To see the other types of publications on this topic, follow the link: Thermally.

Dissertations / Theses on the topic 'Thermally'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermally.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hardy, Brian Sauer. "Thermally-actuated microfluidics." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1998391971&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nelkien, Haim. "Thermally driven circulation." Woods Hole, Mass. : Woods Hole Oceanographic Institution, 1987. http://hdl.handle.net/1912/3152.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, and (Ph. D.)--Woods Hole Oceanographic Institution, 1987.<br>Cover title. Includes bibliographical references (leaves 181-186).
APA, Harvard, Vancouver, ISO, and other styles
3

Ladbury, John Edward Simon Durham. "Thermally conducting polymers." Thesis, University of Greenwich, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nelken, Haim. "Thermally driven circulation." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/58495.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987.<br>Includes bibliographical references (leaves 181-186).<br>Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a rigid insulating basin. In addition to the traditional eddy viscosity and diffusivity, turbulent processes are also included by a convective overturning adjustment at locations where the local density field is unstable. Two classes of problems are treated. The first is the large scale meridional pattern of a fluid in an annulus. The detailed treatment is carried out in two steps. In the beginning (chapter 2) it is assumed that the fluid is very diffusive, hence, to first approximation no flow field is present. It is found that the convective overturning adjustment changes the character of the stratification in all the regions that are cooled from the top, resulting in a temperature field that is nearly depth independent in the northernmost latitudes. The response to a seasonal cycle in the forcing, and the differences between averaging the results from the end of each season compared to driving the fluid by a mean forcing are analyzed. In particular, the resulting sea surface temperature is warmer in the former procedure. This observation is important in models where the heat flux is sensitive to the gradient of air to sea surface temperatures. The analysis of the problem continues in chapter 5 where the contribution of the flow field is included in the same configuration. The dimensionless parameter controlling the circulation is now the Rayleigh number, which is a measure of the relative importance of gravitational and viscous forces. The effects of the convective overturning adjustment is investigated at different Rayleigh numbers. It is shown that not only is the stratification now always stable, but also that the vigorous vertical mixing reduces the effective Rayleigh number; thereby the flow field is more moderate, the thermocline deepens, and the horizontal surface temperature gradients are weaker. The interior of the fluid is colder compared to cases without convective overturning, and, because the amount of heat in the system is assumed to be fixed, the surface temperature is warmer. The fluid is not only forced by a mean heat flux, or a seasonally varying one, but its behavior under permanent winter and summer conditions is also investigated. A steady state for the experiments where the net heat flux does not vanish is defined as that state where the flow field and temperature structure are not changing with time except for an almost uniform temperature decrease or increase everywhere. It is found that when winter conditions prevail the circulation is very strong, while it is rather weak for continuous summer forcing. In contrast to those results, if a yearly cycle is imposed, the circulation tends to reach a minimum in the winter time and a maximum in the summer. This suggests that, depending on the Rayleigh number, there is a phase leg of several months between the response of the ocean and the imposed forcing. Differences between the two averaging procedures mentioned before are also observed when the flow field is present, especially for large Rayleigh numbers. The circulation is found to be weaker and the sea surface temperature colder in the mean of the seasonal realizations compared to the steady state derived by the mean forcing. As an extension to the numerical results, an analytic model is presented in chapter 4 for a similar annular configuration.<br>by Haim Nelken.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Taherian, Ali Reza. "Thermal softening kinetics and textural quality of thermally processed vegetables." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23301.

Full text
Abstract:
Dry Romano beans (Phaseolus vulgaris) were soaked and cooked at temperatures ranging from 70 to 100$ sp circ$C for different time intervals. The rate of texture softening associated with each temperature was found to be consistent with two simultaneous pseudo first-order kinetic mechanisms 1 and 2. Approximately 40% of the firmness of Romano beans was lost by the rapid softening mechanism 1. The remaining firmness loss was characterized by mechanism 2 which was found to be much slower ($ sim$1/50th of the former). The temperature dependence indicator (z value) of reaction rate constants were 30 and 24 C$ sp circ$, respectively for mechanisms 1 and 2 with associated activation energies of 82 kJ/mole and 103 kJ/mole, respectively.<br>Turnip (Brassica napobbrassica) and beet roots (B. Vulgaris L.) were cooked at temperatures ranging from 70 to 100$ sp circ$C for different time intervals. Three textural properties (firmness, springiness, and stiffness) were found to follow the same trend of apparent first order kinetic theory with two substrates. Temperature dependence of softening (z value) was found to be within 27 and 35 C$ sp circ ,$ with activation energies in the range of 93 and 60 kJ/mole.<br>Cylindrical turnip, beet root pieces and Romano beans were packed in thin profile plastic containers and cylindrical metal cans and thermally processed in the static and rotational modes. Through heat penetration testing, process times were adjusted to give an equivalent lethality of 10 min for each product. Thin profile packed vegetables, in all cases, were found to have a firmer and stiffer texture. On the other hand, for rotational processing, the result showed no significant improvement in textural properties (firmness, springiness and stiffness) over the still counterparts. It was found that previously determined kinetic data could be used to estimate texture retention.
APA, Harvard, Vancouver, ISO, and other styles
6

Sul, Onejae Washburn Michael Sean. "Thermally actuated mechanical systems." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2006. http://dc.lib.unc.edu/u?/etd,392.

Full text
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2006.<br>Title from electronic title page (viewed Oct. 10, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy." Discipline: Physics and Astronomy; Department/School: Physics and Astronomy.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Chaoming. "Thermally annealled plasmonic nanostructures." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5556.

Full text
Abstract:
Localized surface plasmon resonance (LSPR) is induced in metal nanoparticles by resonance between incident photons and conduction electrons in nanoparticles. For noble metal nanoparticles, LSPR can lead to strong absorbance of ultraviolet-violet light. Although it is well known that LSPR depends on the size and shape of nanoparticles, the inter-particle spacing, the dielectric properties of metal and the surrounding medium, the temperature dependence of LSPR is not well understood. By thermally annealing gold nanoparticle arrays formed by nanosphere lithography, a shift of LSPR peak upon heating has been shown. The thermal characteristics of the plasmonic nanoparticles have been further used to detect chemicals such as explosive and mercury vapors, which allow direct visual observation of the presence of mercury vapor, as well as thermal desorption measurements.<br>ID: 031001538; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Adviser: Ming Su.; Title from PDF title page (viewed August 21, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 95-108).<br>Ph.D.<br>Doctorate<br>Materials Science Engineering<br>Engineering and Computer Science<br>Materials Science and Engineering
APA, Harvard, Vancouver, ISO, and other styles
8

Morrison, Graeme A. "Thermally driven hydromagnetic dynamos." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Michael Woods. "Thermally induced fast fracture /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487262825077516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pierce, Benjamin Franklin Ashby Valerie. "Thermally-responsive polyester urethanes." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2008. http://dc.lib.unc.edu/u?/etd,1982.

Full text
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2008.<br>Title from electronic title page (viewed Dec. 11, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Wei. "Thermally poled fibre devices." Thesis, The University of Sydney, 1999. https://hdl.handle.net/2123/27574.

Full text
Abstract:
Poling of silica glass, silica fibre and silica planar waveguides is an exciting research field. The thermal poling technique has been demonstrated to produce large second order nonlinearities and linear electro-optic coefficients in silica glass, silica fibre and silica planar waveguides. In this thesis, efforts have been made both to obtain large, stable and reliable linear electro—optic coefficients in silica fibre using thermal poling and to understand the mechanisms for the thermal poling effects in silica fibre. Firstly, the thermal poling conditions for boron co-doped germanosilicate fibre were optimized and the dependence of the thermal poling induced linear electro-optic coefficient on the poling voltage, poling temperature and poling time were analyzed. To improve the efficiency of optimizing the poling conditions for different types of silica fibre, an in situ poling technique was deployed to study aluminum co-doped germanosilicate fibre. It is found that the thermal poling history has significant influence on the induced linear electro-optic effect. Furthermore, the in situ technique was also employed to measure and analyze the decay behavior of the induced linear electro-optic coefficient in boron co-doped germanosilicate fibre. Secondly, an innovative method was proposed to investigate the frozen—in fields existing in the thermally poled fibres. The frozen-in fields are the cause for the induced linear electro-optic effect in silica fibre. This method can be used to measure both the magnitude and the direction of the frozen—in fields. Furthermore, this method is able to measure the third order nonlinearity of the fibre core. It is the first time that it has been observed that the third order nonlinearity of the fibre core increases after thermal poling. Next, it was found that the time evolution of the linear electro-optic coefficient in thermally poled silica fibre is very different for different polarity of the poling voltage. There are two distinct processes in thermal poling: the faster linear process of charge migration and the subsequent single exponential process of charge ionization. It is the first time that it has been shown that there are two frozen-in fields in thermally poled fibre: the shielding field and the ionization field. Both the fields are able to produce a linear electro-optic effect in silica fibre. Furthermore, It was found that the charge distributions in thermally poled fibre could move during thermal poling. It is the first time that the competition between the shielding field and the ionization field seen by the core has been analyzed and it is shown to be a linear process. The third order nonlinearity of the poled fibre core is fairly constant during this competition, but it is still larger than that of the unpoled fibre core. Finally, the thermal poling technology and the Bragg grating technology were integrated to demonstrate a single fibre (low frequency) intensity modulator.
APA, Harvard, Vancouver, ISO, and other styles
12

Darling, Kris Allen. "Thermally Stability of Nanocrystalline Microstructures." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-03182009-141051/.

Full text
Abstract:
Fe based alloys were high energy ball milled to produce supersaturated solid solutions with a nominal grain size of ~10nm. Solutes such as Y, W, Ta, Ni and Zr were selected based on their propensity to grain boundary segregated in Fe. Based on preliminary heat treatments Zr was selected as the solute of choice. Upon further heat treating experiments and microstructural analysis it was found that Zr solute additions of < 4at% could stabilize a nanocrystalline microstructure of <100nm at temperatures in excess of 900oC. This is in stark comparison to pure nanocrystalline Fe which shows coarsening to the micron scale after annealing above 600oC. Reduction in grain boundary energy due to Zr segregation and solute drag are proposed as mechanism responsible for the observed thermal stability.
APA, Harvard, Vancouver, ISO, and other styles
13

Gargaro, R. J. "Thermally-driven shallow cavity flows." Thesis, City University London, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yadav, Tapesh K. "Thermally metastable fullerenes in flames." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Determan, Matthew Delos. "Thermally activated miniaturized cooling system." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29618.

Full text
Abstract:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2008.<br>Committee Chair: Garimella, Srinivas; Committee Member: Allen, Mark; Committee Member: Fuller, Tom; Committee Member: Jeter, Sheldon; Committee Member: Wepfer, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
16

CONRADO, FEDERICO. "Thermally conductive polymeric based nanocomposites." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2687984.

Full text
Abstract:
Polymers are thermal insulators by they own nature; therefore they are not generally used in the field of heat management. In this field usually metals have a dominant role due to their outstanding heat conduction. However, it could be very interesting the replacement of the commonly used metals with a polymeric based material due to several advantages polymers can provide (weight reduction, galvanic coupling avoidance, chemical resistance, easier and cheaper forming). Due to their intrinsic low values of thermal conductivity however polymers needs to be modified. The easiest way to improve thermal conductivity of polymers generally involves their mixing with highly thermally conductive fillers. This strategy however results in some issues and difficulties which are not easily overcome. First of all the thermal conduction of the filler used has to be taken into account since it is responsible for the thermal enhancement of the polymer matrix. Recently, a lot of attention has focused on carbon based fillers such as carbon fibers, carbon nanotubes, graphite and graphene due to their tremendous intrinsic specific thermal conductivity. The use of these fillers could in fact highly reduce the amount required to achieve a thermal conduction improvement. The reason of that is mostly related to their high aspect ratio, low density, micro-nanometric dimension and high dispersion and distribution degree achievable while mixed in polymers. All these peculiarities result in a high number of continuous thermally conductive paths inside the polymer insulating matrix and therefore to its better thermal performance. Despite these advantages, some drawbacks are present. Among them the continuity of the structure acts in general as the main driving force to the heat conduction improvement, since if the continuity is not guarantee the phonon damping matrix rules on the overall thermal conductivity. Another important factor is related to contact resistance between the filler particles. In order to reduce the contact resistance some strategies could be developed to limit the number of contacts required to cross the material, and among them the increase of the lateral dimension of the filler is one of the main ones. Also the preferential orientation of the filler has a positive effect relatively to the contacts resistance since it decreases the amount of contacts required to cross the material, improving the overall heat conduction efficiency. Relatively to the contacts in addition some effect is also related to their quality which can be developed and studied to improve the efficiency. During this work it was attempted a progressive improvement of the thermal transport of polymeric graphene/graphite based nanocomposites solving the above mentioned issues. A dispersion and distribution approach was done and the most common techniques investigated and progressively improved for different graphene and graphite fillers. Once the best dispersion technique was identified, a progressive refinement of the filler was done: fillers with high lateral dimensions and small packing densities were chosen and materials with higher filler loading prepared. Additional improvement was obtained after a purification of the fillers at high temperature to anneal defects, remove impurities and promote graphitization. Percolation issues were solved creating 3D structures accordingly to two strategies: wool cotton preform infiltration and in particular graphene aerogel creation. Relatively to the first case wool cotton was infiltrated with graphene oxide and a thermal annealing performed. In the second case both isotropic and anisotropic graphene aerogels were created to obtain a 3D self-standing continuous structure. After the polymeric infiltration it was discovered that the aerogel technique allows high thermal conductivity improvement at small filler loadings, minimizing the amount of filler to be inserted, dispersed, and distributed to achieve the desired result.
APA, Harvard, Vancouver, ISO, and other styles
17

FACCHINETTI, IRENE. "Thermally Regenerable Redox-Flow Batteries." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/308694.

Full text
Abstract:
Il calore a bassa temperatura (LTH), inferiore a 100°C, è una forma di energia largamente disponibile che viene dispersa nell’ambiente, senza alcun utilizzo. La conversione di questo tipo di energia in elettricità aprirebbe le porte allo sfruttamento di fonti energetiche come il calore solare, geotermico e di scarto industriale. La conversione di LTH in elettricità non è però un processo efficiente a causa dei limiti posti dalla termodinamica, con la cosiddetta legge di Carnot, oltre che ai limiti tecnologici che riducono ulteriormente la conversione di questa forma di energia. I dispositivi preposti per convertire LTH in elettricità devono poter operare con alte efficienze e potenze, e devono essere facilmente scalabili ed economici. Purtroppo, attualmente nessun dispositivo è in grado di effettuare questa conversione con potenze ed efficienze abbastanza elevate da giustificare gli alti costi (materiali, operazionali e manutenzione) e la complessità dei dispositivi stessi ed è per questo motivo che LTH non trova tutt’ora alcuna applicazione Questo progetto di ricerca si è focalizzato sullo sviluppo di un dispositivo in grado di convertire LTH in maniera efficiente e con alte potenze. Tale dispositivo, chiamato Thermally Regnerable Redox-Flow Battery, TRB, è una batteria a flusso ricaricabile termicamente. Il dispositivo conta due diverse processi: la produzione energetica, che avviene in una cella elettrochimica in grado di produrre elettricità alle spese dell’energia libera di mescolamento di due soluzioni acquose dello stesso sale ma a diversa concentrazione. Quando le due soluzioni raggiungono la stessa concentrazione, la soluzione esausta viene mandata al secondo processo: un distillatore sottovuoto che rigenera il gradiente di concentrazione tra le due soluzioni sfruttando risorse di LTH. L’efficienza totale del dispositivo è quindi data dal prodotto tra l’efficienza della cella elettrochimica e l’efficienza del distillatore. Studi termodinamici dimostrano che per incrementare tale efficienza è fondamentale lavorare sull’efficienza del distillatore, il cui valore dipende dalla scelta del soluto e del solvente. In particolare, per questo lavoro di ricerca si è scelto di operare con soluzioni acquose di NaI/I2 e LiBr/Br2. I risultati raggiunti e le principali attività di ricerca vengono riportate brevemente in questo abstract: Con la determinazione dei coefficienti di attività, si è calcolato l’energia libera di mescolamento e il potenziale a circuito aperto per entrambi i set di soluzioni (NaI e LiBr). Le celle elettrochimiche sono state sviluppate specificamente per entrambi I sistemi studiati e test elettrochimici hanno permesso di valutare le performance dei due dispositivi, come potenza ed efficienza elettrochimica. La distillazione è stata modellizzata in modo da definire le condizioni ottimali di lavoro e determinare l’efficienza del processo.<br>Low-Temperature Heat (LTH), below of 100°C, has elicited great interest among the scientific community, as a source of energy since it does not see any form of utilization as it is currently simply released into the environment. Its conversion would open the doors to the exploitation of a huge amount of energy as well, such as geothermal, solar, and industrial waste heat. The conversion efficiencies of LTH are low because of the limitations imposed by Carnot law, as well as the existence of technological limits which further reduce the efficiency of the conversion of LTH. In order to be suitable for extensive industrial production, LTH converters should show high power densities, scalable and efficient whilst being cost-effective; to this point, the devices proposed for this afore mentioned application all failed to achieve suitable efficiencies and power density, making the LTH conversion unfeasible. This PhD project was focused on the design of a device called Thermally Regenerable Redox-Flow Battery (TRB) consisting of a redox-flow battery that can be recharged by a thermal process. The device is based upon a two-stages technology composed by a “power production” stage and a “thermal” stage: power production happens in an electrochemical cell which release electricity at the expenses of the mixing free energy of two water solutions of the same salt at different concentrations, referred to as a concentration cell. When the two solutions reach the same concentration, the exhausted fluid is sent to the second stage, the thermal process, which regenerates the initial mixing free energy, by exploiting LTH sources, through vacuum distillation. The efficiency of the technology is the product between the efficiencies of the units in the device where both stages happen: the electrochemical cell, engineered for power production, and a distillation unit, designed to be responsible for thermal conversion. NaI/I2 and LiBr/Br2 water solutions will be the most discussed redox couple in this thesis, as result of thermodynamic analysis that have shown the importance related to the solvent and salt choice to ensure high energy conversion efficiencies. The achieved results, as well as the main research activities, are briefly reported here: starting from the determination of the activity coefficients, mixing free energy of the initial solutions, and the open circuit voltage of the electrochemical are calculated. Electrochemical cells are specifically designed for both systems while electrochemical tests are performed to evaluate the main performances of the devices, such as power density and electrochemical efficiency. Modeling of the operational conditions of the thermal stage allows to determine the distillation efficiency for both the solutions. The initial experiments prove an unprecedented heat-to-electricity efficiency for both the systems: 3% for TRB-NaI and 4-5% for TRB based on LiBr, depending on the thickness of the membrane with a power density output of almost 10 W m-2 for both technologies, which opens various possibilities to implement further improvements into this new class of energy storage/converter devices.
APA, Harvard, Vancouver, ISO, and other styles
18

Giles, Brandon L. "Opto-thermal measurements of thermally generated spin current in Yttrium Iron Garnet." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503024951599588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.

Full text
Abstract:
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
APA, Harvard, Vancouver, ISO, and other styles
20

Hsu, Chia-Hao. "Optimizing the thermal material in the thermally actuated magnetization (TAM) flux pump system." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Paul, G. P. "Smoke evolution from thermally decomposing polymers." Thesis, London South Bank University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bruzzi, Mara, Riccardo Mori, Andrea Baldi, Ennio Carnevale, Alessandro Cavallaro, and Monica Scaringella. "Thermally Stimulated Currents in Nanocrystalline Titania." MDPI AG, 2018. http://hdl.handle.net/10150/627084.

Full text
Abstract:
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10(14)-10(18) cm(-3), associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
APA, Harvard, Vancouver, ISO, and other styles
23

Kuroda, Kenichi 1972. "Thermally responsive polymers and their applications." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29641.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2003.<br>Vita.<br>Includes bibliographical references.<br>This thesis focuses on development of polymeric materials that can alter their functions according to temperature changes. We chose poly(N-isopropylacrylamide) (polyNIPA) as a platform, which phase-separates from water upon heating. The thermally responsive properties and applications of polyNIPA are introduced in Chapter One. In Chapter Two, we described the synthesis of polyNIPA gels with an imidazole comomoer and examined copper ion adsorption by the swollen (room temperature) and shrunken gels (60⁰C). The data analysis using a Langmuir adsorption isotherm indicates that the imidazole groups form 2:1 and 4:1 complexes with a copper ion in the swollen and shrunken gels, respectively, which suggests that thermal gel swelling and shrinking control the formation of multivalent Cu complexes by changing the distance among imidazole groups. In Chapters Three to Six, the synthesis of polyNIPA-conjugated polymer block copolymers and their applications are described. Non-ionic water-soluble poly(phenylene-ethynylene)s (PPEs) (Chapter Three) were used as conjugated polymer segments in the block copolymers. In a route to synthesis of the block copolymers, atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP) of NIPA were developed. Incorporation of ATRP or NMRP initiators to the polymer ends of PPEs and the following polymerizations of NIPA were expected to provide tri-block copolymers with precise structures. The ATRP method produced pure polyNIPA with monodisperse and defined molecular weights (Chapter Four). However, endcapping of PPEs with an ATRP initiator ((α-chloroamide) was not successful due to its instability to PPE polymerization conditions (Chapter Five).<br>(cont.) On the other hand, PPEs could be endcapped with a NMRP initiator (a tert-butyl nitroxide derivative), and the following NMRP of NIPA provided the tri-block copolymers (Chapter Six), phase-separate from aqueous solutions upon heating due to the polyNIPA aggregation. In Chapter Six, we examined fluorescence resonance energy transfer (FRET) between a PPE-polyNIPA block copolymer and Rhodamine B (RhB) bound to polyNIPA. The RhB emission from the polymer precipitates produced by thermally induced phase-separation from the aqueous mixtures increased relative to that from the solutions, which indicates that thermal precipitation brought the PPE and RhB within the F6rster radius of each other and induced FRET between the PPE and RhB.<br>by Kenichi Kuroda.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
24

Itoh, Akira. "Spontaneous debonding of thermally sprayed coatings." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sprague, Robert Wendell 1957. "THERMALLY EVAPORATED BISTABLE THIN FILM ETALONS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276517.

Full text
Abstract:
Passive intrinsic bistability is of great interest. Our Fabry-Perot interference filters exhibit bistability due to a temperature dependent refractive index. Operating across the entire viable spectrum permits wide application to the demonstration and development of concepts for optical computing. Thermal evaporation of zinc sulfide and chiolite is used to produce Fabry-Perot interference filters. The effect of the thickness of the spacer, and reflectivities of the mirrors, on the nonlinear characteristics of these devices is investigated. The mathematic description of these etalon's linear, as well as their nonlinear, behavior is presented. The experimental apparatus is described. Measured values of the minimum critical detuning and minimum observed power are presented.
APA, Harvard, Vancouver, ISO, and other styles
26

Hobbs, Kyle. "Thermally driven natural circulation water pump." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97066.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2015.<br>ENGLISH ABSTRACT: The water utilized by passive air-conditioning systems in buildings is typically required at higher elevations. The thermally driven natural circulation water pump (TDNCWP) is a passively driven pumping system for delivering water from ground level against gravity to a higher elevation. It consists of a humid air closed duct loop to which a temperature difference is applied, resulting in a density gradient driven flow. A hot water evaporation tray inside the loop at ground level introduces water vapour to the loop air flow, and a cold condensation plate inside the loop at the elevated level removes this water vapour for passive airconditioning usage. In this thesis, a one-dimensional theoretical and numerical simulation model is developed. Experiments were conducted on two experimental TDNCWP set-ups of different cross sectional areas to evaluate the pump design and the theoretical model. It is shown in this thesis that the TDNCWP can provide water at varied elevations using non-mechanical, passive means. A temperature difference of 9 to 12.5 °C induced an average velocity of 0.4 to 0.6 m/s for a duct cross section of 100 mm2. For a larger cross section of 400 mm2, a temperature difference of 2 to 5 °C induced an average velocity of 0.25 to 0.3 m/s. An asymmetrical velocity profile was observed which varied at different points in the loop. A water delivery rate of 1.2 to 7.5 L/day was experimentally determined which compares well to the passive air-conditioning water requirements of a small building. The theoretical model over-predicted the delivery rate at increased duct cross sectional areas but fared well when compared to the smaller experimental model results. Further refinement of the numerical model and the TDNCWP design is required, and recommendations were made regarding this. It is clear however that the TDNCWP provides an alternative to a conventional water pump for low-volume water pumping requirements.<br>AFRIKAANSE OPSOMMING: Die water wat gebruik word deur passiewe lugversorgingstelsels in geboue word tipies benodig op hoër vlakte. Die termies gedrewe natuurlike sirkulasie waterpomp (TDNCWP) is ʼn passiewe gedrewe pomp stelsel vir die lewering van water vanaf die grondvlak teen swaartekrag na ʼn hoër vlak. Dit bestaan uit 'n vogtige geslote lug geut siklus waarop ʼn temperatuur verskil toegepas word, dit lei tot vloei gedrewe deur ʼn digtheids gradiënt. ʼn Warm water verdampings-pan binne die geut op grondvlak stel waterdamp aan die geut lugvloei toe, en ʼn koue kondensasie plaat binne die geut op die verhoogde vlak verwyder hierdie waterdamp vir passiewe lugversorgings gebruik. In hierdie tesis word ʼn eendimensionele teoretiese en numeriese simulasie model ontwikkel. Eksperimente is uitgevoer op twee eksperimentele TDNCWP stelsels van verskillende deursnee grootes om die pomp ontwerp en die teoretiese model te evalueer. Die tesis dui aan dat die TDNCWP water kan voorsien teen verskillende hoogtes op ʼn nie-meganiese, passiewe wyse. ʼn Temperatuur verskil van 9 tot 12.5 °C veroorsaak ʼn gemiddelde snelheid van 0.4 tot 0.6 m/s vir ʼn geut deursnit van 100 mm2.Vir ʼn groter deursnit van 400 mm2, het ʼn temperatuur verskil van 2 tot 5 °C ʼn gemiddelde snelheid van 0.25 tot 0.3 m/s veroorsaak. ʼn Asimmetriese snelheidsprofiel was waargeneem wat gewissel het op verskillende punte in die siklus. ʼn Water voorsienings tempo van 1.2 tot 7.5 L / dag was eksperimenteel waargeneem wat goed vergelyk met die passiewe water lugversorging vereistes van 'n klein gebou. Die teoretiese model het ʼn groter voorsienings tempo voorspel vir die groot deursneë, maar het goed gevaar in vergelyking met die kleiner eksperimentele model. Verdere verfyning van die numeriese model en die TDNCWP ontwerp word vereis, en aanbevelings is gemaak ten opsigte van hiervan. Dit is egter duidelik dat die TDNCWP ʼn alternatief is vir konvensionele lae-volume water pomp applikasies.<br>National Research Foundation (NRF)
APA, Harvard, Vancouver, ISO, and other styles
27

Smith, Thomas Charles Brannam. "Thermally driven oscillations in dynamic applications." Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/284059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hou, Wentao. "Thermally Driven Topology in Chiral Magnets:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108694.

Full text
Abstract:
Thesis advisor: Ziqiang . Wang<br>Thesis advisor: Jiadong . Zang<br>Magnetism is an old field in condensed matter physics, but it is still vibrant and full of excitement. Regardless of deep fundamental physics therein, it also has broad application in engineering technology, modern hard disk drive as an example. Magnetic skyrmion, a vortex-like structure in two-dimensional magnetic systems, has been discovered in various magnetic materials, among which chiral magnets are a family of candidates. The skyrmions are characterized by nonzero topological charges. The vortex-like structure of skyrmions makes skyrmion materials good candidates of new generation of data storage device. So understanding the transport properties of the skyrmion materials is important for the possible application in the future. The Hall effect is a key aspect of electron transports. The topological Hall effect, which is one component in the total Hall effect, only depends on the magnetic structures, and the topological Hall conductivity is proportional to the topological charge. It thus serves as the transport signature of magnetic skyrmions. The major mission of this thesis is to investigate the topological charge distribution in realistic models and uncover the relationship between the existence of skyrmions and other chiral excitations. The organization of the thesis is the following. The first chapter is the introduction. A historical survey about magnetic skyrmions and chiral magnets is presented firstly. The magnetic skyrmion is identified by the topological charge. Further, the relationship between the topological hall effect and topological charge is described by the emergent electrodynamics. The importance of the topological charge in chiral magnets is explained in this part. Following the importance of the topological charge, the investigation of topological charge in two-dimensional chiral magnets is presented in the second chapter. The Monte Carlo simulation is employed to calculate the topological charge on a square lattice. The results show that the nonzero topological charge is not necessarily correlated to the existence of skyrmions in chiral magnets. To understand the numerical results, simple analysis based on the physical picture of a triangle on the square lattice is performed. Then we calculate the topological charge in continuum model of chiral magnets. At the high temperature limit, the numerical results, picture analysis and the analytic result are consistent. Then, in this chapter, there is a description of the recent experimental work on thin film SrRuO3 which confirmed our theoretical prediction. A discussion on spin chirality, topological charge and Hall conductivity is presented in the end. However, no experiment on chiral magnets has been on a perfect monolayer system. So we extend the investigation of topological charge into three-dimensional situation. This work is introduced in the third chapter. The Monte Carlo simulation and the analytical calculation are presented firstly. A special issue in three-dimensional chiral magnets is the thickness dependence. The Monte Carlo simulation is used to address this issue. A combination of analytical calculation and physical picture of magnons is used to explain the numerical results well. Similar as the second chapter, the experiment on finite thickness SrRuO3 is described. Because the effective Dzyaloshinskii—Moriya interaction is due to the interface effect which cannot be used to judge our numerical results based on homogenous chiral magnets. The Heisenberg interaction in the system described in the previous two chapters is ferromagnetic interaction. More physical results with antiferromagnetic interaction are expected in different magnetic system. In the fourth chapter, a review of the work on a frustrated magnet with hexagonal lattice is introduced. The direction of the DM interaction of the hexagonal lattice is perpendicular to the bonds of nearest magnetic atoms. The topological charge is calculated numerically. A similar thermally driven topology as found in chiral magnets is achieved by investigating the topological charge. Following that, the system with staggered DM interaction is discussed. The study of the topological charge in this system not only gives the evolution of thermally driven topology of the system, but also distinguishes the topological charge and spin chirality based on the antiferromagnetic interaction. Not only thermally driven topology in chiral magnets but also the driven motion of skyrmions are interesting to us. Inspired by the similarity of the vortex state in the Type-II superconductor and skyrmion crystal phase, we investigate the proximity effect between the skyrmion material and non-centrosymmetric s-wave superconductor. The method is to calculate the effective interaction between the Cooper pairs and skyrmions. A field-theoretical approach is employed to this end<br>Thesis (PhD) — Boston College, 2019<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
29

Fenna, Andrew. "Cardiac remodelling in thermally acclimated fish." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/cardiac-remodelling-in-thermally-acclimated-fish(5521e543-4587-41bb-ac23-8ce801f435ef).html.

Full text
Abstract:
Fish are subject to a variety of long and short term environmental and physical insults during their life; however they manage to adapt, ensuring physiological processes remain effective, enabling the animal to thrive in a wide range of conditions. One major environmental fluctuation that can occur rapidly or over a long period of time is temperature. Teleost fish, such as the rainbow trout (Oncorhynchus mykiss) are ectothermic, meaning their body temperature is regulated by environmental temperature which can affect activity levels, oxygen availability, biochemical reactions, biophysical processes, and importantly, circulatory demand and cardiac output.Rainbow trout heart is a relatively simple structure consisting of a single atrium and a single, double layered ventricle in an enclosed circulatory system. Cardiac output in the trout is largely intrinsically regulated in the short term by stretch, which modulates stroke volume.Long term acclimation or adaptation to cold temperature in trout has been previously shown to cause a type of cardiac remodelling, cardiac hypertrophy: an increase in muscle mass of the heart. The increase in muscle mass is thought to mitigate against the increase in blood viscosity in cold conditions.The aim of the present study was to further characterise this cardiac remodelling by using histological, immuno and genetic techniques to assess temperature dependent changes in the ventricle and atrium at the structural, proteomic and genetic levels, including defining the potential triggering events and mechanisms behind the changes. Trout were acclimated to three different temperatures. There was extensive temperature dependent, chamber specific remodelling of the muscle, connective tissue, and gap junction conduction channels. Atrial changes largely opposed ventricular responses. Cold acclimation was associated with spongy layer hypertrophy, increased collagen throughout, and atrophy of the atria. The reverse was true in warm acclimation. Genetic and proteomic analysis revealed there to be significant muscle (e.g. VMHC and MLP) and collagen (e.g. MMP13 and TIMP2) gene regulation coupled with temperature dependent changes in gap junction levels (e.g. Cx43 and Cx30.9) and distribution. Moreover, markers for stretch (e.g. ANP and BNP), stress (e.g. GR1 and DNAJ2) and neuro-hormonal input (e.g. Beta-AR2 and Beta-AR3b), coupled with significant cell signalling protein activation (e.g. p38MAPK and PKB) revealed extensive cardiac remodelling from trigger to output.Results from this study led to the conclusion that temperature acclimation causes extensive structural remodelling of the heart in order to satisfy the circulatory demand requirements of the animal in extremes of temperature. Cold fish are relatively inactive as shown by decreases in VEGF, and the heart remodels to pump blood around the body at low pressure, as shown by decreased compact layer thickness and atrophy of the atrium, and at low ejection volume, as shown by increases in stiffening collagen and spongy layer hypertrophy. A key trigger for the remodelling response is likely to be the degree of stretch the heart muscle is subject to, probably due to increased blood viscosity as shown by increases in stretch markers ANP and BNP in cold ventricle. To help ensure electrical harmony, gap junction remodelling occurs, as shown by significant changes in connexins in acclimated hearts. Due to structural observations and observed activation of signalling pathways such as GSK/PKB/NFAT, it was concluded that cardiac remodelling in rainbow trout shares similarities with physiological eccentric cardiac hypertrophy in mammals.
APA, Harvard, Vancouver, ISO, and other styles
30

SANTELLI, LUCA. "Thermally driven flows in spherical geometries." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23841.

Full text
Abstract:
In this manuscript we describe an efficient numerical scheme for simu- lations of three-dimensional Navier-Stokes equations for incompressible viscous flows in spherical coordinates. The code is second order accurate in space and time and relies on a finite–difference discretization in space. The nonphysical singularities induced by the change of coordinates are addressed by exploiting a change of variables and special treatments of few discrete terms. Thanks to these precautions the time–step restrictions caused by the region around the po- lar axis are alleviated and the sphere center is source of limitations only in very unfavorable flow configurations. We test the code and compare results with literature, always obtaining an excellent agreement. The flexibility due to the structure of the code allows it to perform efficiently in several applications without requiring changes in the structure: the mesh can be stretched (in two of the three directions), complex boundary conditions can be implemented, and in addition to full spheres, also spherical shells and sectors can be easily simulated. Characterization of the behaviour of fluids between spherical shells is the focus of the second part of the manuscript. We firstly explored the low-Rayleigh number regime for non rotating Rayleigh-B ́enard convection. Various radial gravity profiles are analysed for both air and water. We observe how the effect of the different gravity can be reabsorbed by the introduction of an effective Rayleigh number, yielding a critical Rac ≈ 1750 for the onset of convection regardless of the specific gravity profile. The exploration of higher values of Ra shows that the system is subjected to hysteresis, i.e. the dynamic has a very strong dependence on initial conditions and flow parameters. We then explore the effect of an offset between the sphere center and the gravity center, which might be used to simulate the effect of a dishomogeneity in the Earth core. Even a small displacement between the two points gives rise to a distorted temperature profile, with a hot jet emerging from the inner sphere in the direction opposite to the shift. Nevertheless, while the local heat flux and temperature profile are greatly modified, the global heat flux seems to be mostly unaffected by these changes. Lastly, we analysed the diffusion–free scaling regime for slowly rotating Rayleigh- B ́enard convection between spherical shells. This regime is characterized by a bulk–dominated flow and its emergence, for the parameters used, is due to the peculiar properties of the spherical geometry.
APA, Harvard, Vancouver, ISO, and other styles
31

Dong, Shuhong. "Effects of Thermal Gradient and Cyclic Oxidation on the Delamination and Lifetime of High Temperature Protective Coatings." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38334.

Full text
Abstract:
Thermal barrier coatings have been widely used to provide thermal protection to components in the hot section of gas turbines. This research focuses on two influencing factors on coating behavior: thermal gradient and cyclic oxidation. The delamination mechanics under thermal gradient is analyzed, taking thermally grown oxide into consideration. Coatings experience thermal gradients at different stages during actual service flight. One is due to engine power shut down when landing and the other due to internal cooling of the substrate. Thermally grown oxide (TGO) also acts as a critical factor in delamination mechanics. The induced stress gradient and corresponding energy release rate for interface delamination and shallower delamination are presented. Mechanism maps that explain the criteria for preventing delamination from developing and propagating are established. Three cooling trajectories are envisaged to analyze the variation in the possibility of delamination. Multilayer coatings used in components of the hot section of aero turbine engines also experience cyclic temperature variation during flight cycles. As experiment conditions vary and coating performance is improved, the time required to run through the test of coating failure can be both time-consuming and prohibitive. Therefore, protocols providing prediction of quantified coating behavior are in demand to shorten life-time tests. Curves of mass change are obtained from quantifying scale growth and loss by different models such as Cyclic Oxidation Spall Program (COSP). A modification is made by combining COSP and a mechanic based model to obtain critical parameters for lifetime prediction from short time experiment. The time for coatings to reach peak temperature during cycling is discovered to influence prominently on modeling results. Predictions for several coating compositions and cycling conditions are consistent with the data from the existing experiments of the coating system.
APA, Harvard, Vancouver, ISO, and other styles
32

Adhikari, Amit. "Polymer Matrix Composite: Thermally Conductive GreasesPreparation and Characterization." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1556282222035491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hubbard, Neal B. "Dual-stage Thermally Actuated Surface-Micromachined Nanopositioners." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd743.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Das, Prabir Kumar. "Thermally Induced Fracture Performance of Asphalt Mixtures." Licentiate thesis, KTH, Väg- och banteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101384.

Full text
Abstract:
A major distress mode in asphalt pavements is low temperature cracking, which results from the contraction and expansion of the asphalt pavement under extreme temperature changes. The potential for low temperature cracking is an interplay between the environment, the road structure and importantly the properties of the asphalt mixture. The thermal cracking performance of asphalt concrete mixtures can be evaluated by conducting thermal stress restrained specimen tests (TSRST) which is known to be correlated well with the fracture temperatures observed in the field. Although TSRST provides a good estimation of the field performance, it may be unrealistic to implement the obtained results in a design framework. On the other hand, recent studies showed Superpave indirect tension tests can be used to evaluate fracture performance (fatigue, moisture damage, low temperature cracking, etc.) of the asphalt concrete  mixtures. In addition, the obtained elastic and viscoelastic parameters from the Superpave IDT tests can be used as an input parameter to establish a design framework. The study presented in this thesis has a main objective to develop a framework using Superpave IDT test results as input parameters in order to evaluate the low temperature cracking performance of asphalt concrete mixtures. Moreover, the study aims to investigate micro-mechanically the low temperature cracking behavior of bitumen using atomic force microscopy (AFM) as a tool. The numerical model has been developed by integrating fracture energy threshold into an asphalt concrete thermal fracture model, considering non-linear thermal contraction coefficients. Based on the asphalt concrete mixture viscoelastic properties, this integrated model can predict thermally induced stresses and fracture temperatures. The elastic, viscoelastic and fracture energy input parameters of the model were measured by conducting indirect tension tests and the thermal contraction coefficients were measured experimentally. The proposed model has been validated by comparing the predicted fracture temperatures with the results obtained from TSRST tests. It was found that, while there is a quantitative discrepancy, the predicted ranking was correct. In the measurement of the thermal contraction coefficients it was observed that the thermal contraction coefficient in asphalt concrete is non-linear in the temperature range of interest for low temperature cracking. The implications of having non-linear thermal contraction coefficient were investigated numerically. In an effort to understand the effect of bitumen properties on low temperature fatigue cracking, AFM was used to characterize the morphology of bitumen. The AFM topographic and phase contrast image confirmed the existence of bee-shaped microstructure and different phases. The bitumen samples were subjected to both environmental and mechanical loading and after loading, micro-cracks appeared in the interfaces of the bitumen surface, confirming bitumen itself may also crack. It was also found that the presence of wax and wax crystallization plays a vital role in low temperature cracking performance of bitumen.<br><p>QC 20120828</p>
APA, Harvard, Vancouver, ISO, and other styles
35

Kulasin, Aid. "Isolerande balkonginfästningar : Thermally-insulated balconies." Thesis, Växjö universitet, Institutionen för teknik och design, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-2493.

Full text
Abstract:
In this work a study has been performed to show the different kinds of insulated balcony connections exists on the market. In the work there is also a short description of thermal bridges concerning balconies. A description of older solutions for balcony connections is given as well as a calculation of the difference in energy costs for a insulated balcony connection compared to the standard connection. The work includes a short description of the different products. After that there is a short information about their insulation properties, durability, acoustic performance, assembly, computer programme and a short analyses for each product.
APA, Harvard, Vancouver, ISO, and other styles
36

Borén, Eleonora. "Off-gassing from thermally treated lignocellulosic biomass." Doctoral thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141921.

Full text
Abstract:
Off-gassing of hazardous compounds is, together with self-heating and dust explosions, the main safety hazards within large-scale biomass storage and handling. Formation of CO, CO2, and VOCs with concurrent O2 depletion can occur to hazardous levels in enclosed stored forest products. Several incidents of CO poisoning and suffocation of oxygen depletion have resulted in fatalities and injuries during cargo vessel discharge of forest products and in conjunction with wood pellet storage rooms and silos. Technologies for torrefaction and steam explosion for thermal treatment of biomass are under development and approaching commercialization, but their off-gassing behavior is essentially unknown. The overall objective of this thesis was to provide answers to one main question: “What is the off-gassing behaviour of thermally treated lignocellulosic biomass during storage?”. This was achieved by experimental studies and detailed analysis of off-gassing compounds sampled under realistic conditions, with special emphasis on the VOCs. Presented results show that off-gassing behavior is influenced by numerous factors, in the following ways. CO, CO2 and CH4 off-gassing levels from torrefied and stream-exploded biomass and pellets, and accompanying O2 depletion, are comparable to or lower than corresponding from untreated biomass. The treatments also cause major compositional shifts in VOCs; emissions of terpenes and native aldehydes decline, but levels of volatile cell wall degradation products (notably furans and aromatics) increase. The severity of the thermal treatment is also important; increases in torrefaction severity increase CO off-gassing from torrefied pine to levels comparable to emissions from conventional pellets, and increase O2 depletion for both torrefied chips and pellets. Both treatment temperature and duration also influence degradation rates and VOC composition. The product cooling technique is influential too; water spraying in addition to heat exchange increased CO2 and VOCs off-gassing from torrefied pine chips, as well as O2 depletion. Moreover, the composition of emitted gases co-varied with pellets’ moisture content; pellets of more severely treated material retained less moisture, regardless of their pre-conditioning moisture content. However, no co-variance was found between off-gassing and pelletization settings, the resulting pellet quality, or storage time of torrefied chips before pelletization. Pelletization of steam-exploded bark increased subsequent VOC off-gassing, and induced compositional shifts relative to emissions from unpelletized steam-exploded material. In addition, CO, CO2 and CH4 off-gassing, and O2 depletion, were positively correlated with the storage temperature of torrefied softwood. Similarly, CO and CH4 emissions from steam-exploded softwood increased with increases in storage temperature, and VOC off-gassing from both torrefied and steam-exploded softwood was more affected by storage temperature than by treatment severity. Levels of CO, CO2 and CH4 increased, while levels of O2 and most VOCs decreased, during storage of both torrefied and steam-exploded softwood.CO, CO2 and O2 levels were more affected by storage time than by treatment severity. Levels of VOCs were not significantly decreased or altered by nitrogen purging of storage spaces of steam-exploded or torrefied softwood, or controlled headspace gas exchange (intermittent ventilation) during storage of steam-exploded bark. In conclusion, rates of off-gassing of CO and CO2 from thermally treated biomass, and associated O2 depletion, are comparable to or lower than corresponding rates for untreated biomass. Thermal treatment induces shifts in both concentrations and profiles of VOCs. It is believed that the knowledge and insights gained provide refined foundations for future research and safe implementation of thermally treated fuels as energy carriers in renewable energy process chains.
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Xueqin. "Morphology distributions in thermally point bonded nonwovens." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/8696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Elce, Edmund. "Novel thermally stable polymers synthesis and characterization." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29018.

Full text
Abstract:
Novel amorphous thermoplastic poly(phenylquinoxaline)s (PPQ), poly(aryl ether ketone)s (PAEKs) and poly(aryl ether phthalazine)s have been synthesized.<br>The reaction of an aromatic Schiff's base and a tertiary amine incorporating an activated methylene moiety in the presence of strong base to produce an enamine has been investigated. Hydrolysis of the resulting enamines resulted in deoxybenzoins which were converted to benzils by a mild oxidation reaction. This chemistry was investigated as a possible method for the synthesis of the tetraketone compounds (sometimes called bisbenzils) which serve as monomers for poly(phenylquinoxaline) polymers. Two novel monomers have been prepared, the corresponding polymers with 1,1$ sp prime$,2,2$ sp prime$-tetraminobiphenyl were synthesized and their physical properties evaluated. The novel polymers exhibited increased solvent resistance as compared to other PPQ polymers reported previously in the literature.<br>Two novel fluorine containing monomers were synthesized and polymerized with commercial biphenols to produce amorphous, fluorinated poly(aryl ether ketone)s. The physical properties of these polymers were evaluated and compared to those of analogous nonfluorinated polymers in order to determine what benefits can be obtained by introducing fluorine into the polymer architecture. The fluorinated polymers were found to show enhanced solubility. They were readily soluble in solvents which contain a ketone moiety, such as acetone, or cyclohexanone.<br>A novel dihalide monomer incorporating bulky 2-naphthalenyl moieties was synthesized and polymerized with commercial biphenols in an attempt to obtain poly(aryl ether ketone)s with extremely high glass transition temperatures (Tg's).<br>Several poly(aryl ether ketone) polymers were reacted with hydrazine monohydrate in the presence of a catalytic quantity of acid to produce poly(aryl ether phthalazine)s via ring closure of the o-diketone moiety in the backbone of the PAEKs. The resulting polymers are amorphous thermoplastics which displayed increased glass transition temperatures (Tg) and Young's moduli. It was found that the poly(aryl ether phthalazine)s undergo a thermal reaction above the Tg of the polymer resulting in a rearrangement of the phthalazine moiety to a quinazoline moiety. Some crosslinking of the polymers also occurs, resulting in insoluble polymers which showed an increase in the Tg.
APA, Harvard, Vancouver, ISO, and other styles
39

Lapworth, James William. "Thermally-responsive polymers for 3D chondrocyte culture." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Clarke, Peter G. "NMR studies of thermally-treated Zeolite Y." Thesis, Durham University, 1991. http://etheses.dur.ac.uk/6243/.

Full text
Abstract:
The effect of thermal treatments on the lattice of Zeolite Y and on intracrystalline non-lattice material is investigated by solid-state magic-angle-spinning NMR. (^29)Si and (^27)Al NMR show that large amounts of both silicon and aluminium are dislodged from the lattice by calcination and steaming treatments. Non-lattice material is readily observed by (^29)Si CP/MAS; the presence of such material may also be deduced from the single-pulse spectra by means of spectral deconvolution techniques. Non-lattice aluminium atoms occur in tetrahedral and octahedral coordination; a technique is proposed for measuring the ratio of Al in these two environments. Leaching with aqueous (NH(^4))(_2)EDTA removes non-lattice Al but also attacks lattice Si and may re-insert some Al into the lattice. A reliable technique has been developed for acquisition of (^1)H MAS-NMR spectra of totally dehydrated samples of Zeolite HY. Exceptionally well-resolved signals have been observed for silanol groups and Bronsted-acidic protons. Particular attention has focused on a broad signal at 2.3 ppm attributed to OH groups on non-lattice Al atoms, whose intensity depends on the degree of polymerization of the non-lattice alumina. The degree of polymerization rises on prolonged heating under vacuum. If the sample is kept dry for several months, the AlOH concentration rises at the expense of other hydroxylated species present, suggesting a slow reversal of the polymerization process. The highly-condensed material is also capable of reacting with injected water. Cation-containing Zeolite Y behaves quite differently from HY on dehydration. NaY requires severe heating under vacuum to achieve dryness; however, the product is free from non-lattice material. NH(_4)Y releases its intracrystalline water readily but, on decomposition of NH(^4) at around 300ºC, a new broad signal emerges close to 4 ppm; this is tentatively assigned to NH3 trapped in small lattice cages.
APA, Harvard, Vancouver, ISO, and other styles
41

Cobb, R. C. "Internal stress in thermally sprayed steel coatings." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Murfin, Alice M. "Thermally enhanced colloidal processing of #alpha#-alumina." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Timar, Maria Cristina. "Chemically modified wood for thermally formed composites." Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dighe, Aalap (Aalap Shirish). "Thermally actuated MEMS seal for vacuum applications." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68938.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 142-145).<br>This thesis presents the design, fabrication and testing of a new, leak-free, permanently sealable MEMS valve for use in vacuum applications. This device is different from existing MEMS valves in that it is leak-free in the closed state and has a relatively high flow rate in the open state. This device relies on the surface tension of a molten seal material to establish a permanent seal over its initially-open port upon heating. The sealable port is a through via located in the center of an isolated silicon island supported on a thermally-insulating silicon nitride membrane in the center of a die. The through via is surrounded by a moderately high aspect ratio ring of indium solder. To seal the solder over the through via, the island and solder are heated by passing a current through a resistive heater on the back side of the device. Upon thermal actuation, the hollow cylinder of solder reflows into a toroid due to surface tension. For sufficiently high solder aspect ratios, the inner edges of the toroid meet in the center, thereby plugging the via. The heater is then turned off, solidifying the solder and forming a permanent seal. Individual subsystems of the device were first analytically modeled using structural, thermal, electrical and geometrical models to optimize the device features. The sealing and thermal isolation subsystems were then separately fabricated and tested to verify the analytical models and key fabrication processes. The individual subsystems were then combined into the final device. Tests on the final device indicate an open state flow rate of 60 to 400 standard cm³ per minute (sccm), a closed state leak rate not detectable above that of the test jig used (10-⁴ sccm), and an open-to-closed flow rate ratio of greater than 10⁵ to 10⁶.<br>by Aalap Dighe.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
45

Sundaram, Subramanian Ph D. Massachusetts Institute of Technology. "Thermally-actuated piezoresistively-sensed mechanical silicon oscillator." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87951.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 75-78).<br>In the past two decades, Microelectromechanical (MEMS) resonators have emerged as front runners for RF front-ends, high frequency filters, and frequency sources in various applications. The prospect of seamless integration with CMOS has provided a significant boost to displace Quartz, which for long has been the go-to option for timing sources. To construct an oscillator, a MEMS resonator is operated with an active feedback amplifier, the design of which can be a major challenge at high frequencies. In this work we implement a self sustaining mechanical Si oscillator that has an internal feedback mechanism. The oscillator is based on a thermal actuation mechanism due to the Joule heating effect caused by running currents through narrow channels. These narrow channels when oriented along the <100>direction in an n-doped Si wafer, show large negative piezoresistance coefficients. Beyond significant threshold DC current densities (GA/m 2 ), the thermal-actuation and piezoresitive-feedback loop excite the mechanical structure, causing spontaneous oscillations. We begin with the investigation of scaling trends based on an equivalent circuit model of the device. Targeting high frequency oscillators, we design suitable geometries and discuss the microfabrication processes used to fabricate these devices. Finally, we report the experimental results of the fabricated devices.<br>by Subramanian Sundaram.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
46

Lawson, Michael Alan. "Spectroscopic investigations of thermally induced polyphosphazene decomposition." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chin, Robert. "Nonlinearity in thermally active and rotating plasmas." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/50051/.

Full text
Abstract:
The wide reaching nature of plasma physics will be studied here, with the applications of both the large scale, of solar plasma physics and then decreasing by many orders of magnitude to the laboratory plasma, of magnetically confined fusion experiments. Part I The nonlinear evolution of magnetoacoustic waves in a nonadiabatic plasma are investigated analytically. The effect of plasma activity due to linear and quadratic heating and radiative cooling on propagating magnetoacoustic waves in a uniform plasma are considered. A non-linear evolution equation is derived and stationary solutions are looked for the various combination of signs of the linear and quadratic heating-cooling terms, which determine the thermal activity of the plasma. It is shown that self-organizing magnetoacoustic waves (autowaves) exist in an active plasma. These wave have amplitudes that are independent from the initial conditions and function of plasma properties only. Their potential diagnostic purposes are discussed. Furthermore, magnetoacoustic auto-solitary waves are shown to exist. They have been modelled using a novel perturbative technique which allows to determine their propagation speed and shape. Part II Equilibria of MAST-like plasmas with transonic toroidal flows are calculated numerically in the framework of two-fluid theory [Thyagaraja and McClements, 2006] using a fixedboundary equilibrium solver, GRASS.In the non-dissipative limit, with momentum sources neglected, two-fluid analysis leads to interdependence between the rotation, temperature and density profiles, and the possibility of a departure from rigid-body rotation of flux surfaces. The effects of toroidal flows on the position of the magnetic axis, the plasma safety factor profile and the density profile are determined for a range of scenarios, including rigid body rotation. The electron temperature and ion temperature are assumed to be flux functions, with profiles that are broadly consistent with measurements from MAST. This thesis will also highlight the differences, or indeed similarities, of plasma from the astrophysical to the laboratory world.
APA, Harvard, Vancouver, ISO, and other styles
48

Dolatmoradi, Ata. "Thermally-Assisted Acoustofluidic Separation for Bioanalytical Applications." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3371.

Full text
Abstract:
Changes in the biomechanical properties of cells accompanying the development of various pathological conditions have been increasingly reported as biomarkers for various diseases and as a predictor of disease progression stages. For instance, cancer cells have been found to be less stiff compared to their healthy counterparts due to the proteomic and lipidomic dysregulations conferred by the underlying pathology. The separation and selective recovery of cells or extracellular vesicles secreted from such cells that have undergone these changes have been suggested to be of diagnostic and prognostic value. This dissertation first describes the implementation of a stiffness-based separation of phosphatidylcholine-based vesicles using a method first introduced based on the research in this work and was dubbed thermally-assisted acoustophoresis, or thermo-acoustophoresis. By tuning the temperature, we achieved the separation of vesicles of the same size, shape, and charge but with different stiffness values. It was observed that at a specific transition point, the acoustic contrast factor of vesicles changed sign from positive to negative. This change was mainly due to change in the compressibility of the vesicles, which is inversely proportional to stiffness. The acoustic contrast temperature (Tϕ), corresponding to the temperature at which the contrast factor switches sign, was determined to be unique to the composition of the vesicles. This unique temperature signature allowed us to develop this separation method of vesicles with distinct membrane stiffness with target outlet purities exceeding 95%. We have further explored the functionality of this method by experimenting with cholesterol-containing vesicles. In cells, the cholesterol content plays a crucial role in determining stiffness. Changes in the cholesterol content in cellular membranes can be an indication of pathological disorders. We evaluated the Tϕ of vesicles at different cholesterol molar ratios (Xchol) and developed a multi-stage lab-on-a-chip method to accomplish for the first time the separation of a three-vesicle mixture. Using Xchol = 0.1, 0.2, and 0.3 vesicles, we obtained efficiencies exceeding 93%. The simplicity, rapidity, and label-free nature of this approach holds promise as a diagnostic and separation tool for cells affected by diseases that affect the stiffness and extracellular vesicles such as exosomes and microvesicles.
APA, Harvard, Vancouver, ISO, and other styles
49

Stegall, Jeremy Brent. "Cyclopentadiene-Maleimide Platform for Thermally Reversible Polymers." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71291.

Full text
Abstract:
This dissertation describes a new platform for the synthesis of thermally reversible polymers, based on Diels-Alder reactions of bis-cyclopentadienes (bis-CPDs) and bis-maleimides (bis-MIs), that meets two main objectives. First, the bis-CPD must resist characteristic self-coupling. Second, the CPD-MI adducts should undergo the retro-Diels-Alder (rDA) reaction (i.e., thermal depolymerization) in a temperature regime that is comparable or slightly higher than that of the freely reversible bis-furan/bis-MI polymers (rDA between 80 °C and 130 °C) but much lower than that of bis-CPD homopolymers (rDA above 160 °C). Structure-reactivity relationships gleaned from the literature and from related but as yet unpublished work in our own laboratories led to our main hypothesis that a CPD moiety bearing one sterically encumbering substituent such as isopropyl (𝑖Pr) or tert-butyl (𝑡Bu) and one electronwithdrawing substituent such as perfluoroaryl would have the desired reactivity and adduct stability in combination with an 𝑁-substituted maleimide. Synthetic considerations led to a bisCPD monomer design in which two alkylcyclopentadiene groups (alkyl = 𝑖Pr or 𝑡Bu) are connected by an octafluorobiphenylene linker. As an initial fundamental step (Chapter 3), 1-(nonafluorobiphenyl-4’-yl)-4-tertbutylcyclopentadiene (1) was synthesized to provide a monofunctional model for the proposed difunctional CPD monomer. Reactions of 1 and 𝑁-(4-fluorophenyl)maleimide (FMI) afforded up to five regio- and stereo-isomeric adducts (of fourteen possible). Variable-temperature reactivity studies combined with NMR spectroscopic analysis, X-ray crystallography, and computational modeling enabled product distributions to be understood according to a conventional kinetic-vs- iii thermodynamic framework. These studies also predicted the microstructure of polymers derived from the proposed bis-CPD monomer, which is structurally analogous to 1, and bis-MIs. Moreover, 1 does not undergo DA self-coupling under ordinary conditions (T < 180 °C). Thermolysis studies of the major adducts revealed that the rDA becomes observable on a laboratory timescale (hours) at about 140 °C, which is at the upper end of the temperature range reported for furan+MI adducts but well below that of CPD+CPD adducts. In contrast, adducts formed from either of the analogous monosubstituted cyclopentadienes (𝑡BuC₅H₅ and C₆F₅C₅H₅) do not undergo rDA below 180 °C. These results strongly support the proposed bis-CPD monomer design. In a second fundamental step (Chapter 4), the hypothesis that an electron-withdrawing CPD substituent would destabilize a CPD-MI adduct was further tested by reacting 𝑁-(4- fluorophenyl)maleimide with a series of triarylated cyclopentadienes (1,2,3-Ar₃C₅H₃ and 1,2,4- Ar₃C₅H₃, Ar = C₆F₅, C₆F₄CF₃, and Ar = C₅F₄N). The perfluorophenyl- and perfluorotolylsubstituted compounds were previously reported, but the perfluoropyridyl-substituted cyclopentadienes were prepared for this study using SNAr reactions of pentafluoropyridine and sodium cyclopentadienide. The least electron deficient cyclopentadiene in each series (Ar = C₆F₅) reacted the most quickly and with the highest ultimate equilibrium binding constant, confirming the electron-effects hypothesis as well as the underlying presumption that DA reactions of even relatively electron-poor CPDs with MI would behave according to normal-electron-demand principles. In the main section of this dissertation (Chapter 5) the proposed bis(cyclopentadiene)s reacted with a series of previously reported bis(maleimides) to form linear polymers having molecular weights (Mn) up to 40 kDa. Relationships among the length and flexibility of the bis-MI linker (C₆H₁₂, C₁₂H₂₄, C₆H₄OC₆H₄, and (C₂H₄O)₂), the identity of the CPD alkyl substitutent (CHMe₂, CMe₃ and CMe₂Ph) and the glass transition temperature (Tg) as measured by differential scanning calorimetry (DSC) were understood in terms of a general model of local segmental mobility and free volume. Solution thermolysis of a model polymer system (bis-MI linker = C₆H₁₂ (7), CPD alkyl substituent = 𝑡Bu) showed a rapid decrease in molecular weight at 160 °C as determined by size exclusion chromatography (SEC). Solution thermolysis in the presence of excess FMI (as a trap for free CPD moieties) revealed that the onset temperature for rDA on a laboratory time scale (hours) was as low as 120 °C. In the bulk, thermolysis above 250 °C under vacuum led to recovery of a small portion of the bis-CPD monomer, but bulk thermolysis at 200 °C did not reveal a change in molecular weight as determined by SEC. The current interpretation of these observations is that limited mobility in these glassy polymers prohibits retro-DA decoupling. These findings largely validate the main hypothesis of this dissertation.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
50

Kaurich, Kevin Joseph. "Segmented Aromatic Polymers Containing Thermally Reversible Linkages." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/87533.

Full text
Abstract:
This dissertation describes a general synthetic platform for segmented polymers that have main-chain reversible linkages based on cyclopentadiene-maleimide Diels-Alder chemistry. Research in the area of thermally reversible (self-healing) polymers has been an ever-expanding area of interest in the current scientific literature. However most of the emphasis has been on systems containing furan-maleimide linkages. While inexpensive and synthetically accessible, furan chemistry is mostly limited to crosslinked and hyperbranched architectures due to its relatively weak binding with maleimides at suitable propagation temperatures. Following a general review of the literature in this area (Chapter 1) the first stage of our research (Chapter 2) entails the synthesis of 2-substituted hydroquinones, which are needed as monomers in the later stages. The novelty of our hydroquinone synthesis stems from the use of allylic and other alkenyl ethers as the source of the ring substituent, and from the utilization of catalytic hydroboration to improve atom-efficiency. We showed that hydroquinones with widely varying functionality can be prepared efficiently by our method; these findings were published in the journal Tetrahedron in 2018. The second stage (Chapter 3) involves the use of the new hydroquinones in step-growth syntheses of hydroquinone-terminated telechelic and chain-extension of these telomers via Diels-Alder chemistry to form segmented polymers having thermally reversible linkages. The novelty of our approach rests with the use of cyclopentadiene-maleimide chemistry for the linkages, while the overall physical properties such as the glass transition temperature were established by using well-defined aromatic polymers �" poly(ether ether ketones) or PEEK and poly(aryl ether sulfones) or PAES �" as segments. This approach represents an important departure from earlier work in our group in which reversible linkages were present in every repeat unit of a step-growth Diels-Alder polymer that showed thermal reversibility in solution but not in the bulk, owing to glass transition temperatures that were too high. Using scratch-healing and mechanical (tensile) tests, we show that our new segmented polymers exhibit self-healing characteristics that are competitive with or superior to previously reported systems based on different Diels-Alder chemistry. The third stage (Chapter 4) aims to explore new application areas for some of the more novel functionalized hydroquinones reported in Chapter 2. First we developed an efficient synthesis of a PAES derivative bearing 5-phenoxypentyl groups on the hydroquinone moiety. Then we showed that the 5-phenoxy group can be cleanly cleaved, post-polymerization, to afford a PAES having 5-bromopentyl substituents. The promise of our method rests with the potential of the pendant electrophiles to undergo reactions with nucleophilic reagents to post-modify these polymers further. As proof of concept, we showed that substitution of the pendant bromides with furfuryloxy groups enabled thermally reversible crosslinking with a bis-maleimide reagent to form a polymeric material that demonstrates partial scratch healing. Finally we are exploring the synthesis of new ion-containing polymers by substituting the pendant bromides with tertiary amines.<br>PHD<br>This dissertation describes a new synthetic approach to polymeric materials that can heal themselves (for example, repair small cracks that may have formed due to stress or aging) simply by heating the damaged area. Our approach uses a thermally reversible chemical reaction (called the Diels-Alder reaction) to connect several shorter polymer segments into longer chains. Upon heating, the segments can come apart, diffuse into and through the damaged area, and then rejoin. The first chapter is a review of background in the published literature as well as previous not-yet-published work in our laboratory. The second chapter describes the creation of new building-block molecules (monomers) that will help control the temperature range necessary to induce self-healing after incorporation into the polymer segments. The third chapter details the process of forming the segments, the incorporation of self-healing functionalities on the ends of the segments, the joining of the segments into longer polymeric chains, and the testing of all of the physical properties of these new materials, including their self-healing capabilities. The fourth chapter represents a preliminary study of a new method of preparing ion-containing polymers. The latter materials have potential use in various membrane technologies including fuel cell devices for the harnessing of renewable energy.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography