Academic literature on the topic 'Thermocouple'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermocouple.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermocouple"
Fang, Cong Fu, Hui Huang, and Xi Peng Xu. "The Influence of Thermocouples on the Measurement of Grinding Temperatures." Key Engineering Materials 375-376 (March 2008): 549–52. http://dx.doi.org/10.4028/www.scientific.net/kem.375-376.549.
Full textTszeng, T. C., and V. Saraf. "A Study of Fin Effects in the Measurement of Temperature Using Surface-Mounted Thermocouples." Journal of Heat Transfer 125, no. 5 (September 23, 2003): 926–35. http://dx.doi.org/10.1115/1.1597622.
Full textYou, Fang Yi, and Qiu Lian Dai. "The Study on Optimum Thickness of Thermocouple Used for Measuring the Grinding Temperatures of Brittle Materials." Applied Mechanics and Materials 670-671 (October 2014): 1296–300. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.1296.
Full textHatmoko, Sumantri Hatmoko, Kussigit Santosa Santosa, Giarno Giarno Giarno, Dedy Haryanto Haryanto, Mulya Juarsa Juarsa, M. Hadi Kusuma, Anhar Riza Antariksawan, and Surip Widodo Widodo. "KARAKTERISASI TERMOKOPEL TIPE K PADA FASILITAS SIMULASI SISTEM FASSIP-02." POROS 16, no. 2 (August 27, 2021): 127. http://dx.doi.org/10.24912/poros.v16i2.11651.
Full textJutte, Lisa S., Kenneth L. Knight, and Blaine C. Long. "Reliability and Validity of Electrothermometers and Associated Thermocouples." Journal of Sport Rehabilitation 17, no. 1 (February 2008): 50–59. http://dx.doi.org/10.1123/jsr.17.1.50.
Full textKrille, Tobias, Rico Poser, Markus Diel, and Jens von Wolfersdorf. "Conduction and Inertia Correction for Transient Thermocouple Measurements. Part II: Experimental Validation and Application." E3S Web of Conferences 345 (2022): 01003. http://dx.doi.org/10.1051/e3sconf/202234501003.
Full textHarashita, Junichi, Yuji Tomoda, and Jun Shinozuka. "Development of a Cutting Tool with Micro Built-In Thermocouples - Characteristic of the Micro Cu/Ni Thermocouples Fabricated by Electroless Plating and Electro Plating." Key Engineering Materials 523-524 (November 2012): 815–20. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.815.
Full textRosman N., Andi. "Perancangan Termokopel Berbahan Besi (Fe) dan Tembaga (Cu) Untuk Sensor Temperatur." Indonesian Journal of Fundamental Sciences 4, no. 2 (October 1, 2018): 120. http://dx.doi.org/10.26858/ijfs.v4i2.7640.
Full textKuppu Rao, V., and M. F. Bardon. "A note on the measurement of temperature in reciprocating engines using thermocouples." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, no. 9 (September 1, 2009): 1187–92. http://dx.doi.org/10.1243/09544070jauto1158.
Full textTuz, Yulian, Oleh Kozyr, and Yuriy Samartsev. "Features of temperature measurement of short thermal pulses." Ukrainian Metrological Journal, no. 1 (March 31, 2021): 46–52. http://dx.doi.org/10.24027/2306-7039.1.2021.228237.
Full textDissertations / Theses on the topic "Thermocouple"
Wanis, Paul. "Thermocouple Measurements without Custom Electronics." International Foundation for Telemetering, 2007. http://hdl.handle.net/10150/604537.
Full textThermocouple measurements require “cold junction” compensation in order to obtain a correct reading. This compensation has traditionally been done with custom circuitry. In flight test applications where volume and power are at a premium (e.g. weapons flight test) it is desirable to have a more flexible solution that uses standard analog data acquisition channels already available as part of the encoder circuitry and performs compensation with remote software. This can be done via digital compensation, but certain measures must be taken to maintain accuracy and minimize noise. This paper describes some of these techniques and their performance tradeoffs.
Kar, K. C. "Three-thermocouple technique for fluctuating temperature measurement." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403757.
Full textHung, P. C. F. "Two-thermocouple based sensor characterisation and temperature reconstruction." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426790.
Full textMONTEIRO, MARCELO DOS SANTOS. "METROLOGICAL ESTIMATION OF THERMOELECTRIC STABILITY IN AUPT THERMOCOUPLE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3668@1.
Full textIn 1990, with the adoption of the International Temperature Scale of 1990, the platinum/platinum-rhodium thermocouple was removed as the interpolation instrument between 630 graus Celsius and 1064 Celsius degrees, due its low stability, in favor of the high temperature standard platinum resistance thermometer (HTSPRT) and the radiation thermometer. In this work, it is performed a practical investigation of the characteristics of a 99,999 percent purity gold-platinum thermocouple, concerning its thermoelectric stability and homogeneity of its thermoelements, questioning the possibility of its use as an alternative to the HTSPRT in measurement processes requiring high accuracy with lower costs. In this work, the test thermocouple was exposed to temperatures close to its upper limit (1000 Celsius degrees) for more than 1500 hours, being its stability and homogeneity evaluated as function of time, with aid of a silver fixed point cell from Inmetro, that is a temperature primary standard.
Vedula, Ramakrishna. "Materials for High Temperature Thin Film Thermocouple Applications." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/46493.
Full textMaster of Science
Ongrai, Oijai. "New approaches to improve thermocouple thermometry to 2000°C." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556493.
Full textSOUZA, CESAR LEOPOLDO DE. "METROLOGICAL ASSESSMENT OF THERMOELECTRIC STABILITY OF TYPE K THERMOCOUPLE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4386@1.
Full textA presente Dissertação de Mestrado, intitulada Avaliação metrológica da estabilidade termoelétrica do termopar tipo K, refere-se à verificação de desvios de estabilidade da força eletromotriz induzidos pelo uso de termopares tipo k com isolação mineral de 3mm de diâmetro. Foram analisadas oito amostras de quatro fabricantes nacionais de termopares, após sua exposição a um campo de temperatura de 995 diferente de 0,5 graus Celsius, portanto próximo ao seu limite de aplicabilidade (1070 graus Celsius), simulando uma condição de uso em regime contínuo. As amostras foram recozidas a uma temperatura de 1000 graus Celsius para regularizar o estado de tensão antes dos ensaios realizados e suas condições físico-químicas avaliadas antes dos experimentos, com base em analises química e metalográficas. As variações da força eletromotriz, induzidas pelo uso, foram avaliadas com base em calibrações que antecederam e sucederam a exposição das amostras ao campo de temperatura previamente determinado, realizadas contra temperaturas de referência obtidas pelo uso de seis células de pontos fixos (Ag, Al, Zn, Sn, In e Ga). Como contextualização, a dissertação também apresenta um breve histórico relacionado à medição da temperatura e ao uso de termopares tipo K, além de fundamentar a teoria que sustenta o desenvolvimento da pesquisa, suas conclusões, estabelecendo, assim, as bases para recomendações de novos trabalhos neste campo. Como resultado central da investigação conduzida, comprovou- se que, para as condições de trabalhos impostas (calibração em células de ponto fixo e exposição à temperatura de 995 graus Celsius em regime contínuo), todas as amostras apresentaram desvios nas suas curvas de calibração que variam na faixa de 0,2 a 4,0 graus Celsius, explicitando intervalos superiores às expectativas dos usuários. O período de vida dos experimentos completou-se com um intervalo de tempo de 134 h de submissão ao campo de temperatura. A pesquisa é de relevância no contexto industrial e científico pelo fato de o termopar tipo K representar cerca de 70 por cento do mercado brasileiro de termopares, e ser uma expectativa e recomendação do Instituto Nacional de Metrologia do Brasil, o Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO).
The present masters dissertation entitled Metrological Assessment of Thermoelectric Stability of Type K Thermocouple, refers to the verification of stability deviations in the electromotive force induced by the use of type K thermocouple with 3mm diameter mineral insulation. Eight samples from four national thermocouples manufacturers were analyzed, after their exposure to a 995 different to 0,5 temperature field, thus very close to its applicability threshold (1070 Celsius degree), simulating a continuous regime condition of use. The samples were annealed at 1000 Celsius degree to regulate the strain state before the tests; their physical-chemical conditions were assessed before the essays based on chemical and metallographic analyses. The variations in electromotive forces induced by use were assessed based on calibrations made before and after the exposure of the samples to the temperature field previously determined,performed against reference temperatures obtained with the use of six fixed- point cells (Ag, Al, Zn, Sn, In and Ga). The dissertation also presents a brief history on temperature gauging and the use of type K thermocouples, in addition to showing the basis of the theory that supports research development, its conclusions, thus establishing the basis for recommendations of new research in this field. The main result of the research carried out enabled us to prove that, for the imposed working conditions (calibration on fixed-point cells and exposure to temperatures of 995 Celsius degree under a continuous regime), all the samples presented deviations in their calibration curves which varied from 0.2 to 4.0 Celsius degree, which made explicit higher intervals than those expected by the users. The test s lifetime was completed with a 134 hour time interval submission to the temperature field. The research is relevant in the industrial and scientific context because type K thermocouples represent approximately 70percent of the Brazilian thermocouple market, and because it is an expectation and a recommendation of the National Metrology Institute of Brazil - the Instituto Nacional de Metrologia,Normalização e Qualidade Industrial (INMETRO).
Brown, Colin. "System identification applied to dual-thermocouple transient temperature measurement." Thesis, Queen's University Belfast, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517017.
Full textGenix, Michaël. "Mesures thermiques locales par thermocouple intrinsèque en modes contact et non contact." Besançon, 2009. http://www.theses.fr/2009BESA2005.
Full textThis thesis has been carried out at the department MN2S of the laboratory FEMTO-ST. It has been devoted to the study of thermal microscopy. We have investigated local measurement methods by intrinsic thermocouple in contact mode and non contact mode. The originality of these methods is the fact that the conductive device under test acts as an element of the thermoelectric couple. The first part of this work was to design, implement and calibrate thermal standards necessary in order to develop a thermal metrology principle. The second part of this thesis was dedicated to design and fabricate special probes to investigate the intrinsic thermocouple method. We have proposed different probe designs and complete measurement results, as well as the limitations of this intrinsic method. Eventually, the third part has dealt with assembling an electrostatic force microscope. This microscope allows the quantification of the Contact Potential Difference without contact between the probe and the device under test. The first experimental results are described showing the temperature dependence of the surface energy
Holmström, Marcus. "Design of a Carbon Fiber Thermocouple for Elevated Temperature Measurements." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279105.
Full textTermoelement är ett av de mest använda instrumenten för temperaturavläsning vid upphöjda temperaturer. Idag finns det bara några få typer av termoelement som är byggda för temperaturer över 1600 ℃, däremot innehar dom vanligtvis en temperaturmätnings osäkerhet på cirka 1% vid dessa höga temperaturer. Över 1600 ℃ temperaturintervallet har de flesta högtemperatur termoelement en tendens att skifta i mätningarna vilket orsakar en felaktig och inexakt mätning av den faktiska temperaturen. Denna avhandling undersöker användningen av kolfiber som ett material för användning i termoelement, genom kombinationen av två olika grafitfibrer. Polyacrylonitrile- (PAN) och Rayon-baserade fibrer användes i en sammansatt kombination upp till en temperatur av 200 ℃, där spänningen mättes mot temperaturen. Studien visar en lovande och stabil linjär effekt av dess elektromotoriska spänning för denna typ av termoelement med kommersiellt tillgängliga kolfibrer vid lägre temperaturer. En jämförelse görs mellan de vanliga termoelementen av typ K och S vid rumstemperaturer, resultaten visar att grafittermoelementen har cirka 21% av den termoelektriska effektiviteten hos den för en typ K eller S termoelement vid 25 ℃. När det gäller dess funktionalitet vid högre temperaturer har liknande grafitmaterial studerats och funnit en potentiell ökning av den termoelektriska stabiliteten vid högre temperaturer över 2000 ℃, vilket visar att grafitbaserade termoelement gör sig väl lämpade för högtemperaturmätningar.
Books on the topic "Thermocouple"
Burns, G. W. The calibration of thermocouples and thermocouple materials. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textBurns, G. W. NIST measurement services: The calibration of thermocouples and thermocouple materials. Washington, D.C: National Institute of Standards and Technology, 1989.
Find full text1975-, Johnson Mitchell, ed. Practical thermocouple thermometry. Research Triangle Park, NC: ISA, 2012.
Find full textPractical thermocouple thermometry. Research Triangle Park, NC: Instrument Society of America, 1999.
Find full textGeorge C. Marshall Space Flight Center., ed. Feasibility study of thin film thermocouple piles. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 2001.
Find full textSisk, R. C. Feasibility study of thin film thermocouple piles. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 2001.
Find full textC, Fralick Gustave, and United States. National Aeronautics and Space Administration., eds. Three-wire thermocouple: Frequency response in constant flow. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textC, Fralick Gustave, and United States. National Aeronautics and Space Administration., eds. Three-wire thermocouple: Frequency response in constant flow. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textC, Fralick Gustave, and United States. National Aeronautics and Space Administration., eds. Three-wire thermocouple: Frequency response in constant flow. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textL, Meeks E., Fralick Gustave C, and United States. National Aeronautics and Space Administration., eds. Frequency response of a supported thermocouple wire: Effects of axial conduction. [Atlanta, Ga.]: Georgia Institute of Technology, 1990.
Find full textBook chapters on the topic "Thermocouple"
Vlcko, Jan. "Thermocouple." In Selective Neck Dissection for Oral Cancer, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_283-1.
Full textGooch, Jan W. "Thermocouple." In Encyclopedic Dictionary of Polymers, 743. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11778.
Full textWeik, Martin H. "thermocouple." In Computer Science and Communications Dictionary, 1776. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_19505.
Full textVlcko, Jan. "Thermocouple." In Encyclopedia of Earth Sciences Series, 903–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_283.
Full textHerwig, Heinz. "Thermoelement (thermocouple)." In Wärmeübertragung A-Z, 283–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_63.
Full textLink, Albert N., and John T. Scott. "Thermocouple Calibration Program." In Public Accountability, 47–65. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5639-8_7.
Full textGooch, Jan W. "Type J Thermocouple." In Encyclopedic Dictionary of Polymers, 776. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12271.
Full textGooch, Jan W. "Type K Thermocouple." In Encyclopedic Dictionary of Polymers, 776. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12272.
Full textGooch, Jan W. "Type P Thermocouple." In Encyclopedic Dictionary of Polymers, 776. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12273.
Full textAndraski, Brian J., and Bridget R. Scanlon. "3.2.3 Thermocouple Psychrometry." In SSSA Book Series, 609–42. Madison, WI, USA: Soil Science Society of America, 2018. http://dx.doi.org/10.2136/sssabookser5.4.c22.
Full textConference papers on the topic "Thermocouple"
Igorevich, Fedosov Ivan. "Thermocouple Condition Monitoring Using Thermocouple Resistance. Experimental Study." In 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2020. http://dx.doi.org/10.1109/usbereit48449.2020.9117727.
Full textLam, Brenda. "An Adaptive Thermocouple Inhomogeneity Scanning System." In NCSL International Workshop & Symposium. NCSL International, 2019. http://dx.doi.org/10.51843/wsproceedings.2019.08.
Full textGrech, Alan, Tonio Sant, and Mario Farrugia. "The Effects of Thermocouple Materials and Insulating Mica in an Erodable Surface Thermocouple." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56090.
Full textScervini, Michele. "Progress in the Development of Low Drift Nickel Based Thermocouples for High Temperature Applications." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42652.
Full textWeinschenk, Craig, and O. A. Ezekoye. "Analysis of Thermocouple Responses to Turbulent Radiating Environments." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44587.
Full textErgut, A., and Y. Levendis. "An Investigation on Thermocouple-Based Temperature Measurements in Sooting Flames." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82332.
Full textArifovic, Narcisa, Danijel Sestan, Davor Zvizdic, Nedzadeta Hozic, Emese Turzo-Andras, Semir Cohodarevic, Radek Strnad, et al. "A new EMPIR Project “MetForTC” for Developing Traceable Measurement Capabilities for Monitoring Thermocouple Performance." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201918006.
Full textLiu, Xiaoliang, Xuedong Chen, Zhichao Fan, and Huifeng Jiang. "Preparation and Properties of Au/SnO2 Thermocouples for Material Testing Apparatus of Pressure Equipment." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93346.
Full textScervini, Michele, and Catherine Rae. "An Improved Nickel Based MIMS Thermocouple for High Temperature Gas Turbine Applications." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68464.
Full textKochan, Orest, Roman Kochan, Volodymyr Kochan, and Jun Su. "Thermocouple with adjustable error." In 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2017. http://dx.doi.org/10.1109/idaacs.2017.8095178.
Full textReports on the topic "Thermocouple"
Burns, G. W., and M. G. Scroger. The Calibration of thermocouples and thermocouple materials. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.sp.250-35.
Full textHasehemian, H. M. Determination of Installed Thermocouple Response. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada182715.
Full textJeff Einerson. AGR-1 Thermocouple Data Analysis. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1042383.
Full textNishino, H., W. Yang, Z. Dohnalek, V. A. Ukraintsev, and W. J. Choyke. Silicon Crystal Heating and Thermocouple Mounting Designs. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada310973.
Full textFeie, John, and Larry Kretz. High Temperature Thermocouple Installation Methods for Hypersonic Vehicles. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada488092.
Full textJ.C. Crepeau, J.L. Rempe, J.E. Daw, D.L. Knudson: K.G. Condie, and S.C. Wilkins. Enhancements to High Temperature In-Pile Thermocouple Performance. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/926725.
Full textJ. C. Crepeau, J. L. Rempe, J. E. Daw, D. L. Knudson, K. G. Condie, and S. C. Wilkins. Enhancements to High Temperature In-Pile Thermocouple Performance. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/935460.
Full textScroger, M. G. Assessment of uncertainties of thermocouple calibrations at NIST. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5340.
Full textSteele, R. J. Operability Test Procedure (OTP) for the Annulus Thermocouple Tree. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/483361.
Full textKessler, S. F. ,. Westinghouse Hanford. Radioisotope inventory of T101AZ thermocouple tree from riser 13D. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/662044.
Full text