Academic literature on the topic 'Thermodynamic cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermodynamic cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermodynamic cycle"
Sparavigna, Amelia Carolina. "Teaching Reitlinger Cycles To Improve Students' Knowledge And Comprehension Of Thermodynamics." MECHANICS, MATERIALS SCIENCE & ENGINEERING JOURNAL. - ISSN 2412-5954 2016, no. 1 (2016): 78–83. https://doi.org/10.5281/zenodo.3367256.
Full textTuttle, Kenneth L., and Chih Wu. "Computer-Based Thermodynamics." Journal of Educational Technology Systems 30, no. 4 (2002): 427–36. http://dx.doi.org/10.2190/b0x1-r5pw-lcyj-yyme.
Full textRashkovskiy, S. A. "Hamiltonian Thermodynamics." Nelineinaya Dinamika 16, no. 4 (2020): 557–80. http://dx.doi.org/10.20537/nd200403.
Full textRivera, Wilfrido, Karen Sánchez-Sánchez, J. Alejandro Hernández-Magallanes, J. Camilo Jiménez-García, and Alejandro Pacheco. "Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously." Processes 8, no. 3 (2020): 320. http://dx.doi.org/10.3390/pr8030320.
Full textTozer, R. M., and R. W. James. "Cold Generation Systems: A Theoretical Approach." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 209, no. 4 (1995): 287–96. http://dx.doi.org/10.1243/pime_proc_1995_209_008_01.
Full textMiao, Jian-Guo, Chun-Wang Wu, Wei Wu, and Ping-Xing Chen. "Entropy Exchange and Thermodynamic Properties of the Single Ion Cooling Process." Entropy 21, no. 7 (2019): 650. http://dx.doi.org/10.3390/e21070650.
Full textPanarella, Emilio. "Energy saving and climate change mitigation through improved thermodynamic efficiency." Physics Essays 33, no. 3 (2020): 283–88. http://dx.doi.org/10.4006/0836-1398-33.3.283.
Full textSilva, Jojomar Lucena, and José Raimundo Novaes Chiappin. "A geometria como instrumento heurístico da reformulação da termodinâmica na representação de ciclos para a de potenciais." Principia: an international journal of epistemology 21, no. 3 (2018): 291–315. http://dx.doi.org/10.5007/1808-1711.2017v21n3p291.
Full textFang, Xiaona, and Jin Wang. "Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems." Annual Review of Biophysics 49, no. 1 (2020): 227–46. http://dx.doi.org/10.1146/annurev-biophys-121219-081656.
Full textBetelmal, E. H., and Mohamed A. Naas. "The Value of Kalina Cycle in Engineering." International Journal of Research and Scientific Innovation XI, no. IX (2024): 1028–37. http://dx.doi.org/10.51244/ijrsi.2024.1109084.
Full textDissertations / Theses on the topic "Thermodynamic cycle"
Yang, Chen. "Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 transcritical power cycle study." Doctoral thesis, KTH, Tillämpad termodynamik och kylteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50261.
Full textLEAL, MARCO AURELIO. "THERMODYNAMIC ANALYSIS OF A REFRIGERATION CYCLE USING AN EJECTOR." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19458@1.
Full textConlon, Paul. "Thermodynamic analysis of supercharged, fuel-injected two-stroke cycle engines." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317435.
Full textArthur, Daniel Tettey. "Hybrid thermodynamic life cycle assessment of gasoline and ethanol blends." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406030567.
Full textBrown, Mark. "Simulations for thermodynamic analyses of transcritical carbon dioxide refrigeration cycle and reheat dehumidification air conditioning cycle." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001599.
Full textSantos, Ana Paula Pereira dos. "Thermodynamic analysis of gas turbine cycle using inlet air cooling methods." Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2024.
Full textHemadri, Vinayak B. "Thermodynamic analysis and optimization of multi-pressure, multi-component organic rankine cycle." Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7039.
Full textMoxon, Matthew. "Thermodynamic analysis of the Brayton-cycle gas turbine under equilibrium chemistry assumptions." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/9237.
Full textBlanco, Cavero Diego. "Assessment and optimization of the indicated cycle with a 0D thermodynamic model." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/115934.
Full textMartin, Christopher L. "Study of cooling production with a combined power and cooling thermodynamic cycle." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008332.
Full textBooks on the topic "Thermodynamic cycle"
United States. National Aeronautics and Space Administration., ed. ANL-RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance. National Aeronautics and Space Administration, 1986.
Find full textUnited States. National Aeronautics and Space Administration., ed. ANL-RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance. National Aeronautics and Space Administration, 1986.
Find full textCaton, Jerald A., ed. An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119037576.
Full textCaton, J. A. An introduction to thermodynamic cycle simulations for internal combustion engines. John Wiley & Sons Inc, 2015.
Find full textGorla, Rama S. R. Probabilistic analysis of gas turbine field performance. National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textJ, Bitteker L., Jones J. E, and George C. Marshall Space Flight Center., eds. Prospects for nuclear electric propulsion using closed-cycle magnetohydrodynamic energy conversion. National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 2001.
Find full textGlassman, Arthur J. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines. Lewis Research Center, 1991.
Find full textM, Jones Scott, and United States. National Aeronautics and Space Administration., eds. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines. National Aeronautics and Space Administration, 1991.
Find full textUnited States. Dept. of Energy. Division of Buildings and Community Systems. and Lewis Research Center, eds. Overview of free-piston Stirling SP-100 activities at the NASA Lewis Research Center. National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textUnited States. Dept. of Energy. Division of Buildings and Community Systems. and Lewis Research Center, eds. Overview of free-piston Stirling SP-100 activities at the NASA Lewis Research Center. National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textBook chapters on the topic "Thermodynamic cycle"
Zohuri, Bahman, and Patrick McDaniel. "Thermodynamic Cycles." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_3.
Full textZohuri, Bahman. "Thermodynamic Cycles." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15560-9_3.
Full textHerwig, Heinz. "Thermodynamischer Kreisprozeß (thermodynamic cycle)." In Wärmeübertragung A-Z. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_61.
Full textBose, Tarit. "Thermodynamic Ideal Cycle Analysis." In Airbreathing Propulsion. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3532-7_2.
Full textGardner, John F. "The Vapor Compression Cycle: A Review." In Thermodynamic Analysis for Industrial Refrigeration Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-79705-7_3.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_3.
Full textFeidt, M. L. "Thermodynamics and Optimization of Reverse Cycle Machines." In Thermodynamic Optimization of Complex Energy Systems. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4685-2_28.
Full textXiaoyan, Tung, and Yang Qingxiong. "Thermodynamic Analysis of Fatigue Damage Process." In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials—3. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2860-5_114.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Modified Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_4.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Complex Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_5.
Full textConference papers on the topic "Thermodynamic cycle"
Meana-Fernández, Andrés, Roberto Martínez-Pérez, Francisco Javier Rubio-Serrano, and Antonio José Gutiérrez-Trashorras. "PERFORMANCE OF A SOLAR-BIOMASS POWERED THERMODYNAMIC CYCLE INCORPORATING THE HYGROSCOPIC CYCLE TECHNOLOGY (HCT)." In 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024). ECOS 2024, 2024. http://dx.doi.org/10.52202/077185-0012.
Full textSifat, Najmus S., and Yousef Haseli. "Thermodynamic Modeling of Allam Cycle." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88079.
Full textScott, T., D. Riggins, and K. Christensen. "Thermodynamic analysis of the transposed-cycle." In 37th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3748.
Full textGholizadeh, Ali, M. B. Shafii, and M. H. Saidi. "A Micro Combined Heat and Power Thermodynamic Analysis and Optimization." In ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27281.
Full textKerber, Eva, Bernhard Weigand, Florian Schmidt, and Stephan Staudacher. "Second Law Analysis of Thermodynamic Cycles for Aero Engines." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43295.
Full textStecco, S. S., U. Desideri, B. Facchini, and N. Bettagli. "The Humid Air Cycle: Some Thermodynamic Considerations." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-077.
Full textVining, Cronin B., Roger M. Williams, Mark L. Underwood, M. Amy Ryan, and Jerry W. Suitor. "Reversible Thermodynamic Cycle for AMTEC Power Conversion." In 27th Intersociety Energy Conversion Engineering Conference (1992). SAE International, 1992. http://dx.doi.org/10.4271/929144.
Full textGrammer, Thomas Allen, and Robert R. Bittle. "Thermodynamic Modeling of an Epitrochoidal Engine Cycle." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19215.
Full textPostrzednik, Stefan, and Zbigniew Zmudka. "Thermodynamic Reference Eco-cycle of IC Engine." In Automotive and Transportation Technology Congress and Exposition. SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3195.
Full textNaidin, M. C., R. Monichan, U. Zirn, K. Gabriel, and I. Pioro. "Thermodynamic Considerations for a Single-Reheat Cycle SCWR." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75984.
Full textReports on the topic "Thermodynamic cycle"
Yoshimura, A. S. Thermodynamic Cycle Analysis Program (TCAP). Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/481552.
Full textCarlson, Matthew D., Timothy A. Shedd, and Gerald E. Kashmerick. Thermodynamic Analysis and Comparison of the K6 Cycle. SAE International, 2011. http://dx.doi.org/10.4271/2011-32-0600.
Full textMurphy, R. W. Thermodynamic property evaluation and magnetic refrigeration cycle analysis for gadolinium gallium garnet. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10114667.
Full textSkye, Harrison M. Validation of and Optimization with a Vapor Compression Cycle Model Accounting for Refrigerant Thermodynamic and Transport Properties. National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.tn.2233.
Full textBrown, J. S., R. Brignoli, and P. A. Domanski. CYCLE_D-HX: NIST vapor compression cycle model accounting for refrigerant thermodynamic and transport properties, version 1.0, user's guide. National Institute of Standards and Technology, 2017. http://dx.doi.org/10.6028/nist.tn.1974.
Full textWhite, Thomas. Development of a parametric analysis microcomputer model for evaluating the thermodynamic performance of a reciprocating Brayton cycle engine. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.5678.
Full textBrown, J. Steven, Riccardo Brignoli, Piotr A. Domanski, and Young Jin Yoon. CYCLE_D-HX: NIST Vapor Compression Cycle Model Accounting for Refrigerant Thermodynamic and Transport Properties; Version 2, User's Guide. National Institute of Standards and Technology, 2021. http://dx.doi.org/10.6028/nist.tn.2134.
Full textBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011558.
Full textD. Yogi Goswami. Development of New Thermodynamic Cycles. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/803214.
Full textWalters, Joseph. Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.1185.
Full text