Academic literature on the topic 'Thermal insulation systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal insulation systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal insulation systems"
Hroudová, Jitka, and Jiri Zach. "Development and Study of the Possibilities to Use Natural Materials for Thermal-Insulation Systems of ETICS." Advanced Materials Research 587 (November 2012): 31–35. http://dx.doi.org/10.4028/www.scientific.net/amr.587.31.
Full textTer-Zakaryan, Karapet, Armen Grigoryan, Andrey Medvedev, Boris Efimov, and Aleksey Poserenin. "Snow insulation and conservation systems." E3S Web of Conferences 138 (2019): 01038. http://dx.doi.org/10.1051/e3sconf/201913801038.
Full textYakovchuk, R., A. Kuzyk, O. Miller, and A. Lyn. "HEAT INSULATION-APPARATUS SYSTEMS OF HOUSEHOLD FACADE AS A FACTOR OF INCREASED FIRE HAZARD." Fire Safety, no. 32 (August 14, 2018): 80–89. http://dx.doi.org/10.32447/20786662.32.2018.12.
Full textKim, Yu Min, Yong Jun Lee, Gyeong Seok Choi, and Jae Sik Kang. "Thermal Performance of Sandwich Insulation System According to the Type of Form-Tie." Advanced Materials Research 689 (May 2013): 269–72. http://dx.doi.org/10.4028/www.scientific.net/amr.689.269.
Full textZhukov, Alexey, Armen Ter-Zakaryan, Ekaterina Bobrova, Igor Bessonov, Andrey Medvedev, Vitaly Mukhametzyanov, and Alexey Poserenin. "Evaluation of thermal properties of insulation systems in pitched roofs." E3S Web of Conferences 91 (2019): 02047. http://dx.doi.org/10.1051/e3sconf/20199102047.
Full textGrigoryan, Artak A., Karapet A. Ter-Zakaryan, Alexander I. Panchenko, Nadezhda A. Galceva, and Vladislav I. Krashchenko. "Heat- and cooling systems." Stroitel stvo nauka i obrazovanie [Construction Science and Education], no. 4 (December 31, 2019): 7. http://dx.doi.org/10.22227/2305-5502.2019.4.7.
Full textPetranek, Vít, Roman Šubrt, Jan Plachy, Lenka Nevřivová, Tomas Petricek, Lubor Kalousek, and Zdenek Caha. "Thermal Bridges in Insulation Systems." Advanced Materials Research 732-733 (August 2013): 182–85. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.182.
Full textZach, Jiri, Rudolf Hela, Jitka Peterková, and Martin Sedlmajer. "Utilization of Lightweight Aggregate from Expanded Obsidian for Advanced Thermal Insulating Plasters Production." Advanced Materials Research 335-336 (September 2011): 1199–203. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.1199.
Full textSepehr, K., and L. E. Goodrich. "Frost protection of buried PVC water mains in western Canada." Canadian Geotechnical Journal 31, no. 4 (August 1, 1994): 491–501. http://dx.doi.org/10.1139/t94-058.
Full textSemenov, Vyacheslav, Sergey Kozlov, Alexey Zhukov, Karen Ter-Zakaryan, Ekaterina Zinovieva, and Ekaterina Fomina. "Insulation systems for buildings and structures based on expanded polyethylene." MATEC Web of Conferences 251 (2018): 01014. http://dx.doi.org/10.1051/matecconf/201825101014.
Full textDissertations / Theses on the topic "Thermal insulation systems"
Boissonnet, Germain. "Factors influencing the thermal insulation potential of different thermal barrier coating systems." Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS007.
Full textIn aeronautical gas turbine engines, the metallic materials employed in the hottest sections are subject to very harsh chemical environments at high pressures and temperatures. Therefore, thermal barrier coating systems (TBCs) are applied onto nickel-based superalloy substrates. These multi-layered systems (ceramic yttria-stabilized zirconia (YSZ) / MCrAl or NiPtAl bond coats / cooled substrate) lower the temperature at the components surface, which ensures an adequate thermomechanical behaviour and reduces the oxidation/corrosion rates. However, the increase of the turbine inlet temperature (increased engine performance) brings about new degradation phenomena (e.g. CMAS) and loss of efficiency of the current TBCs. Therefore, understanding the evolution of the insulation ability of TBCs in such harsh environments is key from both the scientific and technological perspectives to estimate the lifetime of these coatings, hence that of the engines. Based on current plasma-sprayed (PS) and electron-beam physical vapour deposited (EB-PVD) YSZ coatings, this thesis seeks to provide a better comprehension on the relationships between the intrinsic properties of the current TBCs and their thermal insulation capacity as a basis for the development of future coatings. Also, this work studies an alternative solution to create a TBC made of hollow alumina microspheres by the slurry route. We will show that the sintering of the YSZ, the evolution of crystal phases, the reactions between YSZ and CMAS and the growth of thermal oxides alter the thermal diffusivity to different extents. In contrast, the evolution of the thermal diffusivity with temperature is less marked with the slurry alumina coatings, which appear more stable when hybrid Ar/air annealing atmospheres are employed upon their synthesis
Neugebauer, Adam (Adam Halbert). "Thermal properties of granular silica aerogel for high-performance insulation systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85213.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 65-67).
Based on mounting evidence in support of anthropogenic global climate change, there is an urgency for developments in high-performance building techniques and technologies. New construction projects provide substantial opportunities for energy efficiency measures, but they represent only a small portion of the building stock. Conversely, while existing buildings are plentiful, they typically have a much narrower range of feasible energy efficiency options. Therefore, there will continue to be a need for the development of new and improved energy efficiency measures for new building construction and even more so for deep retrofits of existing buildings. This thesis provides an overview of the research performed into the on-going development at MIT of a high-performance panelized insulation system based on silica aerogel. Two test methods were used for measuring the thermal conductivity of the granules: the transient hot-wire technique and the guarded hot-plate system. Utilizing the hot-wire set-up, it was demonstrated that compressing a bed of granules will decrease the thermal conductivity of the system until a minimum point is reached around the monolithic density of the aerogel. For the Cabot granules, this was seen at 13 mW/m-K and about 150 kg/m3. The MIT granules showed equal performance to the Cabot granules at bed densities 20-30 kg/m3 lower. The hot-plate testing was able to experimentally evaluate previous analytical predictions regarding the conductivity impact of the internal panel truss and the under-prediction of radiant heat transfer in the hot-wire method. Hot-wire testing was also done in a vacuum chamber to quantify potential performance improvements at reduced air pressures. Since a vacuum would require the incorporation of a barrier film into the panel system, some analyses were done into the thermal bridging potential and gas diffusion requirements of such a film. Additionally, physical prototyping was done to explore how the film would be incorporated into the existing panel design. The aerogel-based insulation panel being developed at MIT continues to show promise, though there are still plenty of opportunities remaining in the development cycle.
by Adam Neugebauer.
S.M. in Building Technology
Miersch, Sören, Ralph Schubert, Thomas Schuhmann, Uwe Schuffenhauer, Markus Buddenbohm, Markus Beyreuther, Jeannette Kuhn, Mathias Lindner, Bernd Cebulski, and Jakob Jung. "Ceramic-like Composite Systems for Winding Insulation of Electrical Machines." IEEE, 2020. https://htw-dresden.qucosa.de/id/qucosa%3A74384.
Full textForos, Asimakis. "An investigation into the thermal behaviour of external insulation systems with drained cavities." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435460.
Full textZendehrokh, Arwin, Luis Mariscal, Martin Hunhammar, Hassan Ismail Yussuf, and Albert Pettersson. "The thermal insulating effects of Quartzene® on painting systems." Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415717.
Full textVan, Wyk Peter Arnold. "Thermal management and control of space satellite systems and subsystems in orbit." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/49738.
Full textENGLISH ABSTRACT: The focus of this thesis is on South Africa's first micro space satellite SUNSAT, and the thermal modelling thereof. Background theory with relevance to thermal management and control of satellite systems and subsystems is presented. The mission profile and subsystem makeup of SUNSAT is also briefly discussed, with emphasis placed on the physical structure, possible orbit paths, internal heat generation, and the environmental heating. The environmental heating on the satellite surfaces from the direct and reflected earth solar radiation, as well as the earth emitted infrared radiation, is determined from the developed computer program ORBIT-FLUX. This program was used in tandem with numerical programs (developed in house), as well as an outsourced program TAS (Thermal Analysis Systems) to model SUNSAT for two possible orbit paths. The resistance-capacitance formulation method was used to develop the numerical programs, which served initially to establish the validity ofTAS. The first approximated thermal model of SUNSA T's batteries was the 7 lumped-mass model that focused on the batteries since their overheating is the suspected reason for SUNSA T'S failure to complete its mission. A numerical program as well as a similar TAS model was developed, and the results showed correlation to within 3°C. A lumped-mass model of SUNSAT was also developed, both numerically and using TAS. The models were tested and the results showed that the temperatures of the models were sensitive to changes in internal heating as well as varying emissivity and absorptivity. The numerical and TAS lumped-mass model results did not correlate well, possibly due to the higher number of control volumes used in the TAS lumped-mass model. The TAS SUNSAT 2 model was developed as advancement on the lumped-mass model. The higher number of control volumes and the effect of adding solar panels gave a more realistic model of SUNSA T. The results did not show good correlation with actual SUNSA T temperature data possibly due to the fact that the solar panels were not mounted on the model body as they were on SUNSA T; but the TAS SUNSA T 2 model did set the platform for the more advanced TAS SUNSAT 3 model. This thermal model included the effects of the solar panel mountings, and had a higher number of control volumes, which gave a better physical representation of the SUNSAT subsystems. The model was tested for possible orbit paths of SUNSA T. The results showed excellent correlation to actual SUNSA T data. For the comparison of the TAS SUNSA T 3 model results with data from SUNSAT for July 1999 showed that the SUNSA T battery temperature was modelled to within 8°C. And for June 2000, this same comparison was to within 1°C. A thermal management and control case study was done on a simple system (which included a cubic box and an internal solid block with heat generation) to illustrate the effects of using various passive and active thermal control hardware to regulate temperatures. The results showed that internal surfaces painted black provide for maximum heat sharing, and lowest block temperatures. The block temperatures were found to be very sensitive to changes in the cube external optical surface properties. A slight increase in emissivity lowered the block temperature, while a slight increase in absorptivity increased the block temperature. Heat pipes were also found to lower the temperatures of the block and immediate subsystems by providing a path of low thermal resistance to the flow of heat from the block directly to the radiator. The effect of thermal insulation was also investigated. For the two materials (rubber and plastic) that were tested, it was noticed that although insulation material does give more thermal control and predictability over a subsystem by thermally isolating it from its environment, it can cause a subsystem that has heat generation to become too hot. Recommendations were made relating to future micro satellite thermal management and control with regard to; thermal modelling techniques, acquisition of tried software, positioning of temperature sensors for optimisation of thermal data, and the verification of optical surface properties by physical measurement.
AFRIKAANSE OPSOMMING: Hierdie tesis fokus op Suid-Afrika se eerste mikro ruimte satelliet, SUNSAT, en die termiese ontwikkeling daarvan. Agtergrond teorie met betrekking tot die termiese bestuur en kontrole van die satelliet-sisteme en subsisteme word aangebied. Die missie-profiel en die samestelling van die subsisteme word ook kortliks bespreek met die klem op die fisiese strukture, moontlike wentelbane, interne hitte-opwekking, en die omgewingsverhitting. Die omgewingsverhitting op die oppervlaktes van die satelliet, veroorsaak deur direkte en weerkaatste aardlson bestraling, sowel as deur infrarooi bestraling afkomstig van die aarde, word bepaal deur die ontwikkelde rekenaarprogram ORBIT-FLUX. Hierdie program word gebruik in tandem met numeriese programme (intern ontwikkel), so weI as 'n uitgekontrakteerde program TAS (Termiese Analiese Sisteme) om SUNS AT vir twee moontlike wentelbane te modelleer. Die weerstandskapasitansie formuleringsmetode is gebruik om die numeriese programme te ontwikkel. Hierdie programme is oorspronklik gebruik om die validiteit van TAS vas te stel. Die eerste benaderde termiese model van SUNSAT se batterye was die 7 gekonsentreerdemassa model wat gefokus het op die batterye aangesien daar vermoed is dat oorverhitting van die batterye die rede is waarom SUNSAT nie sy missie voltooi het nie. 'n Numeriese program so weI as 'n gelyksoortige TAS model is ontwikkel en die resultate korreleer tot binne 3°C. 'n Gekonsentreerde-massa model van SUNSA T is ook ontwikkel, numeries en met gebruik van TAS. Die modelle is getoets en die resultate toon dat die temperature van die modelle gevoelig is vir veranderinge in interne hitte sowel as vir wissellende uitstralingsvermoe en absorpsievermoe, Die numeriese- en die TAS gekonsentreerde-massa model resultate het nie goed met mekaar korrelleer nie, moontlik weens die hoe aantal kontrole volumes wat in die TAS gekonsentreerde-massa model gebruik is. Die TAS SUNSA T 2 model is 'n verdere ontwikkeling van die gekonsentreerde-massa model. Die hoer aantal kontrole volumes en die byvoeging van solarpanele het tot gevolg gehad dat hierdie 'n meer realistiese model van SUNSA T is. Die resultate het nie goed gekorrelleer met die temperatuurdata van die werklike SUNSAT nie, moontlik weens die feit dat die solarpanele nie op die bakwerk monteer is, soos in die geval van SUNSA T nie. Nietemin het het die TAS SUNSAT 2 model gelei tot die meer gevorderde TAS SUNSAT 3 model. Hierdie termiese model het die solarpaneel montuur ingesluit en het 'n hoer aantal kontrole volumes gehad, wat 'n beter fisiese weergawe van die SUNSAT subsisteme tot gevolg gehad het. Die model is getoets vir moontlike wentelbane van SUNSAT. Die resultate het 'n hoe korrellasie getoon met die data van die werklike SUNSAT. 'n Vergelyking van die TAS SUNSAT 3 model resultate met data van SUNSAT vir Julie 1999 wys dat die SUNSAT battery temperatuur dieselfde is tot binne 8°C. Vergelyk met die resultate vir Junie 2000 was dit binne 1°C. 'n Termiese bestuurs- en kontrolestudie is gedoen op 'n eenvoudige sisteem (insluitende 'n kubieke boks en 'n interne soliede blok met hitte opwekking) om die uitwerking van die gebruik van passiewe en aktiewe termiese kontrole hardeware wat temperature reguleer, te illustreer. Die resultate toon dat interne oppervlaktes wat swart geverf is, lei tot die maksimum hitte-deling, en die laagste bloktemperature. Daar is gevind dat bloktemperature baie gevoelig is vir veranderinge in die eienskappe van die kubus se eksterne optiese oppervlaktes. 'n Effense vermedering van uitstralingsvermoe verlaag die bloktemperatuur, terwyl 'n effense vermedering van absorpsievermoe die bloktemperatuur verhoog. Daar is ook gevind dat hittepype die temperatuur van die blok en onmiddelike subsisteme verlaag deur om 'n pad van lae termiese weerstand teen die vloei van hitte vanaf die blok, direk na die verkoeler te verskaf. Die uitwerking van termiese isolasie is ook ondersoek. In die geval van die twee materiale (rubber en plastiek) wat getoets is, is daar opgemerk dat, alhoewel isolasie materiaal meer termiese beheer oor die subsisteem en voorspelbaarheid tot gevolg gehad het deurdat die subsisteem termies van die omgewing isoleer is, kan dit veroorsaak dat die subsisteem te warm word. Aanbevelings is gemaak met betrekking tot toekomstige mikro satelliet bestuur en kontrole en wel in verband met die volgende: termiese modelleringstegnieke, die aanskaffing van getoetste sagteware, die plasing van temperatuut sensors vir die beste termiese data, en die verifikasie van die eienskappe van optiese oppervlaktes deur fisiese meting.
Kostíková, Veronika. "Posouzení vlivu provedení zateplení bytového domu v Třebíči na výdaje spojené s provozem této nemovitosti." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-232619.
Full textNaldi, Matteo. "The effect of the temperature dependency of building insulation conductivity in continental and humid temperate climate." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textCondò, Marco. "Electrical characterization of innovative insulating materials for HVDC energy transmission cable systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textMohamed, Ali Mohamed. "ANALYZING THE IMPACT OF PHOTOVOLTAIC AND BATTERIE SYSTEMS ON THE LIFE OF A DISTRIBUTION TRANSFORMER." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54952.
Full textBooks on the topic "Thermal insulation systems"
Powell, FJ, and SL Matthews, eds. Thermal Insulation: Materials and Systems. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1987. http://dx.doi.org/10.1520/stp922-eb.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. External Thermal Insulation Composite Systems (ETICS). Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20382-9.
Full textScotti, Stephen J. Current Technology for Thermal Protection Systems: Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at Langley Research Center, Hampton, Virginia, February 11-12, 1992. Hampton, Va: Langley Research Center, 1992.
Find full textWilkes, Kenneth Earl. Analysis of annual thermal and moisture performance of radiant barrier systems. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1991.
Find full text1952-, Williams Barbara Lamp, ed. Exterior insulation and finish systems: Current practices and future considerations. Philadelphia, PA: ASTM, 1994.
Find full textSparks, Larry L. Thermal conductivity of selected foams and systems from 100 to 300 K. Boulder, Colo: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textGibson, Lawrence. Canadian Mortgage and Housing Corporation (CMHC) research report: Exterior insulation finish systems : laboratory evaluation of materials and joints subjected to artificial conditioning, January 26, 1995. Ottawa, Ont: Canada Mortgage and Housing Corporation, 1995.
Find full textPerformance of Exterior Envelopes of Whole Buildings International Conference (9th 2004 Clearwater Beach, Fla.). Performance of Exterior Envelopes of Whole Buildings IX International Conference: Conference proceedings. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2004.
Find full textInstitution, British Standards. British standard specification for urea-formaldehyde (UF) foam systems suitable for thermal insulation of cavity walls with masonry or concrete innerand outer leaves. London: British Standards Institution, 1985.
Find full textInstitution, British Standards. British standard code of practice for thermal insulation of cavity walls: (with masonry or concrete inner and outer leaves) by filling with urea-formaldehyde (UF) foam systems. London: British Standards Institution, 1985.
Find full textBook chapters on the topic "Thermal insulation systems"
Raychaudhuri, B. C. "Thermal Insulation in Solar Thermal Devices." In Solar Water Heating Systems, 133–51. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5480-9_11.
Full textOhmori, T., W. N. Boroski, J. D. Gonczy, R. C. Niemann, M. K. Ruschman, T. Taira, K. Takahashi, A. Yamamoto, and H. Hirabayashi. "Thermal Performance of Candidate SSC Magnet Thermal Insulation Systems." In A Cryogenic Engineering Conference Publication, 323–31. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_40.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "Introduction." In External Thermal Insulation Composite Systems (ETICS), 1–7. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_1.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "Experimental Studies on Hygrothermal Behaviour of ETICS." In External Thermal Insulation Composite Systems (ETICS), 9–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_2.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "Assessment of ETICS’ Surface Humidification." In External Thermal Insulation Composite Systems (ETICS), 23–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_3.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "BIO.MOD Indices Application Examples." In External Thermal Insulation Composite Systems (ETICS), 35–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_4.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "Experimental and Numerical Study on the Effect of Nearby Obstacles in Surface Condensations on ETICS." In External Thermal Insulation Composite Systems (ETICS), 47–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_5.
Full textBarreira, Eva, and Vasco Peixoto de Freitas. "Conclusions and Recommendations." In External Thermal Insulation Composite Systems (ETICS), 69–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20382-9_6.
Full textBarreira, Eva, Vasco Peixoto de Freitas, and João M. P. Q. Delgado. "Biological Defacement of External Thermal Insulation Composite Systems." In Hygrothermal Behavior, Building Pathology and Durability, 23–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31158-1_2.
Full textBoroski, W. N., T. H. Nicol, and C. J. Schoo. "Thermal Performance of Various Multilayer Insulation Systems Below 80K." In Supercollider 4, 235–42. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3454-9_28.
Full textConference papers on the topic "Thermal insulation systems"
Knotts, Wesley, Danielle Miller, Changki Mo, Laura A. Schaefer, and William W. Clark. "Smart Insulation for Thermal Control in Buildings." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5007.
Full textJordan, Colin, Glen Ackerman, Douglas Andrejewski, Timothy Andrews, Craig Baloga, Lindley Berry, Mark Brumby, et al. "Alternate Floorpan Insulation Materials." In Vehicle Thermal Management Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931110.
Full textWenjie Wu and Hong Li. "Advantage of external thermal insulation technology." In 2012 7th International Conference on System of Systems Engineering (SoSE). IEEE, 2012. http://dx.doi.org/10.1109/sysose.2012.6333609.
Full textHickey, Gregory S. "Thermal Insulation for Mars Surface Exploration." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972466.
Full textFossett, Anthony J. "A Recyclable Insulation for Use on Underbody Heat Shields." In Vehicle Thermal Management Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931119.
Full textDemko, J. A., J. E. Fesmire, S. D. Augustynowicz, J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, et al. "DESIGN TOOL FOR CRYOGENIC THERMAL INSULATION SYSTEMS." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908507.
Full textBednov, Sergei M., Victor L. Maslov, and Victor L. Maksimov. "Peculiarities of Thermal Conditions of Screen-Vacuum Thermal Insulation of Spacecrafts." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941518.
Full textGrealish, Frank, and Iggy Roddy. "State-of-the-Art on Deep Water Thermal Insulation Systems." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28464.
Full textRobinson, Christopher B. "Selecting Thermal Insulation for Improved Exhaust Component Durability." In 1995 Vehicle Thermal Management Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971810.
Full textHorton, Richard, Guy Smith, and Mala Thompson. "Thermal Conductivity Testing of Radiation Shielding Materials for Use as Thermal Insulation." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-2268.
Full textReports on the topic "Thermal insulation systems"
Wright, William P., Wayne A. Slack, and Willis Jackson. Thermal Response Tests of a Candidate Insulation Systems for the Chlorine Tank Car. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada165293.
Full textFine, H., and D. McElroy. Assessment of the energy conservation potential of active (variable thermal resistance and switchable absorptance) building thermal insulation systems. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6816624.
Full textPark, Huiju, Soo-Kyung Hwang, Joo-young Lee, Jintu Fan, and Youngjin Jeong. Effectiveness of Electrical Heating for Improved Thermal Insulation of a Multi-layered Winter Clothing System. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1573.
Full textAbramson, Mark A. Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search Algorithm. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada451457.
Full text