Dissertations / Theses on the topic 'Thermoelectric conversion of energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Thermoelectric conversion of energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mackey, Jon A. "Thermoelectric Energy Conversion: Advanced Thermoelectric Analysis and Materials Development." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1428062038.
Full textZhao, Yixin. "Developing Nanomaterials for Energy Conversion." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270172686.
Full textQiu, Xiaofeng. "NANOSTRUCTURED MATERIALS FOR ENERGY CONVERSION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1207243913.
Full textJaworski, Christopher M. "Opportunities for thermoelectric energy conversion in hybrid vehicles." Connect to resource, 2007. http://hdl.handle.net/1811/25121.
Full textTitle from first page of PDF file. Document formatted into pages: contains vi, 59 p.; also includes graphics. Includes bibliographical references (p. 59). Available online via Ohio State University's Knowledge Bank.
Li, Junyue. "Perovskite thermoelectric materials for high-temperature energy conversion." Thesis, Boston University, 2014. https://hdl.handle.net/2144/21206.
Full textDespite of recent success in achieving the figure of merit ZT > 1 based on the nanoscale patterned thermoelectric structures, there have been few stable n-type materials with attractive thermoelectric responses for high temperature applications at T > 800K. In this thesis, we applied the first-principles density functional theory (DFT) calculations to probe the structure and thermoelectric properties relationship of a comprehensive series of perovskite materials. The density of states (DOS), Seebeck coefficient S, electric conductivity σ, and electronic contribution of the thermal conductivity Ke were obtained directly from the first-principles DFT calculations. In particular, Lanthanum (La), Gadolinium (Gd), Samarium (Sm), Yttrium (Y) doped MU+2093SrU+2081U+208BU+2093TiOU+2083 and Niobium (Nb) doped SrNbyTi1-yOU+2083 and doubly doped LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083 systems were studied. The change of the power factor S^2σ corresponding to the different dopant concentration had a good agreement with the experimental data. Our computed power factors S^2σ as a function of the dopant con- centration agree well with the available experimental data, and at the same time provide new insights for the optimal compositions. In the low doping region (x U+003E 12:5%), gadolinium and niobium are the best candidates of perovskite thermoelectric materials while at high doping level (x U+003E 25%), lanthanum and yttrium are the best options. In the case of doubly doped perovskites LaU+2093SrU+2081U+208BU+2093NbyTi1-yOU+2083, our calculations predict that the x= 12.5% and y= 12.5% is the best choice.
Wirth, Luke J. "Thermoelectric Transport and Energy Conversion Using Novel 2D Materials." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright148433373077002.
Full textJovovic, Vladimir. "Engineering of Thermoelectric Materials for Power Generation Applications." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1248125874.
Full textTopal, Emre Tan. "A Mems Thermoelectric Energy Harvester For Energy Generation In Mobile Systems." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613636/index.pdf.
Full textT values. The performance of the MEMS TE energy harvesters was optimized using analytical and 3-D finite element models. An analytical code was used for profiling the electrical power output with varying geometry. The design points with maximum generated power were selected, and the microfabricated thermoelectric energy harvesters were designed accordingly. The fabricated devices are formed on a silicon wafer and composed of Nickel and Chromium thermocouples on SiO2/Si3N4 diaphragms, and Titanium heater and monitor resistors for testing purposes. Microfabrication was followed by the performance characterization of MEMS TE energy harvesters with the conducted tests. For 10 °
C temperature difference between the hot and cold junctions (a heat source at 35 °
C), the proposed TE energy harvesters are capable of providing 1.1 µ
W/cm2 power density and 1.71 V voltage. The performance of the thermoelectric generators in general is limited by Carnot cycle efficiency. Nevertheless, the validated practical performance of MEMS TE energy harvesters proposed in this thesis is comparable to other examples in literature. It is anticipated by the calculations that this design will be able to provide the highest thermoelectric efficiency factor (4.04 µ
W/K2cm2) among the lateral TE energy harvesters if thermoelectric materials having high Seebeck coefficient values (such as p-Si, n-Si, polysilicon, Bi2Te3 etc.) are used. According to the performance results, the MEMS TE energy harvesters can be implemented in mobile systems to convert waste heat into electricity. The fabrication process can be adapted to CMOS with some modifications if needed. The lateral MEMS thermoelectric energy harvesters can also be combined with vibration energy harvesters to realize multi-mode energy scavenging. For prospective study, vertical thermoelectric generator configurations are also discussed in order to further increase the power density generated. The finite element simulations for proposed vertical configurations with air and water convection were completed. The vertical TE generators proposed can supply up to 4.2 mW/cm2 with a heat source at a temperature of 310 K.
Minnich, Austin Jerome. "Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67593.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 147-155).
Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful working fluids. Recently, nanostructured thermoelectrics have demonstrated remarkably enhanced energy conversion efficiencies, primarily due to a reduction in lattice thermal conductivity. Despite these advances, much remains unknown about heat transport in these materials, and further efficiency improvements will require a detailed understanding of how the heat carriers, electrons and phonons, are affected by nanostructures. To elucidate these processes, in this thesis we investigate nanoscale transport using both modeling and experiment. The first portion of the thesis studies how electrons and phonons are affected by grain boundaries in nanocomposite thermoelectric materials, where the grain sizes are smaller than mean free paths (MFPs). We use the Boltzmann transport equation (BTE) and a new grain boundary scattering model to understand how thermoelectric properties are affected in nanocomposites, as well as to identify strategies which could lead to more efficient materials. The second portion of the thesis focuses on determining how to more directly measure heat carrier properties like frequency-dependent MFPs. Knowledge of phonon MFPs is crucial to understanding and engineering nanoscale transport, yet MFPs are largely unknown even for bulk materials and few experimental techniques exist to measure them. We show that performing macroscopic measurements cannot reveal the MFPs; instead, we must study transport at the scales of the MFPs, in the quasi- ballistic transport regime. To investigate transport at these small length scales, we first numerically solve the frequency-dependent phonon BTE, which is valid even in the absence of local thermal equilibrium, unlike heat diffusion theory. Next, we introduce a novel thermal conductivity spectroscopy technique which can measure MFP distributions over a wide range of length scales and materials using observations of quasi-ballistic heat transfer in a pump-probe experiment. By observing the changes in thermal resistance as a heated area size is systematically varied, the thermal conductivity contributions from different MFP phonons can be determined. We present the first experimental measurements of the MFP distribution in silicon at cryogenic temperatures. Finally, we develop a modification of this technique which permits us to study transport at scales much smaller than the diffraction limit of approximately one micron. It is important to access these length scales as many technologically relevant materials like thermoelectrics have MFPs in the deep submicron regime. To beat the diffraction limit, we use electron-beam lithography to pattern metallic nano dot arrays with diameters in the hundreds of nanometers range. Because the effective length scale for heat transfer is the dot diameter rather than the optical beam diameter, we are able to study nanoscale heat transfer while still achieving ultrafast time resolution. We demonstrate the modified technique by measuring the MFP distribution in sapphire. Considering the crucial importance of the knowledge of MFPs to understanding and engineering nanoscale transport, we expect these newly developed techniques to be useful for a variety of energy applications, particularly for thermoelectrics, as well as for gaining a fundamental understanding of nanoscale heat transport.
by Austin Jerome Minnich.
Ph.D.
Pal, Souvik. "Control of Nanoscale Thermal Transport for Thermoelectric Energy Conversion and Thermal Rectification." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/52935.
Full textPh. D.
Yu, Zhang. "Solution Processed Chalcogenide Nanomaterials for Thermoelectric Application." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670923.
Full textLa ingeniería de nanomateriales a partir del procesado en solución es de particular interés para optimizar el rendimiento de los materiales y dispositivos termoeléctricos. . Esta tesis estáse centra en el diseño y el ensamblaje racional de nanomateriales termoeléctricos de alto rendimiento a través de procesado en solución. La tesis se divide en 5 capítulos. El Capítulo 1 aborda la introducción fundamental del enfoque sintético para producir nanomateriales funcionales. Los capítulos 2 y 3 presentan un método rápido y simple basado en soluciones para producir nanomateriales SnSe2 y SnSe con textura cristalográfica. Dado que los calcogenuros de estaño son materiales especialmente interesantes para la conversión de energía termoeléctrica, se sintetizaron nanoplacas SnSe y SnSe2 controlables por forma mediante una estrategia basada en tinta molecular para lograr una figura de mérito termoeléctrica sin precedentes por dopaje con Te/Cu. Ambos nanomateriales mostraron una textura cristalográfica significativa después del prensado en caliente, lo que dio como resultado unas propiedades de transporte de carga calor altamente anisotrópicas. Los capítulos 4 y 5 describen dos estrategias diferentes para producir nanocompuestos Bi2Te3-Cu2-xTe basados en la consolidación de nanoestructuras. La presencia de Cu2-xTe da como resultado un fuerte aumento del coeficiente de Seebeck. Este aumento está relacionado con el filtrado de los portadores de carga en función de su energía en las barreras de energía dentro de los dominios Bi2Te3 creados por la acumulación de electrones en las regiones cercanas a las uniones Cu2-xTe / Bi2Te3. En general, se obtiene una mejora significativa de la figura de mérito con nanocompuestos Bi2Te3-Cu2-xTe. Finalmente, en el último capítulo se presentan las principales conclusiones de esta tesis y algunas perspectivas para trabajos futuros.
Büttner, Gesine [Verfasser], and Anke [Akademischer Betreuer] Weidenkaff. "Misfit-layered cobalt oxides for thermoelectric energy conversion / Gesine Büttner ; Betreuer: Anke Weidenkaff." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1159570256/34.
Full textLiu, Yu. "Bottom-up Engineering of Chalcogenide Thermoelectric Nanomaterials." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663274.
Full textLos nanocristales (NCs) coloidales tienen excelentes propiedades para diferentes aplicaciones, como la conversión de energía, la catálisis, los dispositivos electrónicos y optoelectrónicos, entre otros. Así mismo, la síntesis coloidal de NCs tiene ventajas en el control del tamaño, forma y composición a nivel de la nanoescala; las bajas temperaturas de reacción; y la no necesidad de equipos especializados. Este proyecto se concentra en el diseño racional y la ingeniería de materiales termoeléctricos (TE) nanoestructurados de alta eficiencia, usando la estrategia del ensamblado ascendente (bottom-up) de NCs coloidales. Primero, se diseñó una ruta de síntesis de bajo costo, alto rendimiento, con la cual, se obtuvieron NCs de AgSbSe2 y Cu3SbSe4. La optimización de la concentración de dopaje resultó en valores para la figura de mérito TE, ZT, de 1.10 a 640 K para AgSb0.98Bi0.02Se2, y de 1.26 at 673 K para Cu3Sb0.88Sn0.10Bi0.02Se4. El material con mejores propiedades se usó para la producción de un generador TE en forma de anillo, para acoplarlo a los tubos de escape de gases, obteniendo una potencia eléctrica de 1mW por elemento TE con una diferencia de temperatura de 160 °C. En la segunda parte, se presenta el trabajo de la producción de nanocopuestos de PbS-metal (Cu y Sn) usando un procedimiento versátil de mezcla de NCs. La función de trabajo del metal es capaz de inyectar electrones a la matriz intrínseca de PbS. El factor de potencia TE, se ve dramáticamente incrementado debido al aumento en la conductividad eléctrica en los nanocompuestos TE. Consecuentemente, el valor máximo de ZT se vio excepcionalmente incrementado por el doble del valor comparado con el material original PbS. Finalmente, se presenta el proceso de producción de materiales texturizados cristalográficamente, produciendo materiales tipo p BixSb2-xTe3 y tipo n Bi2Te3-xSex. Se controló la estequiometria durante el procesamiento en solución y la textura cristalográfica, por medio de la sinterización en fase líquida con un procedimiento de múltiples pasos de presión y relajación a una temperatura de 480°C. Los valores de la figura de mérito TE presentan el record de: ZT=1.83 a 420 K para Bi0.5Sb2.5Te3 y ZT=1.31 para Bi2Te2.7Se0.3 a 440 K.
Watzman, Sarah June. "Thermal Energy Conversion Utilizing Magnetization Dynamics and Two-Carrier Effects." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523621461827864.
Full textMcEnaney, Kenneth. "Thermoelectrics and aerogels for solar energy conversion systems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97770.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-124).
Concerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. Solar thermal technology could also be used to displace fossil fuels in applications which require heat as an input. This thesis addresses the potential of two solar thermal technologies: solar thermoelectric generators and aerogel-based solar thermal receivers. Thermoelectrics are materials which produce a voltage when subjected to a temperature gradient. In a solar thermoelectric generator (STEG), sunlight heats one end of the thermoelectric materials, generating a voltage across the device. The voltage can be connected to a load and useful work can be extracted. By adding optical concentration and using higher-temperature materials, the power output and energy conversion eciency of STEGs can be increased. In this work, segmented thermoelectric generators (TEGs) made of bismuth telluride and skutterudite alloys are modeled, optimized, built, and tested. These TEGs achieve a heat-to-electricity conversion efficiency of 10.7% at a hot side of 550° C, the highest TEG eciency reported in this temperature range. From these TEGs, STEGs are built which achieve a sunlight-to-electricity conversion eciency of 5.7% at less than 60 suns, higher than the best reported literature values in this concentration range. With further improvements, it is projected that these STEGs will achieve 10% eciency at 100 suns. In any type of solar thermal system, heat losses from the system must be suppressed to achieve high eciency. Aerogels, which are stable ultra-low density foams, can suppress radiative and convective losses. It is shown that aerogel-based solar thermal receivers can increase the eciency of traditional solar thermal electricity and hot water generation. These results can help advance the field and expand the scope of solar thermal technologies.
by Kenneth McEnaney.
Ph. D.
Hasan, Atiya. "Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40435.
Full text"February 2007."
Includes bibliographical references (p. 47-48).
The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. A thermal analysis of a common two-cover flat plate solar collector was then performed. The model focused specifically on radiation absorption through the cover system and radiation and convection losses from the absorption plate to determine the parameters that most significantly affect the efficiency of the collector and the overall efficiency of the solar thermoelectric generator. In this case, collector efficiency was measured by the ratio of useable energy to incident solar energy. Overall generator efficiency was measured by power generated per unit area of the collector. It was found that of several parameters, the collector area had the most significant influence on collector efficiency. For the overall efficiency of the generator, the most significant parameter was the ratio of the collector area to the cross-sectional area of the thermoelectric elements (TE). The efficiency of the generator maximized at a ratio of 250:1, with a magnitude of 5.76 W/m2. The analysis exposes some weaknesses of the flat plate collector to show where future designs should focus for improvement.
by Atiya Hasan.
S.B.
Su, Lusheng. "Formation Mechanism and Thermoelectric Energy Conversion of Titanium Dioxide Nanotube Based Multi-Component Materials and Structures." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1370793126.
Full textTaylor, Stephen H. "Analytical Modeling and Optimization of a Thermoelectric Heat Conversion System Operating Betweeen Fluid Streams." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2813.
Full textMcKnight, Patrick T. "Finite Element Analysis of Thermoelectric Systems with Applications in Self Assembly and Haptics." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3630.
Full textWu, Yimin. "Céramiques semiconductrices à base de séléniures pour des applications photovoltaïque et thermoélectrique." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S137/document.
Full textThis work was focused on selenide semiconducting compounds for energy conversion by photovoltaic or thermoelectric effect. A totally new family of Cu₂GeSe₃-Sb₂Se₃ ceramics with a unique microstructure was fabricated directly by melt-quenching method. The influence of the material composition and the iodine addition on the microstructure and photoelectrical properties was investigated. The interpenetrating heterojunction network formed by two relatively narrow bandgap semiconductors has an obvious enhancement effect on the photoelectrical properties. The Cu₃SbSe₄-Sb₂Se₃ system has also been studied with the objective to eliminate the germanium which is a relatively rare element. And the results indicated that Cu₃SbSe₄ can substitute the Cu₂GeSe₃ to form heterojunctions with Sb₂Se₃, maintaining the efficient charge separation and transport. A hot-injection based-approach has been used for the synthesis of selenide semiconducting materials for photovoltaic or thermoelectric applications. CuSe nanoparticles and CuSe nanoplates with high quality single-crystals and two dimensional nanostructure were prepared. The structure of the nanocrystals has been studied and the mechanism of the nanoplates formation has been proposed. Cu₃Sb₁₋ₓSnxSe₄ nanoparticles with a narrow size distribution had also been synthesized through the hot-injection route. They have been used as precursors for the preparation of bulk materials by hot-pressing and their thermoelectric performances have been studied
Wodlin, Jakob. "Konceptstudie för omvandling av termisk energi till elektrisk samt mekanisk energi i en autonom undervattensfarkost." Thesis, Linköpings universitet, Fluida och mekatroniska system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129220.
Full textThe report discusses a concept study regarding the conversion of thermal energy into electrical and mechanical energy, in the autonomous underwater vehicle SAPPHIRES. First, the requirements and expectations regarding the concept of energy conversion are investigated and efforts are made to identify any published literature, which has already made attempts of solving the issue. General theory regarding heat engines and an extensive literature study are also included in this work. The energy conversion is assumed to perform according to two cases called "high-performance" and "low/medium-performance", meaning mechanical and electrical energy or electrical power should be delivered by the concept, respectively. More specifically, the mechanical and electrical powers should be delivered of a maximum of 600 and 6 kW, respectively and the concept should at least fulfill one of the performance settings. The actual concept study comprises of two iterations of concept generations, evaluations and selections and shows that a concept called "Open system inspired by nuclear thermal propulsion" seems to be the best way of converting thermal energy on-board SAPPHIRES. Moreover, a more detailed analysis, comprising of, inter alia, mathematical modelling and conceptual design, indicates that the concept possibly can meet the so-called "high-performance" and thus, deliver both mechanical and electrical powers of 600 and 6 kW, respectively. More specifically, a mathematical analysis, based on some assumptions regarding the concept's functionality, shows that an "Open system inspired by nuclear thermal propulsion" could deliver a mechanical power of 1025 kW and an electrical power of 141 kW. Rough conceptual design also shows that the vital parts of the concept could fit within the specified maximal dimensions (a cylinder-shaped volume with a length and diameter of 1.7 and 0.5 m, respectively). However, it is clear the possible concepts of energy conversion are severely limited by their capacities of delivering enough mechanical energy, to meet the "high-performance" demands. Assuming only the "low/medium-performance" has to be met, more possible concepts becomes available and in that case, factors such as maintenance, environmental impact and signature of SAPPHIRES could be considered to a greater extent.
Apertet, Yann. "Réflexions sur l’optimisation thermodynamique des générateurs thermoélectriques." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112322/document.
Full textThermoelectric phenomena are a way to directly convert thermal energy into electrical energy; they thus are at the heart of several researches in the field of energy conversion. The optimization of the thermoelectric generators includes materials improvement but a reflection on their working conditions is also mandatory. The contribution of the thermal contacts between the generator and the heat reservoirs is a factor that will change the optimum operating conditions of the generator. Using the concept of convective heat flow, developed by Thomson more than 150 years ago, we generalize the classical expression of maximum power conditions. Moreover, we note that these conditions may be reduced to impedance matching conditions, both thermal and electrical. In addition to its practical interest, the thermoelectric generator is also an ideal model system to study the theory of coupled transport and of irreversible phenomena. Using the description of this system given by Ioffe, we show that the maximum power efficiency, a coefficient of performance at the heart of finite time thermodynamics, expressed as a simple function of the system parameters. The novelty of this work is based on a proper consideration of internal dissipation associated with the energy conversion process. The results are then generalized to other thermal engines such as the Feynman ratchet
Verchère, Alexandre. "Génération d’architectures nanométriques intra- et inter-granulaires dans des oxydes pour la conversion thermoélectrique de l’énergie." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1196.
Full textIn this manuscript, a multidisciplinary work, from the synthesis of metal precursors to the characterization of materials, is presented. The first concerns the development of Nb5+ doped TiO2 oxide powders and Nb5+ doped SnO2-TiO2 mixed oxides by a Sol-Gel approach. Their shaping into a pellet form by a modern flash sintering method (SPS) made it possible to study their physical, vibrational and thermoelectric properties. The second part of this study presents the development of new tin and tantalum precursors adapted to the DLI-MOCVD thin film deposition process. In order to meet the requirements of this process, molecular derivatives based on fluorinated or non-fluorinated beta-aminoalcohol ligand have been developed. The metal complexes were then fully characterized in solid state and in solution. The good thermal behaviour (stability and volatility) of some of these compounds has led to the development and characterization of thin layers of SnO2 and SnO2:F
Siouane, Saïma. "Système thermoélectrique pour la récupération d'énergie : modélisation électrique et continuité de service de la circuiterie électronique." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0201/document.
Full textThermal energy harevsting based on thermoelectric generators is used in many applications such as self-powered medical devices. The reliability and continuity of service of these systems are now major concerns. Furthermore, any failure in the controllable switch of the electronic interface circuitry can cause serious system malfunctions. Any undetected and uncompensated fault can endanger the entire system and interrupt the power supply to the load. Therefore, the implementation of an efficient and rapid fault compensation is imperative in order to ensure the continuity of service. In this research, we study the continuity of service of an electronic interface for TEG, based on a two-stage conversion cascaded Buck/Buck-Boost. A generic electrical modeling of the TEG model under different operating conditions and with taking into account all the thermal contact resistances is first presented. Next, an open-circuit fault compensation method of the controllable switch of one of the two DC-DC converters is also proposed. We present an original fault-tolerant DC-DC converter topology with no conventional hardware redundancy. This topology ensures the continuity of service of the energy recovery system in nominal mode. Theoretical studies were validated by simulation and experimental tests
Nunna, Raghavendra. "Novel chalcogenides for thermoelectric conversion." Caen, 2013. http://www.theses.fr/2013CAEN2078.
Full textThe focus of this thesis work is the exploratory preparation of novel chalcogenides as potential thermoelectric materials and the analyses of their physical properties. A thermoelectric material is capable of converting heat to electricity or vice versa. Usually, narrow band gap semiconductors are good candidates for thermoelectric applications, because such materials have large Seebeck coefficient, reasonably high electrical conductivity and low thermal conductivity. In this work, two different systems were studied, intermetallic pseudo hollandite structures and layered CdI2 type structures. In the large family of pseudo hollandite systems, we mainly focused on thallium systems in which the solid solution TlxCr5Se8 and TlCr5Se8-xTex have been synthesized. In CdI2 structures, we focused our investigation on transition metal selenides for their rather semiconducting properties. Therefore we embarked on the systematic study of AgCrSe2, TiS2 and TiSe2. In addition, the effect on physical properties using different intercalated elements (Ag and Cu) in TiSe2 chalcogenides were studied. All these samples are prepared by the solid state reaction. The purity of the samples was confirmed by powder X-ray diffraction data, physical and thermal properties were measured on Spark Plasma Sintered (SPS) samples. Low thermal conductivity as well as competitive power factors was observed in these chalcogenides. The highest zT of 0. 54 is achieved in titanium dichalcogenides for the composition of Cu0. 05TiS1. 5Se0. 5 at 700K. Our results show that these structures are potential for future thermoelectric materials research
Bosisio, Riccardo. "Thermoelectric conversion in disordered nanowires." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066212/document.
Full textThis thesis is focused on thermoelectric conversion in disordered semiconductor nanowires in the field effect transistor configuration. We first consider a low temperature regime, when electronic transport is elastic. For a 1D Anderson model, we derive analytical expressions describing the typical thermopower of a single nanowire as a function of the applied gate voltage, and we show that it is largely enhanced at the nanowire band edges. Our results are confirmed by numerical simulations based on a Recursive Green Function calculation of the thermopower. We then consider the case of inelastic transport, achieved by phonon-assisted hopping among localized states (Variable Range Hopping). By solving numerically the Miller Abrahams random resistor network, we show that the thermopower can attain huge values when the nanowire band edges are probed. A percolation theory by Zvyagin extended to nanowires allows to qualitatively describe our results. Also, the mechanism of heat exchange between electrons and phonons at the band edges lead to the generation of hot and cold spots near the boundaries of a substrate. This effect, of interest for cooling issues in microelectronics, is showed for a set of parallel nanowires, a scalable and hence promising system for practical applications. The power factor and figure of merit of the device are also estimated.Finally, we characterize a general three-terminal system within the linear response (Onsager) formalism: we derive local and non-local transport coefficients, as well as generalized figures of merit. The possibility of improving the performance of a generic quantum machine is discussed with the help of two simple examples
Tsangarides, Constantinos. "Thermoelectric energy harvesting in displays." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/268222.
Full textJames, Ashley. "Oxide thermoelectric energy harvesting materials." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9277.
Full textKraemer, Daniel Ph D. Massachusetts Institute of Technology. "Solar thermoelectric power conversion : materials characterization to device demonstration." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103490.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 268-289).
Meeting the ever growing global energy demand with mostly fossil fuel based energy technologies is not sustainable, pollutes the environment and is the main cause of climate change threatening our planet as we know it. Solar energy technologies are a promising, sustainable and clean alternative due to the vast abundance of sunlight. Thus far, photovoltaic solar cells and concentrated solar power are considered to be the most promising approaches. Solar cells directly convert sunlight into electricity by photon induced electron-hole pair generation. Concentrated solar power captures the sunlight in form of heat which is then converted to electricity by means of a traditional mechanical power block. In this thesis, we explore solar thermoelectric generators (STEGs) as an alternative way to convert sunlight to electricity. Similar to concentrated solar power STEGs capture the sunlight in form of heat. However, the captured heat is directly converted to electricity by means of a thermoelectric generator. This solid-state direct heat-to-electricity conversion significantly simplifies the system, reduces cost and maintenance and enables transient operation and system scalability without affecting the performance. Therefore, STEGs have the potential to be deployed as small scale solar power converters in remote areas and on rooftops and as large scale concentrated solar power plants. While the concept of solar thermoelectric power conversion has been proposed over a century ago, most successful experimental efforts reported in, the literature have been limited to below 1 % for STEGs without optical concentration and to approximately 3 - 5 % with optical concentration. Theoretical STEG performances as modeled and discussed in this thesis predict significantly higher efficiencies. A detailed STEG model is introduced to theoretically investigate various parasitic losses and how to minimize their effect to obtain highest and most realistic performance predictions. Additionally, a methodology to optimize a photovoltaic-thermoelectric hybrid system based on spectral splitting is introduced. The optimization and performance prediction of a STEG is only accurate if the relevant material properties are known with high accuracy. However, typical spectroscopy techniques to determine the optical properties, namely the solar absorptance and infrared emittance, of a solar absorber have shortcomings which can lead to significant errors. Similarly, typical commercial equipment to measure the properties of thermoelectric materials including the Seebeck coefficient, the electrical resistivity and the thermal conductivity are prone to large errors. Therefore, we introduce in this thesis novel experimental techniques to measure all relevant properties with improved accuracies in particular the techniques to measure the total hemispherical emittance of a surface and a material's thermal conductivity. A record-low total hemispherical emittance of 0.13 at 500 °C is demonstrated for an Yttria-stabilized-Zirconia-based cermet solar absorber with solar absorptance of 0.91 and thermal stability up to 600 °C. Furthermore, a method was developed to directly measure the efficiency of a thermoelectric leg. Using this method a record-high thermoelectric efficiency of 8.5 % is demonstrated at a relatively small temperature difference of 225 °C for a novel MgAgSb-based compound with hot-pressed silver contact pads. By increasing the temperature difference to a material's compatible 275 °C a thermoelectric efficiency of 10 % is achievable which, thus far, has only been achieve at almost twice the temperature difference. The third main contribution of this thesis is the experimental demonstration of solar thermoelectric power conversion. A record-high STEG efficiency of 4.6 % is demonstrated at AM1.5G (1 kW/m 2) conditions which is 7 times higher than previously reported best values. The performance improvement is achieved by using a STEG with nano-structured bulk thermoelectric materials, a spectrally-selective solar absorber and taking advantage of large thermal concentrations under a vacuum. Despite the vacuum environment and the use of a low-temperature spectrally-selective solar absorber the optimal hot-junction operating temperature is limited to approximately 200 °C due to increasing thermal radiation heat loss. In order to substantially increase the operating temperature difference and STEG efficiency, larger incident solar power densities are required. Furthermore, the STEG requires segmented thermoelectric legs and a high-temperature stable solar absorber. The optimized STEGs are fabricated and tested at moderate and high optical solar concentration. Efficiencies of close to 8 % at 38 suns and close to 10 % at 211 suns, measured based on the solar flux at the absorber, are demonstrated for a STEG with a spectrally-selective solar absorber. The maximum demonstrated solar-to-electricity CSTEG efficiency is 7.5 %. Furthermore, the performance of a STEG at moderate optical concentration with a high-temperature stable black paint solar absorber and a directionally-selective solar receiver cavity is demonstrated to be comparable to a STEG with a spectrally-selective surface at similar insolation.
by Daniel Kraemer.
Ph. D.
Cao, Zhuo. "Printable thermoelectric devices for energy harvesting." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/381196/.
Full textWu, Yongjia. "Thermoelectric Energy Harvesting for Sensor Powering." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90891.
Full textDoctor of Philosophy
The dissertation addressed some critical issues in thermoelectric energy harvesting and broadened its application for energy recovery and sensor powering. Some of the most advanced technologies were developed to improve the energy conversion efficiency and reliability of the thermoelectric energy harvesters. In this dissertation, a general and comprehensive thermodynamic model for a commercial thermoelectric generator (TEG) was established. The model can be used to optimize the design of the existing commercial TEG modules. High performance heat sink design was critical to maximize the temperature drop in the TEG module, thus increase the power output and energy conversion efficiency of the TEG. An innovative heat sink design integrated with self-oscillating impinging jet generated by the fluidic oscillator arrays were designed to cool the cold end of the TEG, thus enhance the performance of the TEG. The performance of the heat sink was characterized by large eddy simulation. A single thermoelectric material only had high thermoelectric performance in a narrow temperature range. A segmented TEG could achieve a high energy conversion efficiency over a wide temperature range by adopting different materials which had high thermoelectric performance at low, moderate, and hight temperature ranges. However, the material compatibility mismatch had been a practical problem that hindered the further improvement of energy conversion efficiency of the segmented TEG. In this dissertation, a novel method was developed to eliminate the compatibility mismatch problem via optimizing the geometry of the thermo-elements. A segmented TEG with an unprecedented efficiency of 23.72% was constructed using the method proposed in this dissertation. The complex geometry structure of the established thermo-elements would introduce extra difficulty in fabrication. Thus selective laser melting, a high-temperature additive manufacture method, was proposed for the fabrication. A physical model based on the v conservation equations was built to guide the selective-laser-melting manufacturing of the optimized segmented TEG mentioned above. In this dissertation, two thermoelectric energy harvesters were built for self-powered sensors to in-situ monitor the interior conditions in nuclear canisters. The sensors, taking advantage of the thermal energy existing in the local environment, can work continuously and provide tremendous data for system monitor and diagnosis without external energy supply. Also, a compact thermoelectric energy harvester was developed to power the gas sensor for combustion monitoring and control.
Lundin, Staffan. "Marine Current Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763.
Full textLi, Molan. "Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42358.
Full textThiel, Philipp [Verfasser]. "Calcium Manganese(IV) Oxides for Thermoelectric Power Conversion / Philipp Thiel." München : Verlag Dr. Hut, 2015. http://d-nb.info/1080754431/34.
Full textThorburn, Karin. "Electric Energy Conversion Systems : Wave Energy and Hydropower." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.
Full textBalouchi, Farouk. "Footfall energy harvesting : footfall energy harvesting conversion mechanisms." Thesis, University of Hull, 2013. http://hydra.hull.ac.uk/resources/hull:8433.
Full textLee, Dongwook Ph D. Massachusetts Institute of Technology. "Low-grade heat conversion into electricity by thermoelectric and electrochemical systems." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120186.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Developing cost effective technologies that convert low-grade heat into electricity is essential to meet the increasing demand for renewable energy systems. Thermoelectric and recently emergent electrochemical heat conversion devices are promising candidates for this purpose. However, current performance and cost of these devices limit their widespread application. In this thesis, we investigate design guidelines for heterostructured thermoelectric systems and electrochemical heat energy harvesters to address these challenges. Material cost and scarcity of elements in state-of-the-art thermoelectric materials are current limitations. Conductive polymers has become an attractive alternative to those materials, however they suffer from low Seebeck coefficient. Nanoscale composites of inorganic semiconductors with conductive polymers could improve low Seebeck coefficients and power factors of conductive polymers, however quantitative understandings on the mechanisms lying behind the enhancements were often missing. In our research, thin film heterostructures of a conductive polymer, PEDOT:PSS / undoped Si or undoped Ge were selected as templates for mechanistic investigations on thermoelectric performance enhancements. With the combination of experiments and simulation, it was determined that p-type PEDOT:PSS transferred holes to the interfaces of adjacent Si and Ge, and these holes could take advantage of higher hole mobility of Si and Ge. This phenomenon called modulation doping, was responsible for thermoelectric power factor enhancements in Si / PEDOT:PSS and Ge / PEDOT:PSS heterostructures. Another technology to transform low-grade heat into electricity is electrochemical heat conversion. Traditionally, the electrochemical heat conversion into electricity suffered from low conversion efficiency originating from low ionic conductivity of electrolytes, even though high thermopowers often reaching several mV/K has been an alluring advantage. Recently developed breakthrough on operating such devices under thermodynamic cycles bypassed low ionic conductivity issue, thereby improving the conversion efficiency by multiple orders of magnitude. In this study, we focused on improving efficiency by increasing thermopowers and suppressing heat capacity of the system, while maintaining the autonomy of thermodynamic cycles without need for recharging by external sources of electricity. These detailed interpretations on nanoscale composite thermoelectric systems and electrochemical heat harvester provide insights for the design of next-generation thermoelectric and electrochemical heat energy harnessing solutions.
by Dongwook Lee.
Ph. D.
Laestander, Joakim, and Simon Laestander. "OTEC - Ocean Thermal Energy Conversion." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.
Full textOTEC är en teknik där kraft utvinns från havsvatten genom att utnyttja temperaturdifferensen mellan ytvatten och vatten från djupet. Denna teknik kräver dock generellt en temperaturdifferens på minst 20K. En sådan temperaturskillnad är geografiskt begränsad till den tropiska zonen runt ekvatorn.I rapporten undersöks om OTEC kan användas till att förse 100 000 människor, boende på en 10 stor generisk ö i just den tropiska zonen, med dess elbehov. I detta projekt har det gjorts en litteraturstudie för att etablera en kunskapsbas och sedan gjorts en matematisk modell i programmet EES och slutligen har resultaten från modellen granskats och diskuterats. I modellen jämfördes två olika cykler och målet var att bestämma vilken av dessa som var det bästa alternativet för ön. För att underlätta beräkningarna gjordes vissa antaganden och förenklingar.Den slutna cykeln var mest effektiv men den öppna cykeln (OC) hade positiva synergieffekter som den sluta cykeln (CC) saknade. Kostnaden för en anläggning baserades på äldre studier och enligt dessa var den öppna cykeln billigare än den slutna. Anläggningar av de båda cyklerna kan tillgodose den fiktiva öns energibehov, det behöver dock byggas fler anläggningar om OC väljs framför CC.Det kommer krävas ytterligare arbete med att utveckla tekniken innan OTEC på allvar kan utmana dagens fossilbränslebaserade energisystem – eller att oljan helt enkelt blir för dyr. Idag är OTEC för dyrt för att kunna motiveras rent ekonomiskt, men om även miljövinsterna beaktas, samt att ön befriar sig från importer och därigenom får större kontroll över sitt eget energisystem, finns goda incitament att investera i OTEC redan idag.
Chin, Timothy Edward. "Electrochemical to mechanical energy conversion." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Clark, Joanna Helen. "Inorganic materials for energy conversion." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569768.
Full textPedrosa, Steven Michael. "Study of high efficiency micro thermoelectric energy harvesters." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4820.
Full textID: 031001306; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed March 18, 2013).; Thesis (M.S.M.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 88-89).
M.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Miniature Engineering Systems Track
Jackson, Samuel. "Thermoelectric n-type oxide materials for energy generation." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/thermoelectric-ntype-oxide-materials-for-energy-generation(1fa87b0b-b734-485e-a1a3-6e08d929a109).html.
Full textIsmael, Ali. "Towards molecular-scale sensing and thermoelectric energy harvesting." Thesis, Lancaster University, 2017. http://eprints.lancs.ac.uk/87396/.
Full textZhou, Yu. "Energy Harvesting Using a Thermoelectric Generator and Generic Rule-based Energy Management." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1196802707.
Full textChandrasekaran, Rajeswari. "Modeling of electrochemical energy storage and energy conversion devices." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37292.
Full textBoström, Cecilia. "Electrical Systems for Wave Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-140116.
Full textFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 727
Giddings, S. L. "Heterogeneous reactions in solar energy conversion." Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637056.
Full textHassan, Ibrahim. "Solar energy conversion by photoelectrochemical processes." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542078.
Full textMuralidharan, Shylesh. "Assessment of ocean thermal energy conversion." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76927.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 103-109).
Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil agriculture. Previous studies on the technology have focused on promoting it to generate electricity and produce energy-intensive products such as ammonia and hydrogen. Though the technology has been understood in the past couple of decades through academic studies and limited demonstration projects, the uncertainty around the financial viability of a large-scale plant and the lack of an operational demonstration project have delayed large investments in the technology. This study brings together a broad overview of the technology, market locations, technical and economic assessment of the technology, environmental impact of the technology and a comparison of the levelized costs of energy of this technology with competing ones. It also provides an analysis and discussion on application of this technology in water scarce regions of the world, emphasized with a case study of the economic feasibility of this technology for the Bahamas. It was found that current technology exists to build OTEC plants except for some components such as the cold water pipe which presents an engineering challenge when scaled for large-scale power output. The technology is capital intensive and unviable at small scale of power output but can become viable when approached as a sustainable integrated solution to co-generate electricity and freshwater, especially for island nations in the OTEC resource zones with supply constraints on both these commodities. To succeed, this technology requires the support of appropriate government regulation and innovative financing models to mitigate risks associated with the huge upfront investment costs. If the viability of this technology can be improved by integrating the production of by-products, OTEC can be an important means of producing more electricity, freshwater and food for the planet's increasing population.
by Shylesh Muralidharan.
S.M.in Engineering and Management
Mur, Miranda José Oscar 1972. "Electrostatic vibration-to-electric energy conversion." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16609.
Full textIncludes bibliographical references (p. 193-197).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Ultra-Low-Power electronics can perform useful functions with power levels as low as 170 nW. This makes them amenable to powering from ambient sources such as vibration. In this case, they can become autonomous. Motivated by this application, this thesis provides the necessary tools to analyze, design and fabricate MEMS devices capable of electrostatic vibration-to-electric energy conversion at the microwatt level. The fundamental means of en- ergy conversion is a variable capacitor that is excited through a generating energy conversion cycle with every vibration cycle of the converter. This thesis presents a road map on how to design MEMS electrostatic vibration-to- electric energy converters. A proposed converter is designed to illustrate the design process, and is based on vibration levels typical of rotating machinery, which are around 2% of the acceleration of gravity from 1-5 kHz. The converter consists of a square centimeter with a 195 mg proof mass which travels ±200 pm. This mass and travel can couple to a sinusoidal acceleration source of 0.02g at 2.5 kHz, typical of rotating machinery, so as to capture 24 nJ per cycle. This moving proof mass is designed to provide a variable capacitor ranging from 1 pF to 80 pF. Adding a capacitor of 88 pF in parallel with this device will result in a capacitance change from 168 pF to 89 pF that is required to extract 24 nJ using a charge-constrained cycle.
(cont.) This device can be attached to power electronics that implement a charge-constrained cycle and deliver 0.5 nJ back to the reservoir for a total power output of 1.3 [mu]/W at 2.5 kHz. The efficiency of the electrical conversion is 2%. Including packaging, the power per volume would be 0.87 [mu]W/cm3 and the power per mass would be 1.3 [mu]W/g. System improvements are also identified such as those that address the principal sources of loss. For example, decreasing the output capacitance of the MOSFET switches from 10 pF to 1 pF, while keeping the energy conversion cycle the same, results in an energy output of 13 nJ out of 24 nJ, for an efficiency of 54% and a power output of 33 [mu]W. This argues strongly for the use of integrated circuits in which the output capacitance of the MOSFET switches can be reduced for this application.
José Oscar Mur Miranda.
Ph.D.