Academic literature on the topic 'Thermal growth'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal growth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal growth"

1

Nakano, Atsushi, and Kazuhiro Ogawa. "OS13F088 Influence of Specimen Shape and Bond Coating Process on Thermally Grown Oxide Growth at the Thermal Barrier Coating/Bond Coating Interface." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS13F088——_OS13F088—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os13f088-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakano, Atsushi, and Kazuhiro Ogawa. "OS13-2-3 Influence of specimen shape and bond coating process on growth of thermally grown oxides at the thermal barrier coating/bond coating interface." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS13–2–3—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os13-2-3-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szabó, György. "Thermal strain during Czochralski growth." Journal of Crystal Growth 73, no. 1 (October 1985): 131–41. http://dx.doi.org/10.1016/0022-0248(85)90339-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ananth, Ramagopal, and William N. Gill. "Dendritic growth with thermal convection." Journal of Crystal Growth 91, no. 4 (September 1988): 587–98. http://dx.doi.org/10.1016/0022-0248(88)90126-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J. Ramajothi, J. Ramajothi. "Crystal Growth, Thermal and Optical Studies on L-arginine Based Nonlinear Optical Material." Indian Journal of Applied Research 1, no. 6 (October 1, 2011): 224–26. http://dx.doi.org/10.15373/2249555x/mar2012/77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

OHTAKE, Yasuhiro. "Examination of thermal fatigue damage and thermal oxidation growth of thermal barrier coating." Proceedings of the 1992 Annual Meeting of JSME/MMD 2003 (2003): 469–70. http://dx.doi.org/10.1299/jsmezairiki.2003.0_469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daly, Steven F. "Thermal Ice Growth: Real-Time Estimation." Journal of Cold Regions Engineering 12, no. 1 (March 1998): 11–28. http://dx.doi.org/10.1061/(asce)0887-381x(1998)12:1(11).

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Hai, Deguo Wang, and Yanbao Guo. "Thermal Growth of Graphene: A Review." Coatings 8, no. 1 (January 19, 2018): 40. http://dx.doi.org/10.3390/coatings8010040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Jun, and Mingming Lu. "Thermal Growth and Decomposition of Methylnaphthalenes." Environmental Science & Technology 39, no. 9 (May 2005): 3077–82. http://dx.doi.org/10.1021/es048537q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, W. H., M. F. Li, L. Chan, and T. C. Chua. "Growth characterization of rapid thermal oxides." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 5 (1999): 2226. http://dx.doi.org/10.1116/1.590898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thermal growth"

1

Dinan, Benjamin J. "Growth of Titania Nanowires by Thermal Oxidation." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337650302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Howard, Elizabeth Anne Meiron Daniel I. "A front tracking method for modelling thermal growth /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-03042003-115138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YANG, JUN. "Thermal Decomposition and Growth of Short Alkylated Naphthalenes." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1172807217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Regonini, Domenico. "Anodised TiO2 nanotubes : synthesis, growth mechanism and thermal stability." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492286.

Full text
Abstract:
Anodised titanium dioxide (titania, TiO2) nanotubes have been widely studied over the last few years, following the discovery in 1999 of nanoporous TiO2 films prepared via anodisation in aqueous solution containing small quantities of hydrofluoric acid. The synthesis of nanotubular titania by anodisation, a relatively simple and low cost technique, represents a motivation for scientists, considering the impact that such a material could have on a variety of applications, including gas-sensing, biomedical, photocatalysis, and photovoltaics. This research project has focused on the optimisation of the growth process of anodic titania nanotubes, both in an aqueous (NaF/Na2SO4) and an organic (Glycerol/NaF) electrolyte containing fluorine ions. Reproducibility and the ability to generate anodic films having a thickness of several micrometers are fundamental steps to be achieved before investigating any possible application of the nanotubes. To characterise the anodic specimens and build upon the general lack of information on the growth mechanism, a comprehensive study of the different stages of the process has been performed, using Scanning and Transmission Electronic Microscopy (SEM and TEM). Among the questions to be addressed in this thesis, is to establish whether the anodic film undergoes a transition from pores to tubes or develops a tubular morphology from the beginning of its growth. Additional characterisation of the anodisation process includes the study of current-time curves, and chemical composition analysis of the anodic layers using X-ray Photo-Electron Spectroscopy (XPS). The thermal stability of the nanotubes and structural/morphological changes as a result of heat treatment at different temperatures were also studied, again using SEM, TEM, XPS and Raman spectroscopy. The final part of the thesis is dedicated to preliminary work on the use of anodised TiO2 nanotubes in Dye Sensitized Solar Cells (DSSCs), along with suggestions for future works and general conclusions.
APA, Harvard, Vancouver, ISO, and other styles
5

Johnson, Francis 1974. "Thermal boundary conditions for heat pipe assisted crystal growth." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pang, Jinbo. "Thermal deposition approaches for graphene growth over various substrates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-220794.

Full text
Abstract:
In the course of the PhD thesis large area homogeneous strictly monolayer graphene films were successfully synthesized with chemical vapor deposition over both Cu and Si (with surface oxide) substrates. These synthetic graphene films were characterized with thorough microscopic and spectrometric tools and also in terms of electrical device performance. Graphene growth with a simple chemo thermal route was also explored for understanding the growth mechanisms. The formation of homogeneous graphene film over Cu requires a clean substrate. For this reason, a study has been conducted to determine the extent to which various pre-treatments may be used to clean the substrate. Four type of pre-treatments on Cu substrates are investigated, including wiping with organic solvents, etching with ferric chloride solution, annealing in air for oxidation, and air annealing with post hydrogen reduction. Of all the pretreatments, air oxidation with post hydrogen annealing is found to be most efficient at cleaning surface contaminants and thus allowing for the formation of large area homogeneous strictly monolayer graphene film over Cu substrate. Chemical vapor deposition is the most generally used method for graphene mass production and integration. There is also interest in growing graphene directly from organic molecular adsorbents on a substrate. Few studies exist. These procedures require multiple step reactions, and the graphene quality is limited due to small grain sizes. Therefore, a significantly simple route has been demonstrated. This involves organic solvent molecules adsorbed on a Cu surface, which is then annealed in a hydrogen atmosphere in order to ensure direct formation of graphene on a clean Cu substrate. The influence of temperature, pressure and gas flow rate on the one-step chemo thermal synthesis route has been investigated systematically. The temperature-dependent study provides an insight into the growth kinetics, and supplies thermodynamic information such as the activation energy, Ea, for graphene synthesis from acetone, isopropanol and ethanol. Also, these studies highlight the role of hydrogen radicals for graphene formation. In addition, an improved understanding of the role of hydrogen is also provided in terms of graphene formation from adsorbed organic solvents (e.g., in comparison to conventional thermal chemical vapor deposition). Graphene synthesis with chemical vapor deposition directly over Si wafer with surface oxide (Si/SiOx ) has proven challenging in terms of large area and uniform layer number. The direct growth of graphene over Si/SiO x substrate becomes attractive because it is free of an undesirable transfer procedure, necessity for synthesis over metal substrate, which causes breakage, contamination and time consumption. To obtain homogeneous graphene growth, a local equilibrium chemical environment has been established with a facile confinement CVD approach, inwhich two Si wafers with their oxide faces in contact to form uniform monolayer graphene. A thorough examination of the material reveals it comprises facetted grains despite initially nucleating as round islands. Upon clustering these grains facet to minimize their energy, which leads to faceting in polygonal forms because the system tends to ideally form hexagons (the lowest energy form). This is much like the hexagonal cells in a beehive honeycomb which require the minimum wax. This process also results in a near minimal total grain boundary length per unit area. This fact, along with the high quality of the resultant graphene is reflected in its electrical performance which is highly comparable with graphene formed over other substrates, including Cu. In addition the graphene growth is self-terminating, which enables the wide parameter window for easy control. This chemical vapor deposition approach is easily scalable and will make graphene formation directly on Si wafers competitive against that from metal substrates which suffer from transfer. Moreover, this growth path shall be applicable for direct synthesis of other two dimensional materials and their Van der Waals hetero-structures
Im Zuge dieser Doktorarbeit wurden großflächige und homogene Graphen-Monolagen mittels chemischer Gasphasenabscheidung auf Kupfer- (Cu) und Silizium-(Si) Substraten erfolgreich synthetisiert. Solche monolagigen Graphenschichten wurden mithilfe mikroskopischer und spektrometrischer Methoden gründlich charakterisiert. Außerdem wurde der Wachstumsmechanismus von Graphen anhand eines chemo-thermischen Verfahrens untersucht. Die Bildung von homogenen Graphenschichten auf Cu erfordert eine sehr saubere Substratoberfläche, weshalb verschiedene Substratvorbehandlungen und dessen Einfluss auf die Substratoberfläche angestellt wurden. Vier Vorbehandlungsarten von Cu-Substraten wurden untersucht: Abwischen mit organischen Lösungsmitteln, Atzen mit Eisen-(III)-Chloridlösung, Wärmebehandlung an Luft zur Erzeugung von Cu-Oxiden und Wärmebehandlung an Luft mit anschließender Wasserstoffreduktion. Von diesen Vorbehandlungen ist die zuletzt genannte Methode für die anschließende Abscheidung einer großflächigen Graphen-Mono-lage am effektivsten. Die chemische Gasphasenabscheidung ist die am meisten verwendete Methode zur Massenproduktion von Graphen. Es besteht aber auch Interesse an alternativen Methoden, die Graphen direkt aus organischen, auf einem Substrat adsorbierten Molekülen, synthetisieren konnen. Jedoch gibt es derzeit nur wenige Studien zu derartigen alternativen Methoden. Solche Prozessrouten erfordern mehrstufige Reaktionen, welche wiederrum die Qualität der erzeugten Graphenschicht limitieren, da nur kleine Korngrößen erreicht werden konnen. Daher wurde in dieser Arbeit ein deutlich einfacherer Weg entwickelt. Es handelt sich dabei um ein Verfahren, bei dem auf einer Cu-Substratoberfläche adsorbierte, organische Lösungsmittelmoleküle in einer Wasserstoffatmosphäre geglüht werden, um eine direkte Bildung von Graphen auf einem sauberen Cu-Substrat zu gewahrleisten.Der Einfluss von Temperatur, Druck und Gasfluss auf diesen einstufigen chemothermischen Syntheseweg wurde systematisch untersucht. Die temperaturabhängigen Untersuchungen liefern einen Einblick in die Wachstumskinetik und thermodynamische Größen, wie zum Beispiel die Aktivierungsenergie Ea, für die Synthese von Graphen aus Aceton, Isopropanol oder Ethanol. Diese Studien untersuchen außerdem die Rolle von Wasserstoffradikalen auf die Graphensynthese. Weiterhin wurde ein verbessertes Verständnis der Rolle von Wasserstoff auf die Graphen-synthese aus adsorbierten, organischen Lösungsmitteln erlangt (beispielsweise im Vergleich zur konventionellen thermischen Gasphasenabscheidung). Die direkte Graphensynthese mittels chemischer Gasphasenabscheidung auf Si-Substraten mit einer Oxidschicht (Si/SiOx ) ist extrem anspruchsvoll in Bezug auf die großflächige und einheitliche Abscheidung (Lagenanzahl) von Graphen-Monolagen. Das direkte Wachstum von Graphen auf Si/SiOx -Substrat ist interessant, da es frei von unerwünschten Übertragungsverfahren ist und kein Metall-substrat erfordert, welche die erzeugten Graphenschichten brechen lassen können. Um ein homogenes Graphenwachstum zu erzielen wurde durch den Kontakt zweier Si-Wafer, mit ihren Oxidflachen zueinander zeigend, eine lokale Umgebung im chemischen Gleichgewicht erzeugt. Diese Konfiguration der Si-Wafer ist nötig, um eine einheitliche Graphen-Monolage bilden zu können. Eine gründliche Untersuchung des abgeschiedenen Materials zeigt, dass trotz der anfänglichen Keimbildung von runden Inseln facettierte Körner erzeugt werden. Aufgrund der Bestrebung der Graphenkörner ihre (Oberflächen-) Energie zu minimieren, wird eine Facettierung der Körner in polygonaler Form erzeugt, was darin begründet liegt, dass das System idealerweise eine Anordnung von hexagonal geformten Körnern erzeugen würde (niedrigster Energiezustand). Der Prozess ist vergleichbar mit der sechseckigen Zellstruktur einer Bienenstockwabe, welche ein Minimum an Wachs erfordert. Dieser Prozess führt auch zu einer nahezu minimalen Gesamtkorn-grenzlänge pro Flächeneinheit. Diese Tatsache zusammen mit der hohen Qualität der resultierenden Graphenschicht spiegelt sich auch in dessen elektrischer Leistungsfähigkeit wider, die in hohem Maße mit der auf anderen Substraten gebildeten Graphenschichten (inklusive Cu-Substrate) vergleichbar ist. Darüber hinaus ist das Graphenwachstum selbstabschliessend, wodurch ein großes Parameterfenster für eine einfache und kontrollierte Synthese eröffnet wird. Dieser Ansatz zur chemischen Gasphasenabscheidung von Graphen auf Si- Substraten ist leicht skalierbar und gegenüber der Abscheidung auf Metallsubstraten konkurrenzfähig, da keine Substratübertragung notig ist. Darüber hinaus ist dieser Prozess auch für die direkte Synthese anderer zweidimensionalen Materialien und deren Van-der-Waals-Heterostrukturen anwendbar
APA, Harvard, Vancouver, ISO, and other styles
7

Mohanty, Somadatta. "Tensile Stress and Thermal Growth Effects on Grain Boundary Motion in Nanocrystalline Nickel." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/30249.

Full text
Abstract:
We report on two studies that involve molecular dynamics (MD) simulations of grain boundary motion in nanocrystalline (nc) nickel. The first study is conducted to examine the effects of an applied tensile stress on the grain boundary motion in 5 nm3 nc-Ni specimens, half of which contain free surfaces, while the other half have periodic boundary conditions. Grain boundary sliding (GBS) and grain rotation are the deformation mechanisms exhibited by the nc-Ni specimens, in contrast to dislocation-mediated deformation mechanisms found in bulk samples. Specimens that contain free surfaces display a lower yield stress and a lower average grain boundary velocity compared to their periodic counterparts. These phenomena are attributed to the higher degree of grain boundary sliding present within the free surface specimens. The second study examines thermal effects of various annealing temperatures on grain boundary motion in 5 nm3 periodic nc-Ni specimens. It is found that grain growth exhibits a linear relationship with time, as opposed to parabolic grain growth observed in bulk metals. During the annealing process, it is also observed that the average grain boundary energy decreases with t-1/2, as grains oriented themselves in a lower-energy configuration with their neighbors via grain rotation. An Arrhenius plot of average grain boundary velocity and energy per atom within a grain boundary displays identical slopes, and thus, identical activation energies of ~ 53 kJ for both characteristics. This can be attributed to the fact that grain boundary velocity and energy per atom are governed by the same entity, which is grain boundary diffusion. The annealed samples display a grain rotation-coalescence growth mechanism, where adjacent grains rotate concurrently, to decrease the misorientation energy of the grain boundary between them. It is observed that some grains have achieved the same orientation at the end of the growth process, indicating that the grain boundary has been annihilated, and the two grains have coalesced into a single larger grain.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Redman, Helen. "The growth of transition metal chalcogenide thin films using chemical vapour deposition." Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Comrie, Andrew Charles. "Growth, Structure and Prediction of the Thermal Internal Boundary Layer." Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/6920.

Full text
Abstract:
The Thermal internal Boundary Layer (TIBL) is a dynamic and turbulent mesoscale feature of the coastal atmosphere that forms over the land during conditions of onshore flow. The TIBL develops as an adjustment of the atmospheric boundary layer to the discontinuities of temperature and roughness that occur at the interface between the underlying marine and terrestrial surfaces. The resulting formation of a characteristically convex mixed layer below relatively stable air aloft has serious implications for the dispersion of pollutants in shoreline environments. Although a wide range of research relating to various features of the TIBL may be found in the literature, relatively few broadly-based studies have been performed. This study has employed both airborne and surface measurements to obtain a comprehensive spatial and temporal data set, in order to elucidate aspects of the characteristic structure and behaviour of the TIBL. TIBL growth was found to follow a diurnal pattern, the initially irregular boundary becoming more uniform during the day as a steady balance between various factors was achieved. The TIBL was associated with a layer of uniform wind speed anti direction flowing perpendicular to the coastline, within which warmer temperatures and changes in relative humidity and moisture content were observed. The temperature structure of the onshore flow strongly influenced the intensity of turbulence encountered in the TIBL and the degree of entrainment aloft. Patterns of turbulent properties displayed significant increases in the TIBL, which were relatively abrupt near the surface and more gradual towards the top of the TIBL. Measurements of sensible heat flux revealed strong undulations in TIBL structure due to transitory eddies and thermal upcurrents. Certain theoretically based predictive equations of TIBL height displayed the best overall performance out of eight selected models, and some promise was shown by an empirical formulation. TIBL development was generally complex and irregular within the first few kilometres of the shore, while further inland more regular TIBL formation enabled the relatively accurate observation and prediction of TIBL height.
APA, Harvard, Vancouver, ISO, and other styles
10

Fitzpatrick, Michael Edward. "A study of the effects of a quench residual stress field on fatigue in an Al/SiC←P metal matrix composite." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Thermal growth"

1

Co, Business Communications, ed. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radu, Vasile. Stochastic Modeling of Thermal Fatigue Crack Growth. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12877-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robert, Moran. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carlson, Frederick M. Bridgman crystal growth. [Washington, D.C: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carlson, Frederick M. Bridgman crystal growth: Final report. Potsdam, N.Y: Clarkson University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prasad, N. N. V. Thermomechanical crack growth using boundary elements. Southampton: WIT Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Conference on II-VI Compounds (2nd 1985 Aussois, France). II-VI compounds 1985: Proceedings of the second International Conference on II-VI Compounds Aussois, France, 4-8 March 1985. Amsterdam: North-Holland, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International Conference on II-VI Compounds (3rd 1987 Monterey, Calif.). II-VI compounds 1987: Proceedings of the third International Conference on II-VI Compounds, Monterey, CA, USA, 12-17 July 1987. Amsterdam: North-Holland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Conference on II-VI Compounds (2nd 1985 Aussois, France). II-VI compounds 1985: Proceedings of the second International Conference on II-VI Compounds Aussois, France, 4-8 March 1985. Amsterdam: North-Holland, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International, Conference on II-VI Compounds (3rd 1987 Monterey Calif ). II-VI compounds 1987: Proceedings of the third International Conference on II-VI Compounds, Monterey, CA, USA, 12-17 July 1987. Amsterdam: North-Holland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Thermal growth"

1

Chao, Ching-Kong. "Creep Crack Growth." In Encyclopedia of Thermal Stresses, 814–20. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yigit, Faruk, and Louis G. Hector. "Thermomechanical Growth Instability in Solidification." In Encyclopedia of Thermal Stresses, 5970–86. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magerl, F., G. A. Schneider, and G. Petzow. "Thermal Fatigue and Subcritical Crack Growth in Ceramics." In Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, 407–18. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8200-1_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gupta, Mohit. "Modelling of Oxide Growth in TBCs." In Design of Thermal Barrier Coatings, 73–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17254-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burton, Ralph A. "Thermal Growth of a Surface Wave." In Heat, Bearings, and Lubrication, 109–15. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1248-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hentschel, H. G. E. "Scaling Far from Thermal Equilibrium." In Growth Patterns in Physical Sciences and Biology, 109–17. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2852-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Konsztowicz, Krzysztof J. "Acoustic Emission Amplitude Analysis in Crack Growth Studies during Thermal Shock of Ceramics." In Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, 429–41. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8200-1_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Williams, J. O., and M. D. Scott. "Growth of Semi-Conductors by Thermal MOVPE." In Mechanisms of Reactions of Organometallic Compounds with Surfaces, 113–15. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2522-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Skelton, R. P. "Crack Initiation and Growth During Thermal Transients." In Component Reliability under Creep-Fatigue Conditions, 17–86. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-2516-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Radu, Vasile. "Stochastic Model for Thermal Fatigue Crack Growth." In Applied Condition Monitoring, 33–62. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12877-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal growth"

1

Wu, Bei, Ronghui Ma, Hui Zhang, Michael Dudley, Raoul Schlesser, and Zlatko Sitar. "Growth Kinetics and Thermal Stress in AlN Bulk Crystal Growth." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33700.

Full text
Abstract:
Group III nitrides, such as GaN, AlN and InGaN, have attracted a lot of attention due to the development of blue-green and ultraviolet light emitting diodes (LEDs) and lasers. In this paper, an integrated model has developed based on the conservation of momentum, mass, chemical species and energy together with necessary boundary conditions that account for heterogeneous chemical reactions both at the source and seed surfaces. The simulation results have been compared with temperature measurements for different power levels and flow rates in a reactor specially designed for nitride crystal growth at NCSU. It is evident that the heat power level affects the entire temperature distribution greatly while the flow rate has minor effect on the temperature distribution. The results also show that the overall thermal stress level is higher than the critical resolved shear stress, which means thermal elastic stress can be a major source of dislocation density in the as-grown crystal. The stress level is strongly dependent on the temperature gradient in the as-grown crystal. Results are correlated well with defects showing in an X-ray topograph for the AlN wafer.
APA, Harvard, Vancouver, ISO, and other styles
2

Sen, P. K., Srinivas V. Veeravalli, T. Vijaya Kumar, and S. Hegde. "Algebraic growth in turbulent shear flows." In 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alissa, Husam A., Kourosh Nemati, Bahgat G. Sammakia, Tom Wu, and Mark J. Seymour. "Management and predictions of operational changes and growth in mission critical facilities." In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016. http://dx.doi.org/10.1109/semi-therm.2016.7458463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weijers, L., C. A. Wright, S. L. Demetrius, G. Wang, E. J. Davis, M. A. Emanuele, J. B. Broussard, and G. M. Golich. "Fracture Growth and Reorientation in Steam Injection Wells." In International Thermal Operations/Heavy Oil Symposium. Society of Petroleum Engineers, 1999. http://dx.doi.org/10.2118/54079-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liehr, Michael. "In-situ characterization of SiO2 deposition and growth for gate-oxides." In Rapid thermal and Integrated Processing, edited by Mehrdad M. Moslehi, Rajendra Singh, and Dim-Lee Kwong. SPIE, 1992. http://dx.doi.org/10.1117/12.56673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Na, Ping Liu, Chao Chen, Aili Zhang, and Lisa X. Xu. "Thermal Environmental Effect on Breast Tumor Growth." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206229.

Full text
Abstract:
Tissue hypoxia is a common and important feature of rapidly growing malignant tumors and their metastases. Tumor cells mainly depend on energy production thru anaerobic glycolysis rather than aerobic oxidative phosphorylation in mitochondria [1]. Intervening the tumor metabolic process via thermal energy infusion is worthy attempting. And hyperthermia, mildly elevated local temperature above the body temperature, is one of such kind. Previously, after being heated for a short period of time, tumor glucose and lactate level increased and ATP level decreased, which suggested energy metabolism was modified following hyperthermia through increased ATP hydrolysis, intensified glycolysis and impaired oxidative phosphorylation [2]. Many researchers designed experiments to determine thermal dose in hyperthermia [3], but few focused on the relationship between tumor and energy, especially for a long-term local hyperthermia treatment. One clinical trial indicated the effective long-term hyperthermo-therapy for maintaining performance status, symptomatic improvement, and prolongation of survival time in patients with peritoneal dissemination [4].
APA, Harvard, Vancouver, ISO, and other styles
7

Bevan, M. J., R. Curtis, T. Guarini, W. Liu, S. C. H. Hung, and H. Graoui. "Ultrathin SiO2 interface layer growth." In 2010 18th International Conference on Advanced Thermal Processing of Semiconductors (RTP). IEEE, 2010. http://dx.doi.org/10.1109/rtp.2010.5624252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adam, Carlton P., and Hamid Hadim. "NUMERICAL SIMULATION OF MIXING ZONE GROWTH BETWEEN TWO FLUIDS UNDER ACCELERATION." In 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.cfd.028147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

melo, patrick. "THE GROWTH OF WIND ENERGY, ENVIRONMENT AND SUSTAINABILITY IN BRAZIL." In Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2018. http://dx.doi.org/10.26678/abcm.encit2018.cit18-0818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harges, Ellyn, and Lorenzo Cremaschi. "MODELING OF FROST GROWTH ON SURFACES WITH VARYING CONTACT ANGLE." In 3rd Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/tfec2018.efm.020908.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal growth"

1

Karr, T., J. Morris, D. Chambers, J. Viecelli, and P. Cramer. Perturbation growth by thermal blooming in turbulence. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6993565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hodge, N. E. Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1348996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Champlin, Patrick, Christian Petrie, Annabelle Le Coq, Kurt Smith, and Kory Linton. Thermal Analysis and Irradiation Growth of Coated Zirconium Alloy Cladding Specimens in HFIR. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1649120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coltrin, M. E., and D. S. Dandy. Simplified models of growth, defect formation, and thermal conductivity in diamond chemical vapor deposition. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/233352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dinh, Long N. LiOH corrosion growth and thermal stability investigated by diffuse reflectance infrared Fourier Transform (DRIFT) spectroscopy. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1544959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alexandreanu, Bogdan, Yiren Chen, Xuan Zhang, and Wei-Ying Chen. Effect of thermal aging and irradiation on microstructure and crack growth response of Alloy 690. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1818506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilmsen, C. W. Growth Mechanism and Properties of the Thermal and Anodic Oxides of the III-V Compound Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada153406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Dale A., and John R. Warren. Thermal Mechanical Fatigue Crack Growth. An Application for Fracture Mechanics Analyses of Gas Turbine Engine Disks. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada162634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tschoppa, Daniel, Zhiyong Tianb, Magdalena Berberichc, Jianhua Fand, Bengt Perersd, and Simon Furbo. LSEVIER paper: Large Scale Solar Thermal Systems in Leading Countries. IEA SHC Task 55, January 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0001.

Full text
Abstract:
Large-scale solar thermal systems are a cost-efficient technology to provide renewable heat. The rapid market growth in the last decade has been concentrated on a small number of countries, with the outstanding position of Denmark followed by China, Germany and Austria. This paper provides a comprehensive overview of the market and common technological solutions for large-scale solar thermal systems in these countries.
APA, Harvard, Vancouver, ISO, and other styles
10

Thompson, Darla Graff, and Racci DeLuca. PBX 9502 Compressive Strength after Ratchet Growth: Correlation with Density and Not with Details of Thermal Profile. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1179844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography