To see the other types of publications on this topic, follow the link: Thermoclines (Oceanography) Ocean temperature.

Dissertations / Theses on the topic 'Thermoclines (Oceanography) Ocean temperature'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Thermoclines (Oceanography) Ocean temperature.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Walker, Nan Delene. "Sea surface temperature-rainfall relationships and associated ocean-atmosphere coupling mechanisms in the southern African region." Doctoral thesis, University of Cape Town, 1989. http://catalog.hathitrust.org/api/volumes/oclc/32830668.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ruiz, Jose Eric Civil &amp Environmental Engineering Faculty of Engineering UNSW. "Integrating subsurface ocean temperatures in the statistical prediction of ENSO and Australian rainfall & streamflow." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2006. http://handle.unsw.edu.au/1959.4/23433.

Full text
Abstract:
As a global climate phenomenon, the El Ni??o-Southern Oscillation (ENSO) involves the coupling of the ocean and the atmosphere. Most climate prediction studies have, by far, only investigated the teleconnections between global climatic anomalies and the ???surface??? predictors of ENSO. The prediction models resulting from these studies have generally suffered from inadequate, if not the lack of, skill across the so-called boreal ???spring barrier???. This is illustrated in the first part of this thesis where the applicability of the SOI phase for long-lead rainfall projections in Australia is discussed. With the increasing availability of subsurface ocean temperature data, the characteristics of the Pacific Ocean???s heat content and its role in ENSO are now better understood. The second part of this thesis investigated the predictability of ENSO using the thermocline as a predictor. While the persistence and SST-based ENSO hindcasts dropped in skill across the spring barrier, the thermocline-based hindcasts remained skillful even up to a lag of eighteen months. Continuing on the favorable results of ENSO prediction, the third part of this thesis extended the use of the thermocline in the prediction of Australia???s rainfall and streamflow. When compared to models that use ???surface??? predictors, the model that incorporated thermocline information resulted in more skillful projections of rainfall and streamflow especially at long lead-times. More importantly, significant increases in skill of autumn and winter projections demonstrate the ability of the subsurface ocean to retain some climatic memory across the predictability barrier. This resilience can be attributed to the high persistence of the ocean heat content during the first half of the year. Based on weighting, the model averaging exercise also affirmed the superiority of the ???subsurface??? model over the ???surface??? models in terms of streamflow projections. The encouraging findings of this study could have far-reaching implications not only to the science of ENSO prediction but also to the more pragmatic realm of hydrologic forecasting. What this study has demonstrated is an alternative predictor that is suitable for the long range forecasting of ENSO, rainfall and streamflow. With better hydrologic forecasting comes significant improvement in the management of reservoirs which eventually leads to an increase in the reliability and sufficiency of water supply provision.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chia-Jeng. "Hydro-climatic forecasting using sea surface temperatures." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48974.

Full text
Abstract:
A key determinant of atmospheric circulation patterns and regional climatic conditions is sea surface temperature (SST). This has been the motivation for the development of various teleconnection methods aiming to forecast hydro-climatic variables. Among such methods are linear projections based on teleconnection gross indices (such as the ENSO, IOD, and NAO) or leading empirical orthogonal functions (EOFs). However, these methods deteriorate drastically if the predefined indices or EOFs cannot account for climatic variability in the region of interest. This study introduces a new hydro-climatic forecasting method that identifies SST predictors in the form of dipole structures. An SST dipole that mimics major teleconnection patterns is defined as a function of average SST anomalies over two oceanic areas of appropriate sizes and geographic locations. The screening process of SST-dipole predictors is based on an optimization algorithm that sifts through all possible dipole configurations (with progressively refined data resolutions) and identifies dipoles with the strongest teleconnection to the external hydro-climatic series. The strength of the teleconnection is measured by the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate ensemble hydro-climatic forecasts. The dipole teleconnection method is applied to the forecasting of seasonal precipitation over the southeastern US and East Africa, and the forecasting of streamflow-related variables in the Yangtze and Congo Rivers. These studies show that the new method is indeed able to identify dipoles related to well-known patterns (e.g., ENSO and IOD) as well as to quantify more prominent predictor-predictand relationships at different lead times. Furthermore, the dipole method compares favorably with existing statistical forecasting schemes. An operational forecasting framework to support better water resources management through coupling with detailed hydrologic and water resources models is also demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
4

Marble, Douglas Craig. "A model analysis of potential vorticity on isopycnal surfaces for the global ocean." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA275047.

Full text
Abstract:
Thesis (M.S. in Meteorology and Physical Oceanography) Naval Postgraduate School, September 1993.
Thesis advisor(s): Semtner, Albert J. "September 1993." Bibliography: p. 33-35. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
5

Strauhs, Hilbert. "A numerical modeling study for the Japan/East Sea (JES) seasonal circulation and thermohaline structure." Thesis, access online version, 1999. http://handle.dtic.mil/100.2/ADA374405.

Full text
Abstract:
Thesis (M.S.)--Naval Postgraduate School, 1999.
"September, 1999." Includes abstract. DTIC report no.: ADA374405. Includes bibliographical references (p. 75-79). Full text available online from DTIC.
APA, Harvard, Vancouver, ISO, and other styles
6

Páramo, Pedro. "Seismic studies of continental rupture and ocean finestructure in the Gulf of California." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1144186761&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wainman, Carl Kevin. "Estimating the upper ocean vertical temperature structure from surface temperature as applied to the southern Benguela." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10915.

Full text
Abstract:
Includes bibliographical references.
Underwater Sound Velocity Profiles (SVP) are used throughout the world by their respective navies for submarine and surface vessel strategic operations and exercises. Together with the sonar equations, the sound velocity profiles are of paramount importance to solve underwater sound detectability problems as they provide insight into the highly variable sound transmission loss. Oceanographic records of sea temperature-depth profiles are ordinarily incorporated into a sonar propagation model to determine the sound level at any point (range and depth). The ability to predict these environmental conditions with a defined level of confidence and accuracy significantly increases the situational awareness to in-theatre naval operators and fleet planners. The hypothesis in this thesis is that thermal characteristics of the water column in the southern Benguela can be numerically modeled and deduced from a single Sea Surface Temperature (SST) value, if provided with sufficient historic temperature-depth profiles for that region. For operational use, the SST would ideally be provided from near real time remotely sensed satellite derived data.
APA, Harvard, Vancouver, ISO, and other styles
8

Mitchell, Douglas A. "Upper current structure and variability in the southwestern Japan/East Sea /." View online ; access limited to URI, 2003. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3112121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weaver, Andrew John. "Numerical and analytical modelling of oceanic/atmospheric processes." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27560.

Full text
Abstract:
Two problems in oceanic/atmospheric modelling are examined in this thesis. In the first problem the release of fresh water from a midlatitude estuary to the continental shelf is modelled numerically as a Rossby adjustment problem using a primitive equation model. As the initial salinity front is relaxed, a first baroclinic mode Kelvin wave propagates into the estuary, while along the continental shelf, the disturbance travels in the direction of coastally trapped waves but with a relatively slow propagation speed. When a submarine canyon extends offshore from the estuary, the joint effect of baroclinicity and bottom relief provides forcing for barotropic flow. The disturbance now propagates along the shelf at the first coastally trapped wave mode phase speed, and the shelf circulation is significantly more energetic and barotropic than in the case without the canyon. For both the experiments with and without a canyon an anticyclonic circulation is formed off the mouth of the estuary, generated by the surface outflow and deeper inflow over changing bottom topography. As the deeper inflow encounters shallower depth, the column of fluid is vertically compressed, thereby spinning up anticyclonically due to the conservation of potential vorticity. This feature is in qualitative agreement with the Tully eddy observed off Juan de Fuca Strait. A study of the reverse estuary (where the estuarine water is denser than the oceanic water) shows that this configuration has more potential energy available for conversion to kinetic energy than the normal estuary. Bass Strait may be considered as a possible reverse estuary source for the generation of coastally trapped waves. Model solutions are compared with field observations in the Bass Strait region and with the results of the Australian Coastal Experiment. The effects of a wider shelf and a wider estuary are examined by two more experiments. For the wider shelf, the resulting baroclinic flow is similar to that of the other runs, although the barotropic flow is weaker. The wide estuary model proves to be the most dynamic of all, with the intensified anticyclonic circulation now extending well into the estuary. In the second problem the effect of the horizontal structure of midlatitude oceanic heating on the stationary atmospheric response is examined by means of a continuously stratified model and a simple two level model, both in the quasigeostrophic β-plane approximation. Solutions are obtained for three non-periodic zonal heating structures (line source, segmented cosine, and segmented sine). Little difference is observed between the solutions for these two different models (continuously stratified and two level). There are two cases which emerge in obtaining analytic solutions. In case 1, for large meridional wavenumbers, there exists a large local response and a constant downstream response. In case 2, for small meridional wavenumbers, the far field response is now sinusoidal. A critical wavenumber separating these two cases is obtained. The effect of oceanic heating on the atmosphere over the Kuroshio region is examined in an attempt to explain the large correlations observed between winter Kuroshio oceanic heat flux anomalies, and the winter atmospheric surface pressure and 500 & 700 mb geopotential heights, both upstream and downstream of the heating region. In both models, the response is consistent with the observed correlations. When western North Pacific heating and eastern North Pacific cooling are introduced into the models, a large low pressure response is observed over the central North Pacific. This feature is in excellent agreement with the observed correlations. A time dependent, periodic, two level model (with and without surface friction) is also introduced in order to study the transient atmospheric response to oceanic heating. The height at which the thermodynamic equation is applied is found to be crucial in determining the response of this model. When the heating is entered into the model near to the surface, unstable modes are prevalent sooner than they would be when the heat forcing is applied at a higher level. As in the steady state models, two cases dependent on the meridional wavenumber ɭ emerge in the analysis. For small scale meridional heating structures (large ɭ), the response consists of an upper level high and a lower level low which propagate eastward with time. For large scale meridional heating structures (small ɭ) the response essentially consists of a wavenumber 3-4 perturbation superimposed on the solution for large ɭ.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
10

Kosempa, Michael. "Southern Ocean Transport by Combining Satellite Altimetry and Temperature/Salinity Profile Data." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6658.

Full text
Abstract:
Zonal geostrophic velocity fields above 1975 dbar have been estimated for the Southern Ocean from 2004 to 2014 based on sea surface topography observed by Jason altimetry and temperature/salinity measured by Argo autonomous floats. The velocity at 1000 dbar estimated has been validated against Argo drift trajectory at the same pressure level available from the Asia Pacific Data Research Center (APDRC). Errors in mapping of dynamic ocean topography, temperature, and salinity have been quantified using the Southern Ocean State Estimate (SOSE). Analysis of errors reveals significant correlations between depth-dependent and –independent contributions to the integrated transport. Further analysis revealed optimal locations of historical ship casts to compliment the transport time series as observed by Argo. Quantifying the error associated with the historical hydrographic section indicated little benefit in combining hydrographic data obtained from ships. The anticorrelation between depth-dependent and – independent contributions was again significant in sampling by ships. The proposed explanation of the anticorrelation in error is underestimation of reference velocity by attenuation and overestimation of depth-dependent transport by attenuation of the velocity shear.
APA, Harvard, Vancouver, ISO, and other styles
11

Moore, Tommy S. "Time-series electrochemical studies in the lower Delaware Bay and at the 9 degrees 50' north East Pacific Rise hydrothermal vent field." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 137 p, 2009. http://proquest.umi.com/pqdweb?did=1654491241&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Farrar, J. Thomas (John Thomas) 1976. "The evolution of upper ocean thermal structure at 10⁰N, 125⁰W during 1997-1998." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/58442.

Full text
Abstract:
Thesis (M.S.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2003.
Includes bibliographical references (p. 181-191).
In this thesis I have endeavored to determine the factors and physical processes that controlled SST and thermocline depth at 10⁰N, 125⁰W during the Pan Amer- ican Climate Study (PACS) field program. Analysis based on the PACS data set, TOPEX/Poseidon sea surface height data, European Remote Sensing satellite wind data, and model simulations and experiments reveals that the dominant mechanisms affecting the thermocline depth and SST at the mooring site during the measurement period were local surface fluxes, Ekman pumping, and vertical mixing associated with enhancement of the vertical shear by strong near-inertial waves in the upper ocean superimposed upon intra-seasonal baroclinic Rossby waves and the large scale zonal flow.
by J. Thomas Farrar.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
13

Taws, Sarah Lilian. "Seasonal re-emergence of sea surface temperature anomalies in the North Atlantic : an observational and ocean model study." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359069/.

Full text
Abstract:
The aim of this thesis is to provide a more comprehensive and dynamic understanding of sea surface temperature anomaly (SSTA) re-emergence in the North Atlantic, by (a) re-evaluating the utility of re-emergence for sea surface temperature (SST) variability quantitatively and/or by analysing its temporal variability, and (b) investigating the e�ects of horizontal advection, subduction and mesoscale phenomena on the occurrence and nature of SSTA re-emergence in the ocean. Such analyses may contribute towards an improved representation of SSTA re-emergence in seasonal forecast models, which is currently unsatisfactory. Analyses are undertaken with a new observational product and ocean model hindcasts. Through analysis of observations, it is demonstrated that SSTA re-emergence links the European winter extremes of 2009/10 and early 2010/11. Reemergence contributes towards the winter-to-winter persistence of a SSTA tripole pattern, associated with a record negative phase of the North Atlantic Oscillation (NAO). Its timing coincides with a shift to record negative NAO values. This suggests an active involvement in the extreme winter weather of early-winter 2010/11. The atmospheric and oceanic conditions of 2009-11 are analogous to previous years in the late-1960s, which suggest similar physical processes are involved in the establishment of a large and signi�cant SSTA re-emergence. The dynamic influences of subduction and horizontal advection on SSTA re-emergence are investigated through numerical passive tracer experiments at 1� resolution. A dominant and time-dependent influence of horizontal advection upon the degree of re-emergence in the northeast Atlantic is revealed. The time-dependent role is linked to spatial variations in the subtropical-subpolar gyre boundary, caused by gyre-scale changes in the upper ocean velocity field. Subduction is more detrimental to SSTA re-emergence in the Sargasso Sea. Significant interannual variations in the amount of subduction are apparent. These variations are primarily driven by interannual changes in lateral induction. Passive tracer experiments, and the statistical properties of SSTA re-emergence in an eddy-permitting (1/4 �) ocean model are analysed, to ascertain the effects of mesoscale phenomena on the re-emergence process. Statistical diagnostics of SSTA re-emergence at 1/4 � resolution demonstrate better correspondence with observations than at 1� resolution. This highlights an important contribution from mesoscale processes to the shape and extent of SSTA re-emergence. These mesoscale influences involve significant reorganisations of the large-scale near-surface circulation, imposing different regional influences of horizontal advection upon the occurrence of re-emergence. This is due to the more realistic simulation of key features of the large-scale ocean circulation at 1/4 � resolution. These results support the growing call for higher resolution ocean models in future simulations of the large-scale mean climate and its variability.
APA, Harvard, Vancouver, ISO, and other styles
14

Rago, Thomas A. Collins Curtis A. Steger John. "Hydrographic data along the California coast from Pigeon Point to Cape San Martin May through July 1966 /." Monterey, Calif. : Naval Postgraduate School, 1997. http://catalog.hathitrust.org/api/volumes/oclc/36981499.html.

Full text
Abstract:
Thesis (M.S.)--Naval Postgraduate School, 1997.
"January 1997." "Prepared for: Oceanographer of the Navy, OPNAV 096, Washington, DC 20392-5421." "NPS-OC-97-002." Includes bibliographical references (p. 152).
APA, Harvard, Vancouver, ISO, and other styles
15

Helber, Robert William. "Upper Ocean Upwelling, Temperature, and Zonal Momentum Analyses in the Western Equatorail Pacific." Scholar Commons, 2002. https://scholarcommons.usf.edu/etd/1387.

Full text
Abstract:
The air-sea interaction thermodynamics of the western equatorial Pacific, the Earth's largest region of warm SST, is a major component of the global climate system. Along the equator, warm pool thermodynamics and momentum are influenced by equatorial ocean visco-inertial boundary layer dynamics that occur within a few degrees of the equator because of the sign reversal of the Coriolis force. Designed to study this system, COARE Enhanced Monitoring Array (EMA) observations of temperature, salinity, velocity, and surface meteorology were centered at 0, 156°E from February 1992 through April 1994. They sampled variability on the equator over larger space/time-scales than the concurrent Intensive Flux Array (IFA) centered at 2°S, 156°E. The EMA data are examined within the context of the larger scale equatorial Pacific and the El Niño conditions that occurred at that time. There is a structural change in the equatorial Pacific near the dateline resulting from the winds that are strong, steady, and easterly in the east and generally weak, punctuated by westerly wind bursts, in the west. East of the dateline the EUC's speed and transport increases downstream, while in the west it tends to be zonally uniform, consistent with the extra-tropical ocean interior water pathways that tend to converge on the equator east of the dateline. At 0°, 156°E in the western Pacific deep, seasonal upwelling (appearing stronger after the peak of the 1991/92 El Niño than during the following weaker El Niño year) occurs within the thermocline in boreal summer with magnitudes as large as upwelling in the eastern Pacific cold tongue. This large upwelling is associated with large downward turbulent heat flux and large turbulent shear stress. While the inferred mixing is quantitatively inconclusive because of unresolved potential errors, it is consistent with the visco-inertial boundary layer concepts from early theory [e.g. Arthur 1960; Robinson 1960; Stommel 1960; and Charney and Spiegel 1971]. These findings suggest that the equatorial thermodynamics differ from those of the IFA. Further process experimentation is necessary to quantify these results.
APA, Harvard, Vancouver, ISO, and other styles
16

Verdy, Ariane. "Variability of zooplankton and sea surface temperature in the Southern Ocean." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39197.

Full text
Abstract:
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006.
Includes bibliographical references (p. 69-74).
Interactions between physical and biological processes in the Southern Ocean have significant impacts on local ecosystems as well as on global climate. In this thesis, I present evidence that the Southern Ocean circulation affects the variability of zooplankton and sea surface temperature, both of which are involved in air-sea exchanges of carbon dioxide. First, I examine the formation of spatial patterns in the distribution of Antarctic krill (Euphausia superba) resulting from social behavior. Turbulence of the flow is found to provide favorable conditions for the evolution social behavior in an idealized biological-physical model. Second, I analyze observations of sea surface temperature variability in the region of the Antarctic circumpolar current. Results suggest that propagating anomalies can be explained as a linear response to local atmospheric forcing by the Southern Annular Mode and remote forcing by El-Nifio southern oscillation, in the presence of advection by a mean flow.
by Ariane Verdy.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
17

Johnson, Clare. "Tracing Wyville Thomson Ridge overflow water in the Rockall Trough." Thesis, University of the Highlands and Islands, 2012. https://pure.uhi.ac.uk/portal/en/studentthesis/tracing-wyville-thomson-ridge-overflow-water-in-the-rockall-trough(07bd114b-bbec-4efe-9a13-783ba80ff83d).html.

Full text
Abstract:
Although it has long been known that cold dense waters from the Nordic Seas overflow the Wyville Thomson Ridge, the water masses' subsequent pathways and fate have been uncertain. This study conclusively places Wyville Thomson Ridge Overflow Water (WTOW) as an important water mass in the eastern subpolar North Atlantic for the first time. Using a variety of chemical tracer s (chlorofluorocarbons, oxygen, nutrients and aluminium) in conjunction with temperature and salinity, WTOW is traced southwards into the northern and central Rockall Trough as well as into the channels between the western banks. The overflow water has a clear temperature, salinity and chlorofluorocarbon (CFC-11 and CFC-12) signature. Additionally, levels of aluminium are elevated in WTOW suggesting that this element is potentially a useful and novel water mass tracer. The lower oxygen layer complicates the use of dissolved oxygen and nitrate as tracers in the mid water column. However, higher and lower concentrations respectively in the western trough reveal the presence of WTOW in this area. The overflow water does not appear to have a silicate or phosphate signature. Two branches of WTOW exist in the Rockall Trough: a slow-moving indistinct intermediate branch (600-1200 m) f ound in both the east and west of the basin; and a coherent deep branch (> 1200 m) that flows southward along the western banks of the trough. As well as having a large spatial footprint within the Rockall Trough, intermediate a nd deep WTOW are temporally persistent being present 65-75 % of the time between 1975 and 2008. The signature of WTOW at intermediate depths is absent from the Ellett Line record in the mid-1980s and early-1990s. As deep WTOW is still observed during these periods flow over the Wyville Thomson Ridge cannot have ceased. Instead, it is proposed that the strength of the Subpolar Gyre is an important driver in the temporal distribution of intermediate WTOW within the Rockall Trough. When the gyre is strong, such as in the mid-1980s and early-1990s, the mid water column is dominated by waters originating from the west which block the southward flow of intermediate WTOW. In contrast, when the gyre is weak, such as in the late-1990s and 2000s, subpolar waters lie further west enabling intermediate waters within the Rockall Trough to be dominated by the southern orig inating Mediterranean Overflow Water and the northern water mass of WTOW.
APA, Harvard, Vancouver, ISO, and other styles
18

Speer, Kevin G. (Kevin George). "The influence of geothermal sources on deep ocean temperature, salinity, and flow fields." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/58534.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1988.
Includes bibliographical references (p. 142-146).
This thesis is a study of the effect of geothermal sources on the deep circulation, temperature and salinity fields. In Chapter 1 background material is given on the strength and distribution of geothermal heating. In Chapter 2 evidence for the influence of a hydrothermal system in the rift valley of the Mid-Atlantic Ridge on nearby property fields and a model of the flow around such a heat source are presented, with an analysis of a larger-scale effect. Results of an analytical model for a heat source on a #-plane in Chapter 3 show how the response far from the source can have a structure different from the forcing because of its dependence on two parameters: a Peclet number (the ratio of horizontal advection and vertical diffusion), and a Froude-number-like parameter (the ratio of long wave phase speed to background flow speed) which control the relative amount of damping and advection of different vertical scales. The solutions emphasize the different behavior of a dynamical field like temperature compared to tracers introduced at the source. These ideas are useful for interpreting more complicated solutions from a numerical model presented in the final chapter.
by Kevin G. Speer.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
19

Sarafian, Emily Kathryn. "Geophysical and petrological constraints on ocean plate dynamics." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111716.

Full text
Abstract:
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references.
This thesis investigates the formation and subsequent motion of oceanic lithospheric plates through geophysical and petrological methods. Ocean crust and lithosphere forms at mid-ocean ridges as the underlying asthenosphere rises, melts, and flows away from the ridge axis. In Chapters 2 and 3, I present the results from partial melting experiments of mantle peridotite that were conducted in order to examine the mantle melting point, or solidus, beneath a mid-ocean ridge. Chapter 2 determines the peridotite solidus at a single pressure of 1.5 GPa and concludes that the oceanic mantle potential temperature must be -60 °C hotter than current estimates. Chapter 3 goes further to provide a more accurate parameterization of the anhydrous mantle solidus from experiments over a range of pressures. This chapter concludes that the range of potential temperatures of the mantle beneath mid-ocean ridges and plumes is smaller than currently estimated. Once formed, the oceanic plate moves atop the underlying asthenosphere away from the ridge axis. Chapter 4 uses seafloor magnetotelluric data to investigate the mechanism responsible for plate motion at the lithosphere-asthenosphere boundary. The resulting two dimensional conductivity model shows a simple layered structure. By applying petrological constraints, I conclude that the upper asthenosphere does not contain substantial melt, which suggests that either a thermal or hydration mechanism supports plate motion. Oceanic plate motion has dramatically changed the surface of the Earth over time, and evidence for ancient plate motion is obvious from detailed studies of the longer lived continental lithosphere. In Chapter 5, I investigate past plate motion by inverting magnetotelluric data collected over eastern Zambia. The conductivity model probes the Zambian lithosphere and reveals an ancient subduction zone previously suspected from surface studies. This chapter elucidates the complex lithospheric structure of eastern Zambia and the geometry of the tectonic elements in the region, which collided as a result of past oceanic plate motion. Combined, the chapters of this thesis provide critical constraints on ocean plate dynamics.
by Emily Kathryn Sarafian.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
20

Schanze, Julian J. (Julian Johannes). "The production of temperature and salinity variance and covariance : implications for mixing." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79294.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 187-195).
Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes ('spice'). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior.
by Julian J. Schanze.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
21

Lund, David Charles. "Gulf stream temperature, salinity and transport during the last millennium." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34567.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2006.
Includes bibliographical references.
Benthic and planktonic foraminiferal [delta]18O ([delta 18Oc) from a suite of well-dated, high-resolution cores spanning the depth and width of the Straits of Florida reveal significant changes in Gulf Stream cross-current density gradient during the last millennium. These data imply that Gulf Stream transport during the Little Ice Age (LIA: 1200-1850 A.D.) was 2-3 Sv lower than today. The timing of reduced flow is consistent with cold conditions in Northern Hemisphere paleoclimate archives, implicating Gulf Stream heat transport in centennial-scale climate variability of the last 1,000 years. The pattern of flow anomalies with depth suggests reduced LIA transport was due to weaker subtropical gyre wind stress curl. The oxygen isotopic composition of Florida Current surface water ([delta]18Ow) near Dry Tortugas increased 0.4%0/ during the course of the Little Ice Age (LIA: -1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5 psu. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, [delta]18Ow increased by 0.3%o during the last 200 years. Although a portion (-O. 1%o) of this shift may be an artifact of anthropogenically-driven changes in surface water [Epsilon]CO2, the remaining [delta]18Ow signal implies a 0.4 to 1 psu increase in salinity after 200 yr BP.
(cont.) The simplest explanation of the [delta]18Ow, data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the [delta]18Ow records to salinity using the modern low-latitude 180,w-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if [delta]18Ow is scaled to salinity using a high-latitude [delta]18Ow-S slope can the records be reconciled. Changes in atmospheric 14C paralleled shifts in Dry Tortugas [delta]18Ow, suggesting that variable solar irradiance paced centennial-scale Hadley cell migration and changes in Florida Current salinity during the last millennium.
by David C. Lund.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
22

Helber, Robert William 1967. "Upper ocean upwelling, temperature, and zonal momentum analyses in the western equatorail [sic] Pacific [electronic resource] / by Robert William Helber." University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000073.

Full text
Abstract:
Includes vita.
Title from PDF of title page.
Document formatted into pages; contains 119 pages.
Thesis (Ph.D.)--University of South Florida, 2003.
Includes bibliographical references.
Text (Electronic thesis) in PDF format.
ABSTRACT: The air-sea interaction thermodynamics of the western equatorial Pacific, the Earth's largest region of warm SST, is a major component of the global climate system. Along the equator, warm pool thermodynamics and momentum are influenced by equatorial ocean visco-inertial boundary layer dynamics that occur within a few degrees of the equator because of the sign reversal of the Coriolis force. Designed to study this system, COARE Enhanced Monitoring Array (EMA) observations of temperature, salinity, velocity, and surface meteorology were centered at 0, 156°E from February 1992 through April 1994. They sampled variability on the equator over larger space/time-scales than the concurrent Intensive Flux Array (IFA) centered at 2°S, 156°E. The EMA data are examined within the context of the larger scale equatorial Pacific and the El Niño conditions that occurred at that time.
ABSTRACT: There is a structural change in the equatorial Pacific near the dateline resulting from the winds that are strong, steady, and easterly in the east and generally weak, punctuated by westerly wind bursts, in the west. East of the dateline the EUC's speed and transport increases downstream, while in the west it tends to be zonally uniform, consistent with the extra-tropical ocean interior water pathways that tend to converge on the equator east of the dateline. At 0°, 156°E in the western Pacific deep, seasonal upwelling (appearing stronger after the peak of the 1991/92 El Niño than during the following weaker El Niño year) occurs within the thermocline in boreal summer with magnitudes as large as upwelling in the eastern Pacific cold tongue. This large upwelling is associated with large downward turbulent heat flux and large turbulent shear stress.
ABSTRACT: While the inferred mixing is quantitatively inconclusive because of unresolved potential errors, it is consistent with the visco-inertial boundary layer concepts from early theory [e.g. Arthur 1960; Robinson 1960; Stommel 1960; and Charney and Spiegel 1971]. These findings suggest that the equatorial thermodynamics differ from those of the IFA. Further process experimentation is necessary to quantify these results.
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
APA, Harvard, Vancouver, ISO, and other styles
23

Mazloff, Matthew R. "The southern ocean meridional overturning circulation as diagnosed from an eddy permitting state estimate." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45781.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008.
Includes bibliographical references (p. 115-127).
A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence to the state estimate solution is carried out by systematically adjusting the control variables (atmospheric state and initial conditions) using the adjoint model. A cost function compares the model state to in situ observations (Argo float profiles, CTD synoptic sections, SEaOS instrument mounted seal profiles, and XBTs), altimetric observations (ENVISAT, GEOSAT, Jason, TOPEX/Poseidon), and other data sets (e.g. infrared and microwave radiometer observed sea surface temperature and NSIDC sea-ice concentration). Costs attributed to control variable perturbations ensure a physically realistic solution. The state estimate is found to be largely consistent with the individual observations, as well as with integrated fluxes inferred from previous static inverse models. The transformed Eulerian mean formulation is an elegant way to theorize about the Southern Ocean. Current researchers utilizing this framework, however, have been making assumptions that render their theories largely irrelevant to the actual ocean. It is shown that theories of the overturning circulation must include the effect of pressure forcing. This is true in the most buoyant waters, where pressure forcing overcomes eddy and wind forcing to balance a poleward geostrophic transport and allows the buoyancy budget to be closed. Pressure forcing is also lowest order at depth. Indeed, the Southern Ocean's characteristic multiple cell overturning is primarily in geostrophic balance. Several other aspects of the Southern Ocean circulation are also investigated in the thesis, including an analysis of the magnitude and variability of heat, salt, and volume inter-basin transports.
by Matthew R. Mazloff.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
24

Leech, Peter Joseph. "Paleo-proxies for the thermocline and lysocline over the last glacial cycle in the Western Tropical Pacific." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49029.

Full text
Abstract:
The shape of the thermocline and the depth of the lysoline in the western tropical Pacific are both influenced by the overlying atmosphere, and both the shape of thermocline and the depth of the lysocline can be reconstructed from foraminifera-based paleo-proxies. Paleoclimate proxy evidence suggests a southward shift of the Intertropical Convergence Zone (ITCZ) during times of Northern Hemisphere cooling, including the Last Glacial Maximum (LGM), 19-23 ka before present. However, evidence for movement over the Pacific has mainly been limited to precipitation reconstructions near the continents, and the position of the Pacific marine ITCZ is less well constrained. In this study, I address this problem by taking advantage of the fact that the upper ocean density structure reflects the overlying wind field. I reconstruct changes in the upper ocean density structure during the LGM using oxygen isotope measurements on the planktonic foraminifera G. ruber and G. tumida in a transect of sediment cores from the Western Tropical Pacific. The data suggest a ridge in the thermocline just north of the present-day ITCZ persists for at least part of the LGM, and a structure in the Southern Hemisphere that differs from today. The reconstructed structure is consistent with that produced in a General Circulation Model with both a Northern and Southern Hemisphere ITCZ. I also attempt to reconstruct the upper ocean density structure for Marine Isotope Stages 5e and 6, the interglacial and glacial periods, respectively, previous to the LGM. The data show a Northern Hemisphere thermocline ridge for both of these periods. There is insufficient data to draw any conclusions about the Southern Hemisphere thermocline. Using the same set of sediment cores, I also attempt to reconstruct lysocline depth over the last 23,000 years using benthic foraminiferal carbon isotope ratios, planktonic foraminiferal masses, and sediment coarse fraction percentage. Paleoclimate proxy evidence and modeling studies suggest that the deglaciation following the LGM is associated with a deepening of the lysocline and an increase in sedimentary calcite preservation. Although my data lack the resolution to constrain the depth of the lysocline, they do show an increase in calcite preservation during the last deglaciation, consistent with lysocline deepening as carbon moves from the deep ocean to the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
25

Peña-Molino, Beatriz. "Variability in the North Atlantic Deep Western Boundary Current : upstream causes and downstream effects as observed at Line W." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62495.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 165-174).
The variability in the DWBC, its connection to the forcing in the northern North Atlantic and interaction with the Gulf Stream were explored from a combination of remote sensing and in-situ measurements in the western North Atlantic. Using satellite altimetry and Sea Surface Temperature (SST) we found evidence of the relation between changes in the Gulf Stream path and the variability in the temperature and velocity fields in the Slope Water. This relation was such that southward shifts of the main axis of the Gulf Stream were preceded by cold temperature anomalies and intensification of the southwestward flow. The analysis of 5.5 years of moored CTD and horizontal velocity data in the DWBC at 69 0W recorded during the period 2002-2008, showed that the variability along the DWBC is linked to changes in the dense water formation regions. The evolution of potential vorticity (PV) at the mooring site, characterized by a transition from deep to upper Labrador Sea Water (LSW), was similar to that observed in the Labrador Sea 6 to 9 years earlier, and imply spreading rates for the LSW that varied over time from 1.5 to 2.5cm/s. The time dependence of the spreading rates was in good agreement with changes in the strength of the DWBC at the mooring site. The evolution of the DWBC transport was explored in more detail from a 5- element moored array, also at 69'W. The results, for the period of 2004-2008, were consistent with the single mooring analysis. The variability measured from the array showed that upper, intermediate and deep water mass layers expand and contract at each other's expense, leading to alternating positive and negative PV anomalies at the upper-LSW, deep-LSW and Overflow Water (OW). Larger DWBC transports were associated with enhanced presence of recently ventilated upper-LSW and OW, rather than deep-LSW. The relative contribution of the different water masses to the observed circulation was investigated by inverting individual PV anomalies isolated from the observations. We found that changes in the depth-integrated circulation were mostly driven by changes in the OW.
by Beatriz Peña-Molino.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
26

Lewis, Kayla Christine. "Numerical Modeling of Two-Phase Flow in the Sodium Chloride-Water System with Applications to Seafloor Hydrothermal Systems." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19810.

Full text
Abstract:
In order to explain the observed time-dependent salinity variations in seafloor hydrothermal vent fluids, quasi-numerical and fully numerical fluid flow models of the NaCl-H2O system are constructed. For the quasi-numerical model, a simplified treatment of phase separation of seawater near an igneous dike is employed to obtain rough estimates of the thickness and duration of the two-phase zone, the amount of brine formed, and its distribution in the subsurface. For the fully numerical model, the equations governing fluid flow, the thermodynamic relations between various quantities employed, and the coupling of these elements together in a time marching scheme is discussed. The fully numerical model is benchmarked against previously published heat pipe and Elder problem simulation results, and is shown to be largely in agreement with those results. A number of simulation results are presented in the context of two-phase flow and phase separation within the framework of the single pass model. It is found that a quasi-stable two-phase (liquid + vapor) zone at depth below the hydrothermal discharge outlet gives rise to vent fluid with lower than normal seawater salinity. Additionally, it is shown that increasing the spatial extent of the two-phase zone can lower vent fluid salinity. The numerical approach used in this thesis is able to generate salinity patterns predicted by a widely held conceptual model of vent fluid salinity variation, and may be able to explain the vent fluid salinities and temperatures found at the Main Endeavour Vent Field on the Juan de Fuca Ridge, as this approach is able to produce simulated vent fluid salinities that match observed values from the Endeavour Field vents Dante and Hulk.
APA, Harvard, Vancouver, ISO, and other styles
27

Fischer, Alexis Dal. "Alexandrium catenella cyst dynamics in a coastal embayment : temperature dependence of dormancy, germination, and bloom initiation." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111359.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2017.
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Biology; and the Woods Hole Oceanographic Institution), 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Blooms of the dinoflagellate Alexandrium catenella cause paralytic shellfish poisoning syndrome and present an expanding public health threat. They are inoculated through the germination of benthic cysts, a process regulated by internal and environmental factors, most importantly temperature. Less understood is the effect of temperature conditioning on cyst dormancy cycling, which inhibits germination for long periods. This thesis characterizes the temperature-dependence of both dormancy and germination in natural A. catenella cyst populations from Nauset Marsh (Cape Cod, MA, USA), a small estuarine embayment, and relates these processes to the phenology of blooms there. Through laboratory germination assays, it is shown that dormant A. catenella cysts require a quantifiable amount of chilling to exit dormancy and attain quiescence (i.e. become germinable). A series of experiments compares germination rates of quiescent cysts across a range of temperatures through laboratory experiments and field incubations of raw sediment using plankton emergence traps (PETs). Emergence rates of A. catenella germlings measured by PETs increased linearly with temperature and were comparable to germination under constant laboratory conditions. Total emergence fluxes were much lower than expected, suggesting that germination occurs in a much shallower layer of sediments than typically assumed. The results are synthesized to develop a temperature-dependent model to examine the sensitivity of A. catenella bloom phenology to dormancy-breaking by winter chilling. Notably, the chilling-alleviated dormancy model accurately predicted the timing of quiescence (January) and the variable bloom phenology from multiple blooms in Nauset. Once cysts became quiescent and began to germinate, however, temperatures were typically too cold for growth to exceed losses so there was a several-week lag until bloom development. Years with warmer winters and springs had shorter lag periods and thus significantly earlier blooms. Ecologically, dormancy-breaking by a chilling threshold is advantageous because it prevents the mismatch between conditions that are favorable for germination but not for the formation of large blooms. Synchronized germination after winter chilling also promotes promotes efficient conversion from the cyst seedbed to the spring bloom inoculum. The dormancy mechanism characterized here may be present in other cyst-forming dinoflagellates, but there is likely plasticity that reflects the temperature regime of each habitat.
by Alexis Dal Fischer.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
28

Fischer, Albert S. (Albert Sok). "The upper ocean response to the monsoon in the Arabian Sea." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/58365.

Full text
Abstract:
Thesis (Ph.D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2000.
Includes bibliographical references (p. 217-222).
Estimation of the upper ocean heat budget from one year of observations at a moored array in the north central Arabian Sea shows a rough balance between the horizontal advection and time change in heat when the one-dimensional balance between the surface heat flux and oceanic heat content breaks down. The two major episodes of horizontal advection, during the early northeast (NE) and late southwest (SW) monsoon seasons, are both associated with the propagation of mesoscale eddies. During the NE monsoon, the heat fluxes within the mixed layer are not significantly different from zero, and the large heat flux comes from advected changes in the thermocline depth. During the SW monsoon a coastal filament exports recently upwelled water from the Omani coast to the site of the array, 600 km offshore. Altimetry shows mildly elevated levels of surface eddy kinetic energy along the Arabian coast during the SW monsoon, suggesting that such offshore transport may be an important component of the Arabian Sea heat budget. The sea surface temperature (SST) and mixed layer depth are observed to respond to high frequency (HF, diurnal to atmospheric synoptic time scales) variability in the surface heat flux and wind stress. The rectified effect of this HF forcing is investigated in a three-dimensional reduced gravity thermodynamic model of the Arabian Sea and Indian Ocean. Both the HF heat and wind forcing act locally to increase vertical mixing in the model, reducing the SST. Interactions between the local response to the surface forcing, Ekman divergences, and remotely propagated signals in the model can reverse this, generating greater SSTs under HF forcing, particularly at low latitudes. The annual mean SST, however, is lowered under HF forcing, changing the balance between the net surface heat flux (which is dependent on the SST) and the meridional heat flux in the model. A suite of experiments with one-dimensional upper ocean models with different representations of vertical mixing processes suggests that the rectified effect of the diurnal heating cycle is dependent on the model, and overstated in the formulation used in the three-dimensional model.
by Albert Sok Fischer.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
29

Schultz, Cristina. "A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122331.

Full text
Abstract:
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 189-202).
Over the past several decades, the West Antarctic Peninsula (WAP) has undergone physical and ecological changes at a rapid pace, with warming surface ocean and a sharp decrease in the duration of the sea ice season. The impact of these changes in the ocean chemistry and ecosystem are not fully understood and have been investigated by the Palmer-LTER since 1991. Given the data acquisition constraints imposed by weather conditions in this region, an ocean circulation, sea ice and biogeochemistry model was implemented to help fill the gaps in the dataset. The results with the present best case from the suite of sensitivity experiments indicate that the model is able to represent the seasonal and interannual variations observed in the circulation, water mass distribution and sea ice observed in the WAP, and has identified gaps in the observations that could guide improvement of the simulation of the regional biogeochemistry. Comparison of model results with data from the Palmer-LTER project suggests that the large spatial and temporal variability observed in the phytoplankton bloom in the WAP is influenced by variability in the glacial sources of dissolved iron. Seasonal progression of the phytoplankton bloom is well represented in the model, and values of vertically integrated net primary production (NPP) are largely consistent with observations. Although a bias towards lower surface dissolved inorganic carbon (DIC) and alkalinity was identified in the model results, interannual variability was similar to the observed in the Palmer-LTER cruise data.
by Cristina Schultz.
Ph. D.
Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
APA, Harvard, Vancouver, ISO, and other styles
30

Fleming, Laura Elizabeth. "The Influence of heat transport on Arctic amplification." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122324.

Full text
Abstract:
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 53-58).
The Arctic surface air temperature has warmed nearly twice as much as the global mean since the mid-20th century. Arctic sea ice has also been declining rapidly in recent decades. There is still discussion about how much of this Arctic amplification is caused by local factors, such as changes in surface albedo, versus remote factors, such as changes in heat transport from the midlatitudes. This thesis focuses mainly on the role of poleward heat transport on Arctic amplification. Most of the previous studies on this topic have defined ocean heat transport as the zonally averaged ocean heat transport at 65°N or 70°N, which ignores the physical pathways of heat into the Arctic and may include recirculation of heat in the North Atlantic. In this thesis, we define the ocean heat transport as the heat transport across five sections surrounding the Arctic, to create a closed domain in the Arctic.
Previous studies on Arctic amplification have used either a single model run or have compared results from a multi-model ensemble. While the multi-model ensemble approach may potentially average out biases in individual models, the ensemble spread confounds the model differences and the internal climate variability. In this thesis, we investigate the Arctic amplification in the Community Earth System Model version 1 (CESMi) Large Ensemble. The CESMI Large Ensemble includes 40 members that use the same model and external forcing, but different initializations. This simulates different climate trajectories that can occur in a given atmosphere-ocean-land-cryosphere system. We find that CESMI Large Ensemble projects a large increase towards the end of the 21st century in ocean heat transport into the Arctic, and that the increase in ocean heat transport is significantly correlated with Arctic amplification.
The main contributor to the increase in ocean heat transport is the increase across the Barents Sea Opening. The increase in Barents Sea Opening ocean heat transport is highly correlated with the decrease in sea ice in the Barents-Kara Sea region. We propose that this is because the increase in ocean heat transport melts the ice at the sea ice margin, which results in increased surface heat flux from the ocean and further local feedback through decreased surface albedo and increased cloud coverage. We also find that while the changes in atmosphere heat transport into the Arctic circle at 66.5 N are on the same order as the changes in ocean heat transport, they are not correlated with Arctic amplification.
by Laura Elizabeth Fleming.
S.M.
S.M. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
APA, Harvard, Vancouver, ISO, and other styles
31

Jean, Karm-Ervin. "Models Describing the Sea Level Rise in Key West, Florida." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2274.

Full text
Abstract:
Lately, we have been noticing an unusual rise in the sea level near many Floridian cities. By 2060, scientists believe that the sea level in the city of Key West will reach between 22.86 to 60.96 centimeters (Strauss et al. 2012). The consequences of sea level rise are unpleasant by gradually tearing away our beaches and natural resources, destroying our homes and businesses, etc. Definitively, a continual increase of the sea level will affect everyone either directly or indirectly. In this study, the sea level measurements of four Floridian coastal cities (including Key West) are collected in order to describe their trend toward sea level rise over the past 100 years. After the comparisons, some models describing the sea level rise in the city of Key West, Florida, are developed. Any inferences for these above cities may well be extended to similar ones.
APA, Harvard, Vancouver, ISO, and other styles
32

Wacongne, Sophie. "Dynamics of the equatorial undercurrent and its termination." 1988. http://catalog.hathitrust.org/api/volumes/oclc/18427440.html.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, 1988.
Supervised by Mark Cane and Philip Richardson. "January 1988." Funding provided by the National Science Foundation, grant numbers OCE 82-08744, and OCE 85-14885. Includes bibliographical references (p. 339-351).
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Guoqing. "Simulating interdecadal variation of the thermohaline circulation by assimilating time-dependent surface data into an ocean climate model /." 1994. http://collections.mun.ca/u?/theses,75354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Parampil, Sindu Raj. "Observed Subseasonal Variability Of Temperarture And Salinity In The Tropical Indian Ocean." Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2040.

Full text
Abstract:
Subseasonal variability of tropical Indian Ocean sea surface temperature is thought to influence the active-break cycle of the Asian monsoon. There are several open questions related to the role of surface fluxes, large-scale ocean circulation and subsurface ocean processes in the subseasonal variability of upper ocean temperature. We present a unified study of the subseasonal (2-90 day) variability of surface heat flux and upper ocean temperature and salinity throughout the tropical Indian Ocean in all seasons. We focus on the relation between surface fluxes and ocean response using a new satellitebased daily heat flux. The role of ocean processes (advection, entrainment and mixing) in determining SST variability is diagnosed from the daily satellite SST. Before the onset of the summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30-32oC. Climatological mean mixed layer depth in spring (March-May) is 10-20 m, and net surface heat flux (Qnet) is 80-100 Wm 2 into the ocean. It has been suggested that observed spring SST warming is small mainly due to (a) penetrative flux of solar radiation through the base of the mixed layer (Qpen), (b) advective cooling by upper ocean currents and (c) entrainment of sub-mixed layer cool water. We estimate the role of the first two processes in SST evolution from a two-week ARMEX experiment in April-May 2005 in the the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling. The cooling occurs although the ocean gains heat at the surface - Qnet is about 105 Wm 2 in the warming phase, and 25 Wm 2 in the cooling phase; penetrative loss Qpen, is 80 Wm 2 and 70 Wm 2. In the warming phase, SST rises mainly due to heat absorbed within the mixed layer, i.e. Qnet minus Qpen; Qpen, reduces the rate of SST warming by a factor of three. In the second phase, SST cools rapidly because (a) Qpen, is larger than Qnet, and (b) advective cooling is _85 Wm 2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal time scale. Buoy and satellite data suggest that a typical premonsoon intraseasonal SST cooling event occurs under clear skies and weak winds, when the ocean is gaining heat. In this respect, premonsoon SST cooling in the north Indian ocean is different from that due to MJO or monsoon ISO. As a follow-up to ARMEX, we use a short dataset from a field campaign in the premonsoon north Bay of Bengal to study diurnal variability of SST. In addition to the standard meteorological and hydrographic parameters measured from shipborne instruments and buoy sensors, we obtained a two-hourly record of subsurface sunlight profiles. Heat fluxes are seen to drive the SST warming during the day while both advection and entrainment/mixing are important during the night. The simple heat balance based on heat flux shows that it drives the diurnal cycle of SST, though ocean processes contribute towards night time cooling; this has been confirmed using the Price-Weller-Pinkel mixing model forced by heat flux and wind stress. A similar analysis for mixed layer salinity revealed that the salt balance in the region is dominated by advection rather than freshwater flux or entrainment/mixing. Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime north Indian Ocean. The SST oscillations are forced mainly by surface heat flux associated with the active-break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the Bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from Argo floats with 5-day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal and central Arabian Sea. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability (ISV) of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to ocean processes rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. The large subseasonal fluctuations observed in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments. We have developed a new daily satellite-based heat flux dataset for the tropical Indian Ocean (30oE 120oE; 30oS 30oN); satellite data include surface air temperature and relative humidity from the Atmospheric Infrared Sounder (AIRS). On the seasonal scale (> 90 days) the flux compares reasonably well with climatologies and other daily data. On the subseasonal scale, our flux product has realistic behaviour relative to buoy data at validation sites. An important result is that ocean processes (advection, entrainment/detrainment, mixing at the base of the mixed layer) cool the tropical Indian Ocean SST by 8oC over the year. The largest contribution of ocean processes (_20oC SST cooling over the year) is in the western equatorial Indian Ocean. Ocean processes generally cool the upper ocean in all seasons and all regions, except in boreal winter, when they warm the north Indian Ocean. This is likely due to entrainment of warm sub-mixed layer water in regions of inversions. On subseasonal (2-90 days) scales, the contribution of air temperature and humidity to latent heat flux is roughly equal to the contribution from wind speed variability: Another interesting finding is that the contribution of air temperature and humidity increases away from the equator. One of the most important contributions of this thesis is the demonstration that tropical Indian Ocean SST has a coherent response to intraseasonal changes in heat flux associated with organised convection in the summer hemisphere. SST responds to flux in (i) the northeast Indian Ocean during May-October and (ii) the 15oS-5oN region during November-April. In the winter hemisphere and in regions with no organised convection, it is ocean processes and not fluxes which drive the subseasonal changes in SST. This result suggests that SST ISV feeds back to organise and sustain organised convection in the tropical atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
35

Hughes, Paul J. Bourassa Mark A. "North Atlantic decadal variability of ocean surface fluxes." Diss., 2006. http://etd.lib.fsu.edu/theses/available/04072006-185647.

Full text
Abstract:
Thesis (M.S.)--Florida State University, 2006.
Advisor: Mark A. Bourassa, Florida State University, College of Arts and Sciences, Dept. of Meteorology. Title and description from dissertation home page (viewed June 15, 2006). Document formatted into pages; contains vii, 30 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
36

Smith, Rebecca. "Mid-Pliocene to Early Pleistocene Sea Surface and Land Temperature History of NW Australia Based on Organic Geochemical Proxies from Site U1463." 2018. https://scholarworks.umass.edu/masters_theses_2/722.

Full text
Abstract:
Ocean gateways facilitate water circulation between ocean basins, and therefore directly impact thermohaline circulation and global climate. In order to better predict the effects of future climate change, it is critical to constrain past changes in ocean gateway behavior, and corresponding changes in thermohaline circulation, particularly during analogue periods for modern climate change. The Indonesian Throughflow (ITF) is a primary ocean gateway and vital component of the global conveyor that transports water from the Pacific Ocean into the Indian Ocean, however due to a lack of long and continuous sedimentary records from locations under its influence, changes in ITF behavior remain poorly constrained. In this study organic geochemical biomarkers preserved in marine sediments are used to reconstruct both sea surface and continental air temperatures in Northwest (NW) Australia from sediments spanning the mid-Pliocene Warm Period (mPWP), a critical carbon dioxide (CO2) and temperature analogue period for modern climate change spanning 3.3-3.0 Ma. These sediments were collected during IODP Expedition 356 from Site U1463, located near the outlet of the ITF, and are therefore sensitive to changes in ITF behavior over time. Here, NW Australian air temperatures were reconstructed from 1.5-3.5 Ma using the MBT’5ME proxy (Weijers et al., 2007a; De Jonge et al., 2014a), and offshore sea surface temperatures (SSTs) were reconstructed using both the TEX86 proxy (Schouten et al., 2002; Tierney & Tingley, 2014) and the Long Chain Diol Index (LDI; Rampen et al., 2012). Global climate events, including Marine Isotope Stages (MIS) 55, 63, 64, 82, 84, 88, 92, G10, G18, G20, G22, and M2 (Lisiecki & Raymo, 2005) are apparent in all of our records. TEX86 SSTs suggest a stronger cooling signal during MIS Stages G18, G20 and G22 relative to cooling during MIS M2, however LDI SSTs do not yield the same result. Overall, all three proxies indicate higher temperatures across the Pliocene and a cooling trend from ~1.7-1.5 Ma. Cooling occurs during an arid interval identified by Christensen et al. (2017), from 2.4-1.0 Ma, which suggests that offshore cooling contributed to shifts in NW Australian continental hydrology. Cooling from 3.5-1.5 Ma at Site U1463 was likely a reflection of 1) constriction of the ITF from 5-2 Ma and a switch from warm South Pacific to cool North Pacific source waters, and 2) an increase in meridional SST gradients at 1.8 Ma; the particularly strong cooling signal identified in all three records at 1.7 Ma is likely a direct response to the latter. This study helps elucidate ITF variability and shifts in thermohaline circulation across the Plio-Pleistocene and the mPWP, which will help modelers better predict the effects of future climate change.
APA, Harvard, Vancouver, ISO, and other styles
37

Tonin, Hemerson Everaldo. "Atmospheric freshwater sources for eastern Pacific surface salinity." 2006. http://catalogue.flinders.edu.au/local/adt/public/adt-SFU20061031.080144/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

O'Brien, Mary C. "Physical processes and biogeochemistry of particle fluxes over the Beaufort slope and in Canada Basin." Thesis, 2009. http://hdl.handle.net/1828/1669.

Full text
Abstract:
Sedimentation rates and compositions of sinking particles were investigated at three sites on the Beaufort slope and one in Canada Basin during the period 1990-1994 using moored sequential sediment traps. A method was developed to identify the terrigenous and biogenic components of the fluxes. The physical context including ice cover, ocean currents, river inputs, winds, air temperature, incident light, and nutrient availability provide essential information to the interpretation of the particle fluxes and to the understanding of shelf-basin sediment transport in this area. Eddies, internal waves, upwelling and downwelling, and the state of the ice cover all played important and overlapping roles in the pattern of observed fluxes. A peak in the flux of highly terrigenous material under complete ice cover in mid-winter to the northwest of Mackenzie Trough was associated with predominantly downwelling conditions and the passage of a series of eddies and internal waves. A prolonged spring diatom bloom occurred in the mid-slope area and was clearly associated with an early opening of the ice on the east side of the shelf. Higher fluxes at the Canada Basin site were associated with a large eddy clearly identifiable from the current-T-S record and also from the composition of the suspended material carried with it. At the base of the slope (2700 m), the composition was highly terrigenous and remarkably consistent. Higher up the slope (700 m), biogenic peaks in the summer diluted the terrigenous material briefly, but it appears that there is a constant background of highly terrigenous material. There was a high degree of variability between sites and over the slope there was not enough data to asses the inter-annual variability. In Canada Basin, the inter-annual variability was closely linked to the extent of open water in the summer period. At all sites, lateral transport is clearly indicated by the increase in flux with depth. The data robustly demonstrate the need for detailed knowledge of physical processes for informed interpretation of particle fluxes and sediment transport in this area.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography