To see the other types of publications on this topic, follow the link: Thermal growth.

Journal articles on the topic 'Thermal growth'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermal growth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nakano, Atsushi, and Kazuhiro Ogawa. "OS13F088 Influence of Specimen Shape and Bond Coating Process on Thermally Grown Oxide Growth at the Thermal Barrier Coating/Bond Coating Interface." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS13F088——_OS13F088—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os13f088-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakano, Atsushi, and Kazuhiro Ogawa. "OS13-2-3 Influence of specimen shape and bond coating process on growth of thermally grown oxides at the thermal barrier coating/bond coating interface." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS13–2–3—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os13-2-3-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szabó, György. "Thermal strain during Czochralski growth." Journal of Crystal Growth 73, no. 1 (October 1985): 131–41. http://dx.doi.org/10.1016/0022-0248(85)90339-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ananth, Ramagopal, and William N. Gill. "Dendritic growth with thermal convection." Journal of Crystal Growth 91, no. 4 (September 1988): 587–98. http://dx.doi.org/10.1016/0022-0248(88)90126-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J. Ramajothi, J. Ramajothi. "Crystal Growth, Thermal and Optical Studies on L-arginine Based Nonlinear Optical Material." Indian Journal of Applied Research 1, no. 6 (October 1, 2011): 224–26. http://dx.doi.org/10.15373/2249555x/mar2012/77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

OHTAKE, Yasuhiro. "Examination of thermal fatigue damage and thermal oxidation growth of thermal barrier coating." Proceedings of the 1992 Annual Meeting of JSME/MMD 2003 (2003): 469–70. http://dx.doi.org/10.1299/jsmezairiki.2003.0_469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daly, Steven F. "Thermal Ice Growth: Real-Time Estimation." Journal of Cold Regions Engineering 12, no. 1 (March 1998): 11–28. http://dx.doi.org/10.1061/(asce)0887-381x(1998)12:1(11).

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Hai, Deguo Wang, and Yanbao Guo. "Thermal Growth of Graphene: A Review." Coatings 8, no. 1 (January 19, 2018): 40. http://dx.doi.org/10.3390/coatings8010040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Jun, and Mingming Lu. "Thermal Growth and Decomposition of Methylnaphthalenes." Environmental Science & Technology 39, no. 9 (May 2005): 3077–82. http://dx.doi.org/10.1021/es048537q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, W. H., M. F. Li, L. Chan, and T. C. Chua. "Growth characterization of rapid thermal oxides." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 5 (1999): 2226. http://dx.doi.org/10.1116/1.590898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gomes, M. A. F., E. F. daSilva, and J. Albino Aguiar. "Growth kinetics of thermal SiO2thin films." Semiconductor Science and Technology 10, no. 7 (July 1, 1995): 1037–39. http://dx.doi.org/10.1088/0268-1242/10/7/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Suganuma, Katsuaki, Alongheng Baated, Keun-Soo Kim, Kyoko Hamasaki, Norio Nemoto, Tsuyoshi Nakagawa, and Toshiyuki Yamada. "Sn whisker growth during thermal cycling." Acta Materialia 59, no. 19 (November 2011): 7255–67. http://dx.doi.org/10.1016/j.actamat.2011.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Arai, Yuta, and Ryo Ohmura. "Crystal Growth Observation of Tetrabutylphosphonium Acetate (TBPAce) Hydrate Suitable as Thermal Energy Storage Medium." International Journal of Materials Science and Engineering 6, no. 4 (December 2019): 126–32. http://dx.doi.org/10.17706/ijmse.2018.6.4.126-132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Bei, Ronghui Ma, Hui Zhang, Michael Dudley, Raoul Schlesser, and Zlatko Sitar. "Growth kinetics and thermal stress in AlN bulk crystal growth." Journal of Crystal Growth 253, no. 1-4 (June 2003): 326–39. http://dx.doi.org/10.1016/s0022-0248(03)01044-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Menagen, Gabi, Janet E. Macdonald, Yossi Shemesh, Inna Popov, and Uri Banin. "Au Growth on Semiconductor Nanorods: Photoinduced versus Thermal Growth Mechanisms." Journal of the American Chemical Society 131, no. 47 (December 2, 2009): 17406–11. http://dx.doi.org/10.1021/ja9077733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Song, Dowon, Taeseup Song, Ungyu Paik, Guanlin Lyu, Yeon-Gil Jung, Baig-Gyu Choi, In-Soo Kim, and Jing Zhang. "Crack-Growth Behavior in Thermal Barrier Coatings with Cyclic Thermal Exposure." Coatings 9, no. 6 (June 4, 2019): 365. http://dx.doi.org/10.3390/coatings9060365.

Full text
Abstract:
Crack-growth behavior in yttria-stabilized zirconia-based thermal barrier coatings (TBCs) is investigated through a cyclic thermal fatigue (CTF) test to understand TBCs’ failure mechanisms. Initial cracks were introduced on the coatings’ top surface and cross section using the micro-indentation technique. The results show that crack length in the surface-cracked TBCs grew parabolically with the number of cycles in the CTF test. Failure in the surface-cracked TBC was dependent on the initial crack length formed with different loading levels, suggesting the existence of a threshold surface crack length. For the cross section, the horizontal crack length increased in a similar manner as observed in the surface. By contrast, in the vertical direction, the crack did not grow very much with CTF testing. An analytical model is proposed to explain the experimentally-observed crack-growth behavior.
APA, Harvard, Vancouver, ISO, and other styles
17

TAKAHASHI, Satoshi, Yoshihiro SUGANO, and Takahiro SHIMIZUYAMA. "114 Analytical Study on Thermal Stress in Thermal Barrier Coating Plate with Thermal Growth Oxidation." Proceedings of Autumn Conference of Tohoku Branch 2006.42 (2006): 27–28. http://dx.doi.org/10.1299/jsmetohoku.2006.42.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hayashi, Makoto, Katsumasa Miyazaki, and Hisashi Tanie. "OS12W0367 High cycle thermal fatigue crack initiation and growth behavior in simulated BWR water environment." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS12W0367. http://dx.doi.org/10.1299/jsmeatem.2003.2._os12w0367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wong, T. S., C. T. Wang, K. H. Chen, L. C. Chen, and K. J. Ma. "Carbon nanotube growth by rapid thermal processing." Diamond and Related Materials 10, no. 9-10 (September 2001): 1810–13. http://dx.doi.org/10.1016/s0925-9635(01)00454-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chang, Ching-Feng, and Jin-Jia Chen. "Thermal growth control techniques for motorized spindles." Mechatronics 19, no. 8 (December 2009): 1313–20. http://dx.doi.org/10.1016/j.mechatronics.2009.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Laudise, R. A., P. M. Bridenbaugh, Ch Kloc, and S. L. Jouppi. "Organo-thermal crystal growth of α6 thiophene." Journal of Crystal Growth 178, no. 4 (July 1997): 585–92. http://dx.doi.org/10.1016/s0022-0248(97)00012-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pan, H., S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, and J. Lin. "Growth of Si nanowires by thermal evaporation." Nanotechnology 16, no. 4 (February 8, 2005): 417–21. http://dx.doi.org/10.1088/0957-4484/16/4/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Xiaona, Chaorong Li, and Ze Zhang. "One-dimensional growth induced by thermal stress." Materials Letters 58, no. 12-13 (May 2004): 1917–19. http://dx.doi.org/10.1016/j.matlet.2003.11.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Uematsu, M., H. Kageshima, and K. Shiraishi. "Microscopic mechanism of thermal silicon oxide growth." Computational Materials Science 24, no. 1-2 (May 2002): 229–34. http://dx.doi.org/10.1016/s0927-0256(02)00199-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Brown, Daniel B. "Thermal Ablation 2010: Unprecedented Growth and Promise." Journal of Vascular and Interventional Radiology 21, no. 8 (August 2010): S177. http://dx.doi.org/10.1016/j.jvir.2010.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mullis, Andrew M. "Deterministic side-branching during thermal dendritic growth." IOP Conference Series: Materials Science and Engineering 84 (June 11, 2015): 012071. http://dx.doi.org/10.1088/1757-899x/84/1/012071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, S. K., Y. H. Ku, T. Y. Hsieh, K. Jung, and D. L. Kwong. "Selective epitaxial growth by rapid thermal processing." Applied Physics Letters 57, no. 3 (July 16, 1990): 273–75. http://dx.doi.org/10.1063/1.103712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Karr, T. J., J. R. Morris, D. H. Chambers, J. A. Viecelli, and P. G. Cramer. "Perturbation growth by thermal blooming in turbulence." Journal of the Optical Society of America B 7, no. 6 (June 1, 1990): 1103. http://dx.doi.org/10.1364/josab.7.001103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, C. "Growth of SrGaGe Nanowires by Thermal Annealing." Journal of Electrical Engineering and Science 2, no. 1 (February 27, 2016): 1–7. http://dx.doi.org/10.18831/djeee.org/2016011001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Boltaña, Sebastián, Nataly Sanhueza, Andrea Aguilar, Cristian Gallardo-Escarate, Gabriel Arriagada, Juan Antonio Valdes, Doris Soto, and Renato A. Quiñones. "Influences of thermal environment on fish growth." Ecology and Evolution 7, no. 17 (July 26, 2017): 6814–25. http://dx.doi.org/10.1002/ece3.3239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

McNEILL, D. W., Y. LIANG, J. H. MONTGOMERY, H. S. GAMBLE, and B. M. ARMSTRONG. "EPITAXIAL SILICON GROWTH BY RAPID THERMAL CVD." Le Journal de Physique IV 02, no. C2 (September 1991): C2–779—C2–786. http://dx.doi.org/10.1051/jp4:1991291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Louchev, Oleg A., Hisao Kanda, Arne Rosén, and Kim Bolton. "Thermal physics in carbon nanotube growth kinetics." Journal of Chemical Physics 121, no. 1 (2004): 446. http://dx.doi.org/10.1063/1.1755662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Girshick, S. L. "Particle nucleation and growth in thermal plasmas." Plasma Sources Science and Technology 3, no. 3 (August 1, 1994): 388–94. http://dx.doi.org/10.1088/0963-0252/3/3/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shekari, Leila, Abu Hassan Haslan, and Hassan Zainuriah. "Gan Nanowire Growth by Thermal Evaporation Method." Advanced Materials Research 501 (April 2012): 276–80. http://dx.doi.org/10.4028/www.scientific.net/amr.501.276.

Full text
Abstract:
In this research we introduce an inexpensive method to produce highly crystalline GaN Nanowires (NWs) grown on porous zinc oxide (PZnO) using commercial GaN powder, either in argon gas or combination of nitrogen and Ar gas atmosphere, by thermal evaporation. Morphological structural studies using transmission electron microscope (TEM) and scanning electron microscopy (SEM) measurements showed the role of porosity and different gas flowing, in the alignment and nucleation of these NWs. The NWs grown under flow of mix gases have very different diameters of between 50 and 200 nm, but those which were grown in Ar gas atmosphere, have rather uniform diameter of around 50 nm. The length of the GaN NWs was uniform, (around 10 µm). Optical and structural characterizations were performed by energy-dispersive X-ray spectroscopy (EDX) and high resolution X-ray diffraction (HR-XRD). Results revealed that these NWs are of single-crystal hexagonal GaN with [oooı] and [ıoīı] growth directions for the NWs grown under Ar and mixed gas flow.
APA, Harvard, Vancouver, ISO, and other styles
35

Czuck, G., C. Mattheck, D. Munz, and H. Stamm. "Crack growth under cyclic thermal shock loading." Nuclear Engineering and Design 84, no. 2 (January 1985): 189–99. http://dx.doi.org/10.1016/0029-5493(85)90189-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kadlec, M., P. Haušild, J. Siegl, A. Materna, and J. Bystrianský. "Thermal fatigue crack growth in stainless steel." International Journal of Pressure Vessels and Piping 98 (October 2012): 89–94. http://dx.doi.org/10.1016/j.ijpvp.2012.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

John, R., G. A. Hartman, and J. P. Gallagher. "Crack growth induced by thermal-mechanical loading." Experimental Mechanics 32, no. 2 (June 1992): 102–8. http://dx.doi.org/10.1007/bf02324720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Dong Yeong, Jochen Mannhart, and Wolfgang Braun. "Epitaxial film growth by thermal laser evaporation." Journal of Vacuum Science & Technology A 39, no. 5 (September 2021): 053406. http://dx.doi.org/10.1116/6.0001177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Ran, Tian-shun Dong, Yue-lan Di, Hai-dou Wang, Guo-lu Li, and Li Liu. "High temperature oxidation resistance and thermal growth oxides formation and growth mechanism of double-layer thermal barrier coatings." Journal of Alloys and Compounds 798 (August 2019): 773–83. http://dx.doi.org/10.1016/j.jallcom.2019.05.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Prostomolotov, A. I., N. A. Verezub, and M. G. Milvidskii. "Thermal Optimization of Cz Silicon Single Crystal Growth." Solid State Phenomena 156-158 (October 2009): 217–22. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.217.

Full text
Abstract:
In an application to large diameter Czochralski (CZ) silicon (Si) single crystal growing the influence on crystal temperature field of various thermal shield assemblies located near to its surface is discussed. By means of mathematical modeling the computer model of thermal processes in an application to a hot zone of "Redmet-90" puller [1], intended for 200 and 300 mm diameter Si single crystal growth is developed. The role of the ring shield and the shield assembly, consisting of two shields (an internal cone and an external one is repeating the crucible shape) and being as a basis of some patents, is investigated. On the basis of the carried out calculations the new thermal shield assembly for "Redmet-90" puller was offered. Its influence on formation of the characteristic thermal zones in growing single crystal, corresponding to defect formation processes in dislocation-free Si crystals (the recombination of intrinsic point defect – IPD, and the formation of their agglomerates) is discussed. The influence of a melt flow on the liquid/solid interface (LSI) shape and thermal stability of crystal growing process is analyzed.
APA, Harvard, Vancouver, ISO, and other styles
41

Ma, Ronghui, Hui Zhang, Vish Prasad, and Michael Dudley. "Growth Kinetics and Thermal Stress in the Sublimation Growth of Silicon Carbide." Crystal Growth & Design 2, no. 3 (May 2002): 213–20. http://dx.doi.org/10.1021/cg015572p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jobling, Malcolm. "The thermal growth coefficient (TGC) model of fish growth: a cautionary note." Aquaculture Research 34, no. 7 (May 28, 2003): 581–84. http://dx.doi.org/10.1046/j.1365-2109.2003.00859.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mei, Renwei, Wenchin Chen, and James F. Klausner. "Vapor bubble growth in heterogeneous boiling—II. Growth rate and thermal fields." International Journal of Heat and Mass Transfer 38, no. 5 (March 1995): 921–34. http://dx.doi.org/10.1016/0017-9310(94)00196-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Choe, Kwang Su, Jerry A. Stefani, Theodore B. Dettling, John K. Tien, and John P. Wallace. "Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth." Journal of Crystal Growth 108, no. 1-2 (January 1991): 262–76. http://dx.doi.org/10.1016/0022-0248(91)90373-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xiao, Y. Q., L. Yang, W. Zhu, Y. C. Zhou, Z. P. Pi, and Y. G. Wei. "Delamination mechanism of thermal barrier coatings induced by thermal cycling and growth stresses." Engineering Failure Analysis 121 (March 2021): 105202. http://dx.doi.org/10.1016/j.engfailanal.2020.105202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Porro, Samuele, Simone Musso, Mauro Giorcelli, and Alberto Tagliaferro. "Thermal CVD Growth of Carbon Nanotubes Thick Layers." Advances in Science and Technology 48 (October 2006): 37–43. http://dx.doi.org/10.4028/www.scientific.net/ast.48.37.

Full text
Abstract:
Since their discovery, carbon nanotubes received a great deal of attention because of unique physical and chemical properties. However, in order to become of interest in the field of super resistant fibers for nanocomposite materials or in the production of textile material, very long carbon nanotubes are needed. Massive samples of well packed, vertically aligned and very long selfstanding multi wall carbon nanotubes (MWNT) were synthesized on uncoated silicon by a very efficient thermal CVD process, which involved the co-evaporation of camphor and ferrocene in a nitrogen atmosphere. We obtained structures with diameter between 20 and 80 nm with an average growth rate of about 400 nm/s, organized in thick carpets of entangled nanotubes. By the weight of the deposited carpet of MWNTs (density circa 0.8 g/cm3) the conversion of about 30% of the total hydrocarbon feedstock was calculated. Morphology and physical properties were characterized by electron microscopy techniques, Micro- Raman spectroscopy and thermogravimetric analysis. The analyses performed showed the absence of secondary carbonaceous products, whereas only 6% in weight of ferromagnetic iron clusters are present. BET analysis was used to calculate the porosity and the specific surface area density of the as grown samples, which resulted approximately 70 m2/g. Hydrophobicity of the CNT carpet was also investigated.
APA, Harvard, Vancouver, ISO, and other styles
47

Rozumek, Dariusz, and Norbert Szmolke. "Thermal Effects while Fatigue Cracking Growth under Bending." Key Engineering Materials 592-593 (November 2013): 700–703. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.700.

Full text
Abstract:
The paper presents the results of fatigue tests where temperature changes on specimen surfaces were registered. Some different materials were tested. A relation between the crack growth and temperature changes in the propagation place was found. The highest temperature gradients were measured on the crack growth path, and it was caused by molecular friction.
APA, Harvard, Vancouver, ISO, and other styles
48

Sinervo, Barry, and Stephen C. Adolph. "Growth Plasticity and Thermal Opportunity in Sceloporus Lizards." Ecology 75, no. 3 (April 1994): 776–90. http://dx.doi.org/10.2307/1941734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Park, H. J., Y. M. Sun, H. Troiani, P. Santiago, M. J. Yacaman, and J. M. White. "Growth and thermal annealing of Cu on HfO2." Surface Science 521, no. 1-2 (December 2002): 1–9. http://dx.doi.org/10.1016/s0039-6028(02)02198-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Huaijin, Xianlin Meng, Li Zhu, and Zhaohe Yang. "Growth and thermal properties of Nd:GdVO4 single crystal." Materials Research Bulletin 34, no. 10-11 (July 1999): 1589–93. http://dx.doi.org/10.1016/s0025-5408(99)00171-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography