Academic literature on the topic 'Thermodynamic calculation of air-cooled condenser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermodynamic calculation of air-cooled condenser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermodynamic calculation of air-cooled condenser"

1

Chaczykowski, Maciej. "Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part II: Plant Simulation and Optimisation Study." Archives of Mining Sciences 61, no. 2 (June 1, 2016): 259–74. http://dx.doi.org/10.1515/amsc-2016-0019.

Full text
Abstract:
Abstract After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Qian, Yao, Gan, and Zhang. "Thermodynamic Evaluation of LiCl-H2O and LiBr-H2O Absorption Refrigeration Systems Based on a Novel Model and Algorithm." Energies 12, no. 15 (August 6, 2019): 3037. http://dx.doi.org/10.3390/en12153037.

Full text
Abstract:
An absorption refrigeration system (ARS) is an alternative to the conventional mechanical compression system for cold production. This study developed a novel calculation model using the Matlab language for the thermodynamic analysis of ARS. It was found to be reliable in LiCl-H2O and LiBr-H2O ARS simulations and the parametric study was performed in detail. Moreover, two 50 kW water-cooled single effect absorption chillers were simply designed to analyze their off-design behaviors. The results indicate that LiCl-H2O ARS had a higher coefficient of performance (COP) and exergetic efficiency, particularly in the lower generator or higher condenser temperature conditions, but it operated more restrictively due to crystallization. The off-design analyses revealed that the preponderant performance of LiCl-H2O ARS was mainly due to its better solution properties because the temperature of each component was almost the same for both chillers in the operation. The optimum inlet temperature of hot water for LiCl-H2O (83 °C) was lower than that of LiBr-H2O (98 °C). The cooling water inlet temperature should be controlled within 41 °C, otherwise the performances are discounted heavily. The COP and cooling capacity could be improved by increasing the temperature of hot water or chilled water properly, contrary to the exergetic efficiency.
APA, Harvard, Vancouver, ISO, and other styles
3

BOUSHABA, Hicham, Abdelaziz MIMET, and Mohammed El GANAOUI. "Prototype’s seizing and design of a solar refrigerator based on solid adsorption." MATEC Web of Conferences 307 (2020): 01013. http://dx.doi.org/10.1051/matecconf/202030701013.

Full text
Abstract:
Solar refrigerator machines based on solid adsorption present a highly interesting solution to the Industry of Cooling Production. In one hand, they are significantly attractive economy ways because of the abundance of the solar energy resources. In the other hand, they are environment friendly. As a result, these machines could present one of the most competitive solutions to the improvement of this very industry. The aim of this paperwork is to provide an accurate study on how to design, seize and build a prototype of an adsorption solar refrigerator using activated-carbon/ammonia pair: Firstly, we used a static model, which is based on the use of state equations (vapor/liquid) at thermodynamic equilibrium. This model computes the cycled mass and the cycle coefficient of performance (COPc) for each four characteristic temperatures of the cycle. Secondly, we develop a dynamic simulation program based on conservation equations of energy and mass in the reactor, this program allow the calculation of the temperature, the pressure inside the reactor, the adsorbed mass and the solar coefficient of performance (COPs). Finally, in the light of our results, we design this prototype, it would consist of the reactor: a solar panel, size 1 m2contain tubes with a diameter of 10cm, an air condenser, and a cold chamber containing an air evaporator.
APA, Harvard, Vancouver, ISO, and other styles
4

Poullikkas, Andreas, Ioannis Hadjipaschalis, and George Kourtis. "Comparative Assessment of an Innovative Dry-Cooled CSP System." Conference Papers in Energy 2013 (May 28, 2013): 1–10. http://dx.doi.org/10.1155/2013/849407.

Full text
Abstract:
A comparative optimization assessment is carried out in order to identify the competitiveness of an innovative modular air-cooled condenser (MACC) system in relation to conventional water- or air-cooled condensers. Specifically, the technoeconomic performance of the combined cycle gas turbine (CCGT) technology, the parabolic trough concentrated solar power (CSP) technology, and the solar tower CSP technology are compared when all are integrated (a) with a MACC condenser of an optimum tube geometry and size, (b) with a conventional water-cooled condenser, and (c) with a conventional dry-cooled condenser. The comparison is performed across three different solar potential levels. The simulations are carried out using an optimization model based on the IPP v2.1 algorithm for the calculation of the electricity unit cost and other financial indicators of each technology under investigation. The results demonstrate that, under certain parameters, the investigated MACC condenser system can become a cost-competitive alternative to water- or dry-cooled condensers in various solar potential environments.
APA, Harvard, Vancouver, ISO, and other styles
5

Ni, Weiming, Zhihua Ge, Lijun Yang, and Xiaoze Du. "Piping-Main Scheme for Condensers against the Adverse Impact of Environmental Conditions on Air-Cooled Thermal Power Units." Energies 13, no. 1 (December 30, 2019): 170. http://dx.doi.org/10.3390/en13010170.

Full text
Abstract:
To improve the adaptability of direct air-cooled power generating units to the variations of both meteorological condition and power load, a piping-main arrangement of air-cooled condensers was proposed. The heat and mass transfer models of the air-side were established for the air cooling system of 2 × 600 MW thermal power generating units. The coupled model for both flow resistance loss and condensate flow rate distributions of exhaust steam inside air-cooled condensers were developed based on the temperature fields through numerical simulation. Calculation results, including the condensate flow rate, back pressure, and coal consumption rate, were acquired under different ambient temperatures and wind velocities. The results show that the proposed piping-main arrangement can weaken the ambient wind impacts and reduce the backpressure significantly in summer by adjusting the number of air-cooled condenser cells in operation. The steam flow rate can be uniformed effectively by adjusting the number of operating air-cooled condenser cells during winter. It can also avoid the freezing accident in winter while cooling the exhaust steam of two turbines by part air-cooled condenser cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Cong, Jiang, and Yu Hui. "Research on the Thermo-Economics Calculation Model for Indirect Air-Cooled System." Advanced Materials Research 953-954 (June 2014): 876–79. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.876.

Full text
Abstract:
Based on the research about the part load operation calculation model of condenser pressure and theoretical scrupulous induction,this paper provides the calculation model about the influence parameters of cold end system for thermo-economics in Hailler indirect air-cooled system,and it can provide a strong theoretical basis for improving the performance of Hailler cold end system.
APA, Harvard, Vancouver, ISO, and other styles
7

Lv, Yi, Hui Zhang, Yu Jin Yue, Li Jun Yang, and Xiao Dong Zhang. "Deviation Analysis on Flow and Heat Transfer Model of Large Air-Cooled Steam Condenser Unit." Advanced Materials Research 860-863 (December 2013): 656–62. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.656.

Full text
Abstract:
Many power plants adopt air-cooled condensers (ACC) with finned tubes, using ambient air to condense turbine exhaust steam. Each condenser unit is mainly composed of two heat transfer surfaces like A and large diameter axial flow fans driving air. In the study of environmental wind effects, etc, due to the condenser unit size is bigger, it is necessary to simplify the condenser unit internal flow and heat transfer calculation, but the deviations introduced by these simplifies failed to get enough attention. In view of one condenser unit, three kinds of flow and heat tansfer combinated model were respectively investigated. A computational fluid dynamics software (CFD) is used to solve the problem.Research priority is analyzing the deviations of internal flow and heat transfer features in the condenser unit according to the extracted datum. The study gives some useful informatin to the design of a thermal power plant with an ACC system.
APA, Harvard, Vancouver, ISO, and other styles
8

Keshvarparast, Adele, Seyed Soheil Mousavi Ajarostaghi, and Mojtaba Aghajani Delavar. "Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser." Applied Thermal Engineering 172 (May 2020): 115160. http://dx.doi.org/10.1016/j.applthermaleng.2020.115160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Dong Yi, and Chu Ping Shi. "Design of Multi-Function Refrigerator with Refrigeration and Constant Temperature and Hot Water." Advanced Materials Research 860-863 (December 2013): 1670–73. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1670.

Full text
Abstract:
A new model of the refrigerator with refrigeration and constant temperature and hot water has been trial-produced. The new refrigerator can not only keep refrigerated food quality, but also be used for heating or keeping food temperature constant, and supply hot water for us. The subsystems of condenser have been analyzed and designed including air-cooled method and water-cooled method. According to the theoretical calculation, the temperature in constant temperature box can keep about 50°C and 18.46 Kg hot water can be provided per hour.
APA, Harvard, Vancouver, ISO, and other styles
10

Ghettini, Simone, Alessandro Sorce, and Roberto Sacile. "Data-Driven Air-Cooled Condenser Performance Assessment: Model and Input Variable Selection Comparison." E3S Web of Conferences 197 (2020): 10003. http://dx.doi.org/10.1051/e3sconf/202019710003.

Full text
Abstract:
This paper presents a data–driven model for the estimation of the performance of an aircooled steam condenser (ACC) with the aim to develop an efficient online monitoring, summarized by the condenser pressure (or vacuum) as Key Performance Indicator. The estimation of the ACC performance model was based on different dataset from three different combined cycle power plants with a gross power of above 380 MWe each, focusing on stationary condition of the steam turbine. The datasets include both boundary (e.g. Ambient Temperature, Wind Speed) and operative parameters (e.g. steam mass flow rate, Steam turbine power, electrical load of the ACC fans) acquired from the power plants and some derived variable as the incondensable fraction, which calculation is here proposed as additional parameter. After a preliminary sensitivity analysis on data correlation, the paper focuses on the evaluation of different ACC Condenser models: Semi-Empirical model is described trough curves typically based on steam mass flow rate (or condenser load) and the ambient temperature as main parameters. Since monitoring based on ACC design curves Semi-Empirical models, provides biased poor results, with an error of about 15%, the curves parameters were estimated basing on training data set. Other two data driven models were presented, basing on a neural network modelling and multi linear regression technique and compared on the base of the reduced number of input at first and then including aldo the other process variables in the prediction of the condenser back pressure. Estimate the parameters of the Semi-Empirical model, results in a better prediction if just steam mass flow rate and ambient temperature are available, with an error of the 7%, thanks to the knowledge contained within the “curves shapes”, with respect to linear regression (8.3%) and Neural Network models (7.6%). Higher accuracy can be then obtained by considering a larger number of operative parameters and exploiting more complex data-driven model. With a higher number of features, the neural network model has proved a higher accuracy than the linear regression model. In fact, the mean percentage error of the NN model (2.6%), in all plant operating conditions, is slightly lower than the error of the linear regression model, but presents and much lower than the mean error of the Semi-Empirical model thanks to the additional data-based knowledge.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thermodynamic calculation of air-cooled condenser"

1

Kloda, Michal. "Vzduchem chlazený kondenzátor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231824.

Full text
Abstract:
The Master’s thesis dealing with air-cooled condensers is split into four sections. The first section shows an overview of air cooling, introduction into air-cooled condensers of A-frame shape and finned tubes. The second section deals with heat transfer on the steam side and deals with trapped incondensables on the steam side of ACC. The third section deals with heat transfer on the air side, shows a brief overview of fans and selected problems on the air side. In the last section the simplified thedmodynamic calculation of air-cooled condenser is shown.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermodynamic calculation of air-cooled condenser"

1

Khaldi, Fouad, and Mounir Aksas. "A Modified Solar/Gas Thermodynamic Hybridization Scheme in ISCC Plants for Reducing the Air-Cooled Condenser Power Consumption." In Renewable Energy in the Service of Mankind Vol II, 983–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermodynamic calculation of air-cooled condenser"

1

Moore, J., R. Grimes, and E. J. Walsh. "Performance Analysis of a Modular Air Cooled Condenser for a Concentrated Solar Power Plant." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87873.

Full text
Abstract:
The use of air cooled condensers in power generation facilities is increasing in arid regions around the world. There is a specific requirement for more efficient air cooling technologies to be developed for Concentrated Solar Power (CSP) plants. This paper aims at determining the effects of various condenser design features on CSP plant output. In particular this paper considers a modular condenser and focuses on designing a suitable compact heat sink to be coupled with a variable speed fan array. Tube banks with radial fins have been used for decades to heat and cool gases and numerous correlations exist to predict the performance of such a heat exchanger. The initial design of this air-cooled condenser is essentially a tube bundle consisting of 6 rows of helically finned round tubes in an equilateral staggered arrangement. A laboratory-scale steady state test facility was designed to investigate the accuracy of the relevant correlations for the given design. Due to an undesired phenomenon which exists in multi-row condensers known as backflow, an investigation was performed to analyze the performance of the tube bank with fewer tube rows. The thermal and hydraulic performance for a tube bundle with a different number of tube rows was measured and found to be within 10–18% of the existing correlations. New correlations for heat transfer and pressure drop for the given design are presented for greater accuracy in the calculation of the condenser performance. These correlations, based on the measured data were combined with performance characteristics from a steam turbine to model the thermodynamic plant performance incorporating the various condenser designs. The investigation shows that for each condenser size, design and ambient temperature, an optimum fan speed exists which maximizes plant output. Further analysis shows that for a 1000 module condenser, a 4 row condenser results in the highest plant output, with a loss in efficiency due to condenser operation of 1.85%. A 2 row condenser also performs relatively well with 600 or more modules. This analysis shows that a condenser consisting of a series of such modules, can tightly control and optimize the net plant output power by simply varying fan speed.
APA, Harvard, Vancouver, ISO, and other styles
2

Kostka, Pal, Zsolt Techy, and James J. Sienicki. "Hydrogen Mixing Analyses for a VVER Containment." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22206.

Full text
Abstract:
Hydrogen combustion may represent a threat to containment integrity in a VVER-440/213 plant owing to the combination of high pressure and high temperature. A study has been carried out using the GASFLOW 2.1 three-dimensional CFD code to evaluate the hydrogen distribution in the containment during a beyond design basis accident. The VVER-440/213 containment input model consists of two 3D blocks connected via one-dimensional (1D) ducts. One 3D block contains the reactor building and the accident localization tower with the suppression pools. Another 3D block models the air traps. 1D ducts represent the check valves connecting the accident localization tower with the air traps. The VVER pressure suppression system, called “bubbler condenser,” was modeled as a distributed heat sink with water thermodynamic properties. This model accounts for the energy balance. However, it is not currently possible to model dynamic phenomena associated with the water pools (e.g., vent clearing, level change). The GASFLOW 2.1 calculation gave detailed results for the spatial distribution of thermal-hydraulic parameters and gas concentrations. The range and trend of the parameters are reasonable and valuable. There are particularly interesting circulation patterns around the steam generators, in the bubbler tower and other primary system compartments. In case of the bubbler tower, concentration and temperature contour plots show an inhomogeneous distribution along the height and width, changing during the accident. Hydrogen concentrations also vary within primary system compartments displaying lower as well as higher (up to 13–20% and higher) values in some nodes. Prediction of such concentration distributions was not previously possible with lumped parameter codes. GASFLOW 2.1 calculations were compared with CONTAIN 1.2 (lumped parameter code) results. Apart from the qualitatively similar trends, there are, for the time being, quantitative differences between the results concerning, for example, pressure histories, or the total amount of steam available in the containment. The results confirm the importance of detailed modeling of the containment, as well as of the bubbler condenser and sump water pools. The study showed that modeling of hydrogen distribution in the VVER-440/213 containment was possible using the GASFLOW 2.1 code with reasonable results and remarkable physical insights.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Ying, Wenxian Zheng, Tianming Zhong, and Nan Hua. "The Thermodynamic Performance of Liquid-Vapor Separation Air-Cooled Condenser in ORC System at Low Ambient Temperature." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37231.

Full text
Abstract:
This paper investigated the thermodynamic performance of a novel condenser, liquid-vapor separation condenser (LSC), under the ORC conditions with extreme ambient air temperature. By contrast, a common parallel flow condenser (PFC) with the identical structure of tube and fin, together with the heat transfer area was measured under the same condition. The average condensing temperature was chosen as 35°C, R134a was chosen as the working fluid. The experimental results announced that the in-tube average heat transfer coefficients (AHTCs) of the LSC were 96.7% to 109.1% of the PFC when the initial air temperature varied from −10°C to 10°C, at the R134a inlet mass flux from 437kg/(m2s) to 750kg/(m2s), and heat flux from 3kW/m2 to 5 kW/m2. Specially, the pressure drop was only 35.1% to 53.2% of the PFC under the experiment conditions. The tube wall temperatures of the LSC decreased slower than the PFC. The thermodynamic performance of the LSC was superior to the PFC under the ORC conditions. The result indicates the LSC is a promising condenser in ORC system.
APA, Harvard, Vancouver, ISO, and other styles
4

Torbidoni, Leonardo, and J. H. Horlock. "Calculation of the Expansion Through a Cooled Gas Turbine Stage." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68113.

Full text
Abstract:
In recent work by the same authors [1], a new method for calculating the coolant flow requirements of a high temperature gas turbine blade was described. It involved consideration of successive chord-wise strips of blading; the coolant required in each strip was obtained by detailed study of the heat transfer processes across the wall of the blade and then setting limits on the maximum blade metal temperature. In the present paper, the gas state paths, involving viscous losses, heat transfer and mixing of the coolant with the mainstream, are determined strip-by-strip along the whole blade chord for the stator and rotor of the stage and illustrated on an enthalpy-entropy chart. The work output from each rotor strip is obtained together with the losses [entropy creation] through the whole stage. It is then possible to calculate the thermodynamic efficiency for the cooled turbine stage and compare it with that of the uncooled stage. Illustrative calculations are given, a main calculation being based on the mean flow across the blade pitch. But, in a second supplementary calculation, allowance is also made for flow variations across the blade pitch. By comparing these two calculations it is shown that the mean flow calculation is usually adequate.
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, Darren T., and Ian Ritchey. "Thermodynamic Analysis of Closed Loop Cooled Cycles." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-288.

Full text
Abstract:
Closed loop steam cooling schemes have been proposed by a number of manufacturers for advanced Combined Cycle Gas Turbine (CCGT) power plant (see for example Corman (1996) and Briesch et al. (1994)) asserting that thermal efficiencies in excess of 60% (LHV) are achievable combined with significant improvements of ∼15% in specific power (see Corman (1995)). In understanding the efficiency advantage however, the relative performance of each cooling system (subject to the same practical constraints and technology levels) is a better indicator then the absolute value. Assessment of the performance of such novel schemes generally involves a detailed numerical analysis of an integrated cycle which may often prevent validation of the results or obscure an understanding of the physical basis for the claimed improvements. Here, to overcome this, a group of simplified expressions are defined for the variation of each cycles efficiency due to cooling which show where the differences come from. These expressions are based simply on a calculation of the marginal increase in heat rejected, to the environment from the cycle, due to an increase in the level of cooling. After these relationships are validated using detailed heat balance calculations they are used to compare the main cooling options, namely open loop air, closed loop air and closed loop steam when subject to the same practical constraints and assumptions. Based on these results it is proposed that the relative advantage of closed loop cooling may not be as significant as previously thought. Furthermore, it is shown that the closed loop cooling efficiency gain is heavily dependent on the performance and reliability of substantial Thermal Barrier Coatings (TBCs). Finally, although the majority of recent interest in closed loop cooling schemes has focused upon CCGT plant, there are other systems where the benefits of closed loop steam cooling appear to be greater, in particular cycles involving steam injected gas turbines. Such a cycle is analysed here with a number of advanced cooling options.
APA, Harvard, Vancouver, ISO, and other styles
6

Wen, Juan, Dawei Tang, Zhicheng Wang, Jing Zhang, Yanjun Li, and Fangyuan Sun. "Numerical Simulation of Flow and Heat Transfer of a Direct Air-Cooled Condenser Cell in a Power Plant." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17718.

Full text
Abstract:
The classical A-frame condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the finned tube bundles and poor efficiencies. This paper addresses the detailed characteristics of the thermo-flow in the A-shaped frame condenser cell and the influence of the ambient temperature on the performance of the condenser cell. A three dimensional coupled air flow field calculation is carried out for the rotational fan and the stock-still A-shaped frame-work with the computational fluid dynamics code ANSYS FLUENT12.0. Results show that the coupled computation not only could give boundary conditions conveniently, but also could reflect many important flow phenomena, such as flow backward, biased flow and the air flow field in the chamber is rather complex. The distribution of velocity and temperature in A-frame at different cross sections are presented. Furthermore, the inlet air velocity of the finned tube bundles under different ambient temperature are compared. These simulations provide basis for both understanding the existing deficiencies of the A-frame condenser cell and moreover provide direction for improved designs in the future.
APA, Harvard, Vancouver, ISO, and other styles
7

Krautz, Hans Joachim, Rolf Chalupnik, and Franz Stuhlmu¨ller. "Lignite-Fired Combined Cycle Power Plant With ACPFBC: Concept and Thermodynamic Calculations." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-056.

Full text
Abstract:
A 200 kWth test plant was constructed by BTU Cottbus for the purpose of developing a special variant of coal conversion based on 2nd generation PFBC. This concept, primarily to be used for generating power from lignite, employs a circulating type fluidized bed and is characterized by a design that combines the two air-blown steps “partial gasification” and “residual char combustion” in a single component. The subject of this paper is to develop an overall power plant concept based on this process, and to perform the associated thermodynamic calculations. In addition to the base concept with one large heavy-duty Siemens gas turbine V94.3A fired with Lausitz dried lignite (19% H2O), further versions with variation of Siemens gas turbine model (V94.3A and V64.3A), the water content of the fuel fired (raw lignite with more than 52% H2O or dried lignite) as well as the method of drying the coal were investigated. Common assumptions for all versions were ISO conditions for the ambient air and a condenser pressure of 0.05 bar. As expected, the calculations yielded very attractive net efficiencies of almost 50% (LHV based) for a variant with the small V64.3A gas turbine and up to more than 55% for the large plants with the V94.3A gas turbine. It was further demonstrated that thermodynamic integration of an advanced, innovative coal drying process (e.g. fluidized-bed drying with waste heat utilization) causes an additional gain in net efficiency of about three percentage points compared with the variant of firing lignite that was first dried externally. In addition to the basic function of the coal conversion system, it was necessary to also assume preconditions such as complete carbon conversion, reliable hot gas cleaning facilities and fuel gas properties that are acceptable for combustion in the gas turbine. Put abstract text here.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Bo, Franck David, Philippe Riviere, Christophe Coquelet, and Renaud Gicquel. "Air Cooled Two-Stage Rankine Cycles for Large Power Plants Operating With Different Working Fluids: Performance, Size and Cost." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98075.

Full text
Abstract:
A two stage Rankine cycle for power generation is presented in this paper. It is made of a water steam Rankine cycle and an Organic Rankine bottoming Cycle. By using an organic working fluid with higher density than water, it is possible to reduce the installation size and to use an air-cooled condenser. Following our previous studies, 3 high critical temperature organic fluids, R245fa, R365mfc, isopentane (iC5) and ammonia are tested as potential candidates for this application. The performances of the two stage Rankine cycle operating with those different working fluids are evaluated for a nuclear plant case. The size of system components (heat exchangers and turbine) is estimated for each tested fluid. The influences of their thermodynamic and transport properties are analyzed. In addition, an estimation of the installation cost is done by introducing cost functions.
APA, Harvard, Vancouver, ISO, and other styles
9

Martinez-Frias, Joel, Salvador M. Aceves, J. Ray Smith, and Harry Brandt. "Thermodynamic Analysis of Zero-Atmospheric Emissions Power Plant." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33199.

Full text
Abstract:
This paper presents a thermodynamic analysis of a natural gas zero-atmospheric emissions power plant with a net electrical output of 400 MW. In this power plant, methane is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured as liquid and gaseous carbon dioxide is pumped from the system. The carbon dioxide can be economically conditioned for enhanced recovery of oil, or coal-bed methane, or for sequestration in a subterranean formation. The analysis considers a complete power plant layout, including an air separation unit, compressors and intercoolers for oxygen and methane compression, a gas generator, three steam turbines, a reheater, a preheater, a condenser, and a carbon dioxide pumping system to pump the carbon dioxide to the pressure required for sequestration. The computer code is a powerful tool for estimating the efficiency of the plant, given different configurations and technologies. The efficiency of the power plant has been calculated over a wide range of conditions as a function of the two important power plant parameters of turbine inlet temperature and turbine isentropic efficiency. This simulation is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The high-pressure turbine would operate at a temperature of 1089 K (1500 °F) with uncooled blades, the intermediate-pressure turbine would operate at 1478 K (2200 °F) with cooled blades and the low-pressure turbine would operate at 998 K (1336 °F). The corresponding turbine isentropic efficiencies for these three turbines were taken as 90, 91 and 93 percent. With these operating conditions, the zero-atmospheric emissions electric power plant has a net thermal efficiency of 46.5%. This net thermal efficiency is based on the lower heating value of methane, and includes the energy necessary for air separation and for carbon dioxide separation and sequestration.
APA, Harvard, Vancouver, ISO, and other styles
10

Novotny, Vaclav, Michal Kolovratnik, Monika Vitvarova, and Jana P. Jakobsen. "Analysis and Design of Novel Absorption Power Cycle Plants." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59272.

Full text
Abstract:
Absorption Power Cycles (APCs) provide an interesting field within power cycles. The multicomponent mixture with variable temperature across boiling is employed as a working fluid. This has a potential for decreasing exergy loss associated with heat transfer during phase change processes (boiling and condensation). Absorption process has also an effect of lowering exhaust pressure of a turbine. The APCs hold a potential for heat recovery applications at very low temperatures, where constant temperature of boiling and condensation largely limits performance and economic effectiveness of Organic Rankine cycles (ORCs). Theoretical calculations show superiority of APC over extensive range of considered ORC working fluid. The advantage of APC further increases when air cooled condenser needs to be used instead of wet cooling tower. With the same boundary conditions for all cycles the APC provides higher utilization efficiency and power output at source temperatures below approximately 120 °C, for temperatures as low as 60 °C the net power output can be surpassed even more than three times. The proposed APC employs aqueous solution of salts considered generally for absorption cooling (Lithium Bromide, Lithium Chloride, Calcium Chloride) as a working fluid. Unlike ammonia used in mixture with water in Kalina APC or often ORC working fluids, used salts are non-toxic, environmentally friendly and pure water in expander simplifies its design. After summary of theoretical research from thermodynamics point of view are discussed principles, aspects and issues for design of single components of the cycle. Results of sizing are presented on two examples with 100 °C heat source. First one is 20 kWe unit using hot air as a heat source and air cooled condenser, second one is 500 kWe unit with heat source being pressurized water and using wet cooling tower heat rejection. Results show possibility of building relatively efficient system for even small power output with turbine isentropic efficiency nearly 80 % for the 20 kWe unit, but relatively large heat exchangers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography