Journal articles on the topic 'Thermodynamic power cycles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thermodynamic power cycles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rivera, Wilfrido, Karen Sánchez-Sánchez, J. Alejandro Hernández-Magallanes, J. Camilo Jiménez-García, and Alejandro Pacheco. "Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously." Processes 8, no. 3 (March 9, 2020): 320. http://dx.doi.org/10.3390/pr8030320.
Full textIbrahim, O. M., and S. A. Klein. "High-Power Multi-Stage Rankine Cycles." Journal of Energy Resources Technology 117, no. 3 (September 1, 1995): 192–96. http://dx.doi.org/10.1115/1.2835340.
Full textYuan, Z., and E. E. Michaelides. "Binary-Flashing Geothermal Power Plants." Journal of Energy Resources Technology 115, no. 3 (September 1, 1993): 232–36. http://dx.doi.org/10.1115/1.2905999.
Full textInozemtsev, N. N. "Thermodynamic cycles for spacecraft power plants." Russian Aeronautics (Iz VUZ) 53, no. 4 (December 2010): 443–49. http://dx.doi.org/10.3103/s1068799810040112.
Full textTozer, R. M., and R. W. James. "Cold Generation Systems: A Theoretical Approach." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 209, no. 4 (November 1995): 287–96. http://dx.doi.org/10.1243/pime_proc_1995_209_008_01.
Full textKosowski, Krzysztof, and Marian Piwowarski. "Subcritical Thermodynamic Cycles with Organic Medium and Isothermal Expansion." Energies 13, no. 17 (August 21, 2020): 4340. http://dx.doi.org/10.3390/en13174340.
Full textLayton, Astrid, John Reap, Bert Bras, and Marc Weissburg. "Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles." PLoS ONE 7, no. 12 (December 14, 2012): e51841. http://dx.doi.org/10.1371/journal.pone.0051841.
Full textDunham, Marc T., and Brian D. Iverson. "High-efficiency thermodynamic power cycles for concentrated solar power systems." Renewable and Sustainable Energy Reviews 30 (February 2014): 758–70. http://dx.doi.org/10.1016/j.rser.2013.11.010.
Full textPiwowarski, Marian, and Krzysztof Kosowski. "Advanced Turbine Cycles with Organic Media." Energies 13, no. 6 (March 12, 2020): 1327. http://dx.doi.org/10.3390/en13061327.
Full textKosowski, Krzysztof, Karol Tucki, Marian Piwowarski, Robert Stępień, Olga Orynycz, Wojciech Włodarski, and Anna Bączyk. "Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+." Sustainability 11, no. 2 (January 21, 2019): 554. http://dx.doi.org/10.3390/su11020554.
Full textVijayaraghavan, Sanjay, and D. Y. Goswami. "Organic Working Fluids for a Combined Power and Cooling Cycle." Journal of Energy Resources Technology 127, no. 2 (February 6, 2005): 125–30. http://dx.doi.org/10.1115/1.1885039.
Full textLyngfelt, A., and P. Stenberg. "Wet Peat Power Processes: A Thermodynamic Study." Journal of Engineering for Gas Turbines and Power 110, no. 2 (April 1, 1988): 155–60. http://dx.doi.org/10.1115/1.3240094.
Full textAyub, Abubakr, Costante M. Invernizzi, Gioele Di Marcoberardino, Paolo Iora, and Giampaolo Manzolini. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles." Energies 13, no. 15 (August 4, 2020): 4014. http://dx.doi.org/10.3390/en13154014.
Full textMcMahan, A., S. A. Klein, and D. T. Reindl. "A Finite-Time Thermodynamic Framework for Optimizing Solar-Thermal Power Plants." Journal of Solar Energy Engineering 129, no. 4 (January 22, 2007): 355–62. http://dx.doi.org/10.1115/1.2769689.
Full textCole, G. H. A. "Multicycle Approach to Power Cycle Studies." International Journal of Mechanical Engineering Education 23, no. 2 (April 1995): 129–41. http://dx.doi.org/10.1177/030641909502300207.
Full textSun, Chen, Xue-Tao Cheng, and Xin-Gang Liang. "Output power analyses for the thermodynamic cycles of thermal power plants." Chinese Physics B 23, no. 5 (May 2014): 050513. http://dx.doi.org/10.1088/1674-1056/23/5/050513.
Full textChen, Lingen, Huijun Feng, and Yanlin Ge. "Power and Efficiency Optimization for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle." Entropy 22, no. 6 (June 17, 2020): 677. http://dx.doi.org/10.3390/e22060677.
Full textAçikkalp, Emin. "Models for optimum thermo-ecological criteria of actual thermal cycles." Thermal Science 17, no. 3 (2013): 915–30. http://dx.doi.org/10.2298/tsci110918095a.
Full textGrkovic, Vojin, Dragoljub Zivkovic, and Milana Gutesa. "A new approach in CHP steam turbines thermodynamic cycles computations." Thermal Science 16, suppl. 2 (2012): 399–407. http://dx.doi.org/10.2298/tsci120503178g.
Full textHeikal, H. A., and M. G. Higazy. "On the Thermodynamic Cycles of Gas Turbine Power Plants." International Journal of Mechanical Engineering Education 29, no. 4 (October 2001): 321–43. http://dx.doi.org/10.7227/ijmee.29.4.3.
Full textF. Arce, Pedro, and Nian F. Vieira. "Thermodynamic Simulation of Steam Power Cycles using GUIMatLab Interfaces." International Journal of Engineering Research and Applications 7, no. 1 (January 2017): 88–93. http://dx.doi.org/10.9790/9622-0701038893.
Full textKolios, A. J., S. Paganini, and S. Proia. "Development of thermodynamic cycles for concentrated solar power plants." International Journal of Sustainable Energy 32, no. 5 (October 2013): 296–314. http://dx.doi.org/10.1080/14786451.2012.663758.
Full textIbrahim, O. M., S. A. Klein, and J. W. Mitchell. "Optimum Heat Power Cycles for Specified Boundary Conditions." Journal of Engineering for Gas Turbines and Power 113, no. 4 (October 1, 1991): 514–21. http://dx.doi.org/10.1115/1.2906271.
Full textMorehouse, J. H. "Thermally Regenerative Hydrogen/Oxygen Fuel Cell Power Cycles." Journal of Solar Energy Engineering 110, no. 2 (May 1, 1988): 107–12. http://dx.doi.org/10.1115/1.3268239.
Full textSinkevich, Mikhail, Anatoliy Kosoy, and Oleg Popel. "Comparative analysis of the Allam cycle and the cycle of compressorless combined cycle gas turbine unit." E3S Web of Conferences 209 (2020): 03023. http://dx.doi.org/10.1051/e3sconf/202020903023.
Full textGawthrop, Peter J., and Edmund J. Crampin. "Energy-based analysis of biochemical cycles using bond graphs." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2171 (November 8, 2014): 20140459. http://dx.doi.org/10.1098/rspa.2014.0459.
Full textPerz, E. "A Computer Method for Thermal Power Cycle Calculation." Journal of Engineering for Gas Turbines and Power 113, no. 2 (April 1, 1991): 184–89. http://dx.doi.org/10.1115/1.2906543.
Full textKapooria, R. K., S. Kumar, and K. S. Kasana. "An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation." Journal of Energy in Southern Africa 19, no. 1 (February 1, 2008): 77–83. http://dx.doi.org/10.17159/2413-3051/2008/v19i1a3314.
Full textBahrampoury, Rasool, and Ali Behbahaninia. "Thermodynamic investigation of dual-separator Kalina cycle system: Comparative study." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, no. 3 (July 11, 2017): 282–92. http://dx.doi.org/10.1177/0957650917720288.
Full textThorbergsson, Egill, and Tomas Grönstedt. "A Thermodynamic Analysis of Two Competing Mid-Sized Oxyfuel Combustion Combined Cycles." Journal of Energy 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/2438431.
Full textKaufman, Richard, Thomas V. Marcella, and Eric Sheldon. "Reflections on the pedagogic motive power of unconventional thermodynamic cycles." American Journal of Physics 64, no. 12 (December 1996): 1507–17. http://dx.doi.org/10.1119/1.18414.
Full textLiu, Yunxia, Yuanyang Zhao, Qichao Yang, Guangbin Liu, and Liansheng Li. "Thermodynamic comparison of CO2 power cycles and their compression processes." Case Studies in Thermal Engineering 21 (October 2020): 100712. http://dx.doi.org/10.1016/j.csite.2020.100712.
Full textSegantin, Stefano, Andrea Bersano, Nicolò Falcone, and Raffaella Testoni. "Exploration of power conversion thermodynamic cycles for ARC fusion reactor." Fusion Engineering and Design 155 (June 2020): 111645. http://dx.doi.org/10.1016/j.fusengdes.2020.111645.
Full textGonzález-Portillo, Luis F., Javier Muñoz-Antón, and José M. Martínez-Val. "Thermodynamic mapping of power cycles working around the critical point." Energy Conversion and Management 192 (July 2019): 359–73. http://dx.doi.org/10.1016/j.enconman.2019.04.022.
Full textRogalev, Andrey, Nikolay Rogalev, Vladimir Kindra, Ivan Komarov, and Olga Zlyvko. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO2 Recirculation." Energies 14, no. 10 (May 18, 2021): 2927. http://dx.doi.org/10.3390/en14102927.
Full textLiu, Liuchen, Qiguo Yang, and Guomin Cui. "Supercritical Carbon Dioxide(s-CO2) Power Cycle for Waste Heat Recovery: A Review from Thermodynamic Perspective." Processes 8, no. 11 (November 15, 2020): 1461. http://dx.doi.org/10.3390/pr8111461.
Full textÖztürk, A., A. Şenel, and S. U. Onbaşıo??lu. "Thermodynamic optimization of combined cycles." International Journal of Energy Research 29, no. 7 (2005): 657–70. http://dx.doi.org/10.1002/er.1098.
Full textKosoy, Boris, Larisa Morozyuk, Sergii Psarov, and Artem Kukoliev. "Synthesis of scheme-cycle designs of absorption water-ammonia thermotransformers with extended degazation zone." Eastern-European Journal of Enterprise Technologies 4, no. 8(112) (August 31, 2021): 23–33. http://dx.doi.org/10.15587/1729-4061.2021.238203.
Full textMacchi, E., S. Consonni, G. Lozza, and P. Chiesa. "An Assessment of the Thermodynamic Performance of Mixed Gas–Steam Cycles: Part A—Intercooled and Steam-Injected Cycles." Journal of Engineering for Gas Turbines and Power 117, no. 3 (July 1, 1995): 489–98. http://dx.doi.org/10.1115/1.2814122.
Full textYu, Wan, Qichao Gong, Dan Gao, Gang Wang, Huashan Su, and Xiang Li. "Thermodynamic Analysis of Supercritical Carbon Dioxide Cycle for Internal Combustion Engine Waste Heat Recovery." Processes 8, no. 2 (February 12, 2020): 216. http://dx.doi.org/10.3390/pr8020216.
Full textEl-Masri, M. A. "On Thermodynamics of Gas-Turbine Cycles: Part 3—Thermodynamic Potential and Limitations of Cooled Reheat-Gas-Turbine Combined Cycles." Journal of Engineering for Gas Turbines and Power 108, no. 1 (January 1, 1986): 160–68. http://dx.doi.org/10.1115/1.3239864.
Full textKosowski, Krzysztof, Karol Tucki, Marian Piwowarski, Robert Stępień, Olga Orynycz, and Wojciech Włodarski. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry." Sustainability 11, no. 9 (May 9, 2019): 2647. http://dx.doi.org/10.3390/su11092647.
Full textHung, Tzu-Chen, and Yong-Qiang Feng. "Innovative Research in the Organic Rankine Cycle." Impact 2020, no. 6 (November 16, 2020): 76–78. http://dx.doi.org/10.21820/23987073.2020.6.76.
Full textCampanari, S., P. Iora, P. Silva, and E. Macchi. "Thermodynamic Analysis of Integrated Molten Carbon Fuel Cell–Gas Turbine Cycles for Sub-MW and Multi-MW Scale Power Generation." Journal of Fuel Cell Science and Technology 4, no. 3 (November 2, 2006): 308–16. http://dx.doi.org/10.1115/1.2744051.
Full textAngelino, G., and C. Invernizzi. "Cyclic Methylsiloxanes as Working Fluids for Space Power Cycles." Journal of Solar Energy Engineering 115, no. 3 (August 1, 1993): 130–37. http://dx.doi.org/10.1115/1.2930039.
Full textOreijah, Mowffaq, Abhijit Date, and Aliakbar Akbarzadaha. "Comparison between Rankine Cycle and Trilateral Cycle in Binary System for Power Generation." Applied Mechanics and Materials 464 (November 2013): 151–55. http://dx.doi.org/10.4028/www.scientific.net/amm.464.151.
Full textAhmed, Aram Mohammed, László Kondor, and Attila R. Imre. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles." Energies 14, no. 2 (January 8, 2021): 307. http://dx.doi.org/10.3390/en14020307.
Full textChauhan, Vijay, P. Anil Kishan, and Sateesh Gedupudi. "Combined Cycle for Power Generation and Refrigeration Using Low Temperature Heat Sources." International Journal of Energy Optimization and Engineering 3, no. 3 (July 2014): 34–56. http://dx.doi.org/10.4018/ijeoe.2014070103.
Full textAngelino, G., and C. Invernizzi. "Real gas Brayton cycles for organic working fluids." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215, no. 1 (February 1, 2001): 27–38. http://dx.doi.org/10.1243/0957650011536543.
Full textBoydak, Ozlem, Ismail Ekmekci, Mustafa Yilmaz, and Hasan Koten. "Thermodynamic investigation of organic Rankine cycle energy recovery system and recent studies." Thermal Science 22, no. 6 Part A (2018): 2679–90. http://dx.doi.org/10.2298/tsci170720103b.
Full text