Academic literature on the topic 'Thermodynamical model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermodynamical model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermodynamical model"
Haldar, Sourav, Pritikana Bhandari, and Subenoy Chakraborty. "A thermodynamical analysis of the inhomogeneous FLRW type model: Redefined Bekenstein–Hawking system." International Journal of Geometric Methods in Modern Physics 14, no. 11 (October 23, 2017): 1750159. http://dx.doi.org/10.1142/s0219887817501596.
Full textMamon, Abdulla Al, Pritikana Bhandari, and Subenoy Chakraborty. "Study of thermal stability for different dark energy models." International Journal of Geometric Methods in Modern Physics 16, no. 11 (November 2019): 1950171. http://dx.doi.org/10.1142/s0219887819501718.
Full textSimji, P. "Statistical mechanics of cold deconfined quark matter using quasiparticle model." International Journal of Modern Physics A 35, no. 13 (May 10, 2020): 2050064. http://dx.doi.org/10.1142/s0217751x20500645.
Full textHonarvaryan, M., A. Sheykhi, and H. Moradpour. "Thermodynamical description of the ghost dark energy model." International Journal of Modern Physics D 24, no. 07 (May 27, 2015): 1550048. http://dx.doi.org/10.1142/s0218271815500480.
Full textChetry, Binod, Jibitesh Dutta, and Wompherdeiki Khyllep. "Thermodynamics of scalar field models with kinetic corrections." International Journal of Modern Physics D 28, no. 15 (November 2019): 1950163. http://dx.doi.org/10.1142/s0218271819501633.
Full textDoazan, V. "The Spheroidal/Ellipsoidal, Variable Mass-Loss, Decelerated Be Star Model (Review Paper)." International Astronomical Union Colloquium 92 (August 1987): 384–410. http://dx.doi.org/10.1017/s0252921100116501.
Full textPanigrahi, D. "Thermodynamical behavior of the variable Chaplygin gas." International Journal of Modern Physics D 24, no. 05 (March 18, 2015): 1550030. http://dx.doi.org/10.1142/s0218271815500303.
Full textAndrade, F. X. C., J. M. A. César de Sá, and F. M. Andrade Pires. "A Ductile Damage Nonlocal Model of Integral-type at Finite Strains: Formulation and Numerical Issues." International Journal of Damage Mechanics 20, no. 4 (January 10, 2011): 515–57. http://dx.doi.org/10.1177/1056789510386850.
Full textDOLFIN, M., M. FRANCAVIGLIA, S. PRESTON, and L. RESTUCCIA. "MATERIAL ELEMENT MODEL AND THE GEOMETRY OF THE ENTROPY FORM." International Journal of Geometric Methods in Modern Physics 07, no. 06 (September 2010): 1021–42. http://dx.doi.org/10.1142/s0219887810004695.
Full textHurisse, Olivier, and Lucie Quibel. "A homogeneous model for compressible three-phase flows involving heat and mass transfer." ESAIM: Proceedings and Surveys 66 (2019): 84–108. http://dx.doi.org/10.1051/proc/201966005.
Full textDissertations / Theses on the topic "Thermodynamical model"
Steuer, Haiko. "Thermodynamical properties of a model liquid crystal." [S.l.] : [s.n.], 2004. http://edocs.tu-berlin.de/diss/2004/steuer_haiko.htm.
Full textPracný, Vladislav. "Neural network based shock absorber model with a thermodynamical coupling : experiment, modeling and vehicle simulation /." Aachen : Shaker, 2009. http://d-nb.info/994209967/04.
Full textRamos, Luís Roberto. "Propriedades termodinâmicas do Modelo de Falicov-Kimball de duas impurezas sem spin." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-03062014-103216/.
Full textIn this work, we study the Falicov-Kimball model with two localized spinless impurities hybridized with conduction electrons of a host metal, therefore, valence fluctuation is intrinsic to the model. The conduction states are also electrostatically scattered whenever a charge is present em the local levels of the impurities. The study was realized computing thermodynamics properties of the model, more specifically, we analyze the temperature dependent specific heat end charge susceptibility for many different parameters of the model. The Numerical Renormalization Group with two discretization parameters is used to obtain the spectrum of the model, from what the thermodynamics is obtained. We discuss the importance of going beyond the usual approximation that projects all moment at the Fermi Level. We begun our study of the thermodynamical properties analyzing values of the parameters space, where the model becomes quadratic (that is, where hybridization or Coulomb scattering are absent), and thus simple interpretations of the data are possible. We verified, for example, that for non-zero hybridization, the system shows Fermi liquid behavior at low temperature. The Wilson ratio, defined here with the charge susceptibility instead of magnetic one, has the universal value R = 1, whenever the hybridization is present. For some choices of the model parameters the model behaviors like heavy fermion.
Pracný, Vladislav [Verfasser]. "Neural network-based shock absorber model with a thermodynamical coupling : Experiment, modeling and vehicle simulation / Vladislav Pracny." Aachen : Shaker, 2009. http://d-nb.info/1161302549/34.
Full textLima, Washington Luiz Carvalho. "Assimetria partícula-buraco no modelo de Kondo de duas impurezas." Universidade de São Paulo, 1997. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-07012009-093355/.
Full textThis thesis studies the thermodynamical properties of the two-impurity Kondo Hamiltonian. Our generalized numerical renormalization-group approach maintains the particle-hole asymmetry found in the conventional model, which asymmetry washes out the critical point with non-Fermi liquid properties discovered ten years ago in numerical and analytical studies of the symmetric model. Our computation of the low-temperature susceptibility, linear coefficient of the specific heat, and ground-state phase shifts shows smooth dependencies on the ratio I/kbTk where I is the RKKY interaction and Tk the Kondo temperature. This contrasts with the symmetric Hamiltonian, which yields a specific-heat singularity and a sharp phase-shift discontinuity at the critical ratio I/kbTk ~ 2.2. We have also computed the temperature dependence of the impurity magnetic susceptibility. Our curves show the qualitative features encountered in a recent numerical renormalization-group study of the symmetric model and confirm the predictions of a scaling analysis carried out in the early 80\'s: (i) For | I | << kbTk the per-impurity susceptibility mimics that of an isolated impurity. (ii) For I >> kbTk (antiferromagnetic RKKY interaction), the impurities tend to lock into a ground-state singlet decoupled from the conduction electrons. (iii) For -I >> kbTk (ferromagnetic RK KY coupling), as the temperature decreases, the impurities first lock into a triplet, whose effective moment is then screened in a two-stage Kondo effect. To further confirm this interpretation of the numerical results, we present phenomenological expressions that fit well the calculated susceptibilities for each regime into which the characteristic energy scales divide the temperature axis.
Belkhiri, Madeny. "Plasma out of thermodynamical equilibrium : influence of the plasma environment on atomic structure and collisional cross sections." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112268/document.
Full textIn hot dense plasmas, the free-electron and ion spatial distribution may strongly affect the atomic structure. To account for such effects we have implemented a potential correction based on the uniform electron gas model and on a Thomas-Fermi Approach in the Flexible Atomic Code (FAC). This code has been applied to obtain energies, wave-functions and radiative rates modified by the plasma environment. In hydrogen-like ions, these numerical results have been successfully compared to an analytical calculation based on first-order perturbation theory. In the case of multi-electron ions, we observe level crossings in agreement with another recent model calculation. Various methods for the collision cross-section calculations are reviewed. The influence of plasma environment on these cross-sections is analyzed in detail. Some analytical expressions are proposed for hydrogen-like ions in the limit where Born or Lotz approximations apply and are compared to the numerical results from the FAC code. Finally, from this work, we study the influence of the plasma environment on our collisional-radiative model so-called -Foch-. Because of this environment, the mean charge state of the ions increases. The line shift is observed on the bound-bound emission spectra. A good agreement is found between our work and experimental data on a Titanium plasma
Padilha, Igor Tavares. "Estudo das propriedades termodinâmicas no modelo de Ising aleatoriamente decorado com interações competitivas." Universidade Federal do Amazonas, 2006. http://tede.ufam.edu.br/handle/tede/3464.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
In this work we will study the thermodynamics properties of the quenched decorated Ising model with competitive interactions through the effective field theory (EFT) of a one-spin cluster. The quenched decorated Ising model with competitive interactions is here used to describe the thermodynamics properties of the cooper-based oxide superconductors compounds in the insulating phase (antiferromagnetic). The model consists of planes in which the nodal spins interact antiferromagnetically (JA < 0) with their nerest-neighbors and ferromagnetically (JF > 0) with the spins that decorated the bonds, which are quenched randomly distributed over the twodimensional lattice. The planes interact antiferromagnetically with weak exchange interaction (i.e., JA´=λ JA , λ=10-5 ). By using the framework of an effective-field theory, based in the differential operator technique, we discuss beyond thermodynamics properties the antiferromagnetic-phase stability limit in the temperature-decorated bond concentration space (T-p), for λ =10-5 and various values of frustration parameter (α= JA / JF), magnetic field (H) and concentration parameter (p). For certain range of the parameter α we observe a reentrant behavior in low-temperature what it reflects in the properties behavior itself.
Neste trabalho estudaremos as propriedades termodinâmicas do modelo de Ising decorado de forma quenched (temperada) com interações competitivas através da teoria de campo efetivo (EFT) com aglomerado de um spin. O modelo de Ising decorado com interações competitivas aqui é utilizado para descrever as propriedades termodinâmicas dos compostos supercondutores baseados em planos de Cobre-Oxigênio em sua fase isolante (antiferromagnética). O modelo consiste em planos nos quais os spins nodais interagem antiferromagneticamente (JA < 0) com seus primeiros vizinhos, e ferromagneticamente (JF > 0) com os spins decoradores, os quais são distribuídos aleatoriamente de forma quenched sobre uma rede bidimensional. Os planos interagem antiferromagneticamente com uma fraca interação de troca (i.e., JA´=λ JA , λ=10-5). Utilizando o formalismo da teoria do campo efetivo, baseado na técnica do operador diferencial, discutiremos além das propriedades termodinâmicas do sistema o limite de estabilidade antiferromagnética no diagrama temperatura e concentração (T-p), para λ=10-5 e vários valores do parâmetro de frustração (α=JA / JF), campo magnético (H) e parâmetro de concentração (p). Observamos que para certos intervalos de valores do parâmetro α, o sistema apresenta um comportamento reentrante em baixas temperaturas o que se reflete nas propriedades do sistema.
Ozkan, Ibrahim Ali. "Thermodynamic model for associating polymer solutions." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-05042004-142825/unrestricted/ozkan%5Fibrahim%5Fa%5F200408%5Fphd.pdf.
Full textDr. Thomas H. Sanders, Committee Member ; Dr. Peter J. Ludovice, Committee Member ; Dr. J. Carson Meredith, Committee Member ; Dr. William J. Koros, Committee Member ; Dr. Amyn S. Teja, Committee Chair. Includes bibliographical references.
Kopečný, Lukáš. "McKibbenův pneumatický sval - modelování a použití v hmatovém rozhraní." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-233458.
Full textGreen, E. "Thermodynamics of melting in model mantle compositions." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599659.
Full textBooks on the topic "Thermodynamical model"
Nielsen, Morten. Heavypuff: An interactive bulk model for dense gas dispersion with thermodynamical effects. Roskilde, Denmark: Riso National Laboratory, 1988.
Find full textKaganovich, B. M. Tekhnologii︠a︡ termodinamicheskogo modelirovanii︠a︡: Redukt︠s︡ii︠a︡ modeleĭ dvizhenii︠a︡ k modeli︠a︡m pokoi︠a︡ = Thermodynamic model engineering : Motion models reduction to rest models. Novosibirsk: Nauka, 2010.
Find full textA, Crerar David, ed. Thermodynamics in geochemistry: The equilibrium model. New York: Oxford University Press, 1993.
Find full textWilmański, Krzysztof. Modele termodynamiczne ośrodków ciągłych. Poznań: Wydawn. Politechniki Poznańskiej, 1985.
Find full textThermodynamics of one-dimensional solvable models. Cambridge, U.K: Cambridge University Press, 1999.
Find full textNagnibeda, Ekaterina A. Transport properties of nonequilibrium gas flows: Models and applications. Noordwijk, The Netherlands: ESA Publications Division, 2005.
Find full textModeli gidrotermodinamiki dvusloĭno stratifit͡sirovannykh vodoemov. Moskva: Vychislitelʹnyĭ t͡sentr AN SSSR, 1987.
Find full textKoliński, Andrzej. Lattice models of protein folding, dynamics, and thermodynamics. Austin, Tex: R.G. Landes, 1996.
Find full textDiscrete nonlinear models of the Boltzmann equation. Moscow: General Editorial Board for Foreign Language Publications, Nauka Publishers, 1987.
Find full textPál, Benedek. A modul elv: Akadémiai székfoglaló, 1988. február 16. Budapest: Akadémiai Kiadó, 1991.
Find full textBook chapters on the topic "Thermodynamical model"
Ruggeri, Tommaso, and Masaru Sugiyama. "Flocking and Thermodynamical Cucker-Smale Model." In Classical and Relativistic Rational Extended Thermodynamics of Gases, 591–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59144-1_30.
Full textMaruszewski, Bogdan T. "Unconventional Thermodynamical Model of Processes in Material Structures." In Continuous Media with Microstructure 2, 151–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28241-1_10.
Full textde la Cal, Enrique, José Ramón Villar, and Javier Sedano. "A Thermodynamical Model Study for an Energy Saving Algorithm." In Lecture Notes in Computer Science, 384–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02319-4_46.
Full textHoffmann, K. H., and Kunkun Liu. "A thermodynamical model of ferromagnetism and its numerical simulation." In Numerical Methods for Free Boundary Problems, 175–89. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-5715-4_15.
Full textKuzmenkov, E. A., and G. V. Shpatakovskaya. "Quasiclassical Shell Model and Thermodynamical Functions of Dense Plasma." In TEUBNER-TEXTE zur Physik, 105–12. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-322-99736-4_13.
Full textIvanova, Elena A. "On one Model of Generalized Continuum and its Thermodynamical Interpretation." In Advanced Structured Materials, 151–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19219-7_7.
Full textGrigorova, Veneta, and Dimitar Roussev. "A Thermodynamical Model for Analysis of Isothermal Phase Transformations under High Pressure." In Materials Science Forum, 57–62. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-438-3.57.
Full textGebhard, Florian. "Thermodynamical Properties of the Exactly Solvable 1/r-Hubbard- and 1/r-tJ-Model." In NATO ASI Series, 29–38. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1042-4_3.
Full textStiesch, Gunnar. "Thermodynamic Models." In Modeling Engine Spray and Combustion Processes, 5–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08790-9_2.
Full textSerdas, S., J. Bluhm, and J. Schröder. "Simulation of ionic Electroactive Polymers (EAPs) by considering a thermodynamical consistent model within the framework of the theory of porous media." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 453–58. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-75.
Full textConference papers on the topic "Thermodynamical model"
Ghazi, Hala, François James, and Helene Mathis. "A Thermodynamical Model of Liquid-Vapor Interaction." In The 3rd World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2018. http://dx.doi.org/10.11159/icmfht18.115.
Full textSingh, Krishna Kumar. "Longitudinal structure function using Thermodynamical Bag model." In 36th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.174.0319.
Full textMONGIOVI', M. S., and D. JOU. "A THERMODYNAMICAL MODEL OF INHOMOGENEOUS SUPERFLUID TURBULENCE." In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0040.
Full textKopecny, Lukas, and Ludek Zalud. "Sensors for evaluation of thermodynamical model of pMA." In 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013. http://dx.doi.org/10.1109/icsenst.2013.6727691.
Full textRouquette, Nicolas, Steve Chien, and Charles Robertson. "Extending model-based diagnosis for analog thermodynamical devices." In 9th Computing in Aerospace Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-4577.
Full textRestuccia, L., and B. T. Maruszewski. "On a Thermodynamical Model for Type-II High-Tc Superconductors: Theory and applications." In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0028.
Full textBarbachoux, C., J. Gariel, G. Le Denmat, Jean-Michel Alimi, and André Fuözfa. "The event horizon thermodynamical (ehT-) model of the dark energy." In INVISIBLE UNIVERSE: Proceedings of the Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3462707.
Full textMoreira, João, Jorge Morais, Brigitte Hiller, Alex H. Blin, and Alexander A. Osipov. "Quark Mass Effects in the Thermodynamical Properties of an Extended (P)NJL Model." In Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018). Journal of the Physical Society of Japan, 2019. http://dx.doi.org/10.7566/jpscp.26.024024.
Full textBoyd, James G., and Dimitris C. Lagoudas. "Thermodynamical constitutive model for the shape memory effect due to transformation and reorientation." In 1994 North American Conference on Smart Structures and Materials, edited by Vijay K. Varadan. SPIE, 1994. http://dx.doi.org/10.1117/12.174064.
Full textDoraiswamy, Srikrishna, Mrinal Iyer, Arun R. Srinivasa, and Srinivasan M. Sivakumar. "A Thermodynamically Based Model of the Superelastic Behavior of Shape Memory Alloys Using a Discrete Preisach Model." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1431.
Full textReports on the topic "Thermodynamical model"
Collins, John W., and Kenneth D. Forbus. Building Qualitative Models of Thermodynamic Processes. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada465196.
Full textWheeler, A. A., B. T. Murray, S. R. Coriell, R. J. Braun, and G. B. McFadden. Thermodynamically-consistent phase-field models for solidification. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4956.
Full textLi, Yulan, Shenyang Y. Hu, Xin Sun, and Mohammad A. Khaleel. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1049673.
Full textJohnson, J. N., B. E. Clements, F. L. Addessio, and T. O. Williams. A thermodynamically consistent, damage-dependent, interface debonding model for composites. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/560794.
Full textVinayak N. Kabadi. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/8977.
Full textVinayak N. Kabadi. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/8978.
Full textVinayak N. Kabadi. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/781751.
Full textVinayak N. Kabadi. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/781758.
Full textJohn C. Chen and Vinayak N. Kabadi. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/1686.
Full textJohnston, Katherine. Bayesian Regression of Thermodynamic Models of Redox Active Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1389915.
Full text