fatemeh. "Integration of Phase Change Materials in Commercial Buildings for Thermal Regulation and Energy Efficiency." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/603534.

Full text
Abstract:
One of prospective procedures of absorbing thermal energy and releasing it during the required time is the application of phase change materials known as PCMs in building envelopes. High thermal energy storage (TES) materials has been a technology that effects the energy efficiency of a building by contributing in using onsite resources and reducing cooling or heating loads. Currently, many TES systems are emerging and contributing in building assemblies, however using an appropriate type of TES in a specific building and climate requires an in-depth knowledge of their properties. This research aims to provide a thorough review of a broad range of thermal energy storage technologies including their potential application in buildings. Subsequently, a comparative study and simulation between a basecase and an optimized model by PCM is thoroughly considered to understand the effect of high thermal storage building's shell on energy efficiency and indoor thermal comfort. Specifically this study proposes that the incorporation of PCM into glazing system as a high thermal capacity system will improve windows thermal performance and thermal capacity to varying climatic conditions. The generated results by eQUEST energy modeling software demonstrates approximately 25% reduction in cooling loads during the summer and 10% reduction in heating loads during the winter for optimized office building by PCM in hot arid climate of Arizona. Besides, using PCM in glazing system will reduce heat gain through the windows by conduction phenomenon. The hourly results indicates the effect of PCM as a thermal energy storage system in building envelopes for building's energy efficiency and thermal regulation. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.
APA, Harvard, Vancouver, ISO, and other styles
49

Mallow, Anne. "Stable paraffin composites for latent heat thermal storage systems." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54406.

Full text
Abstract:
Phase change materials (PCMs) have the ability to store thermal energy as latent heat over a nearly isothermal temperature range. Compared to sensible heat storage, properly chosen PCMs can store an order of magnitude more energy when undergoing phase change. Organic PCMs present several advantages including their non-corrosive behavior and ability to melt congruently, which result in safe and reliable performance. Because of these qualities, organic PCMs have been proposed for use in latent heat thermal storage systems to increase the energy efficiency or performance of various systems such as cooling and heating in buildings, hot water heating, electronics cooling, and thermal comfort in vehicles. Current performance is hindered by the low thermal conductivity, which significantly limits the rate of charging and discharging. Solutions to this challenge include the insertion of high conductivity nanoparticles and foams to increase thermal transport. However, performance validation remains tied to thermal conductivity and latent heat measurements, instead of more practical metrics of thermal charging performance, stability of the composite, and energy storage cost. This thesis focuses on the use of graphite nanoplatelets and graphite foams to increase the thermal charging performance of organic PCMs. Stability of graphite nanoplatelets in liquid PCM is realized for the first time through the use of dispersants and control of the viscosity, particle distribution, and oxidation. Thermal charging response of stable graphite nanoplatelet composites is compared to graphite foam composites. This study includes a correlation of thermal conductivity and latent heat to material concentration, geometry, and energy storage cost. Additionally, a hybrid PCM storage system of metal foam combined with graphite nanoplatelet PCM is proposed and evaluated under cyclic thermal conditions.
APA, Harvard, Vancouver, ISO, and other styles
50

Hagman, Susanna. "The Application of Microencapsulated Biobased Phase Change Material on Textile." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-10266.

Full text
Abstract:
The increasing demand for energy in combination with a greater awareness for our environmental impact have encouraged the development of sustainable energy sources, including materials for energy storage. Latent heat thermal energy storage by the use of phase change material (PCM) have become an area of great interest. It is a reliable and efficient way to reduce energy consumption. PCMs store and release latent heat, which means that the material can absorb the excess of heat energy, save it and release it when needed. By introducing soy wax as a biobased PCM and apply it on textile, one can achieve a thermoregulation material to be used in buildings and smart textiles. By replacing the present most used PCM, paraffin, with soy wax one cannot only decrease the use of fossil fuel, but also achieve a less flammable material. The performance of soy wax PCM applied on a textile fabric have not yet been investigated but can be a step towards a more sustainable energy consumption. The soy wax may also broaden the application for PCM due to its low flammability. The aim is to develop an environmental friendly latent heat thermal energy storage material to be used within numerous application fields.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography