Academic literature on the topic 'Thermoplastic fibre-reinforced composites – Manufacturing system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermoplastic fibre-reinforced composites – Manufacturing system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermoplastic fibre-reinforced composites – Manufacturing system"

1

Köhler, Thomas, Tim Röding, Thomas Gries, and Gunnar Seide. "An Overview of Impregnation Methods for Carbon Fibre Reinforced Thermoplastics." Key Engineering Materials 742 (July 2017): 473–81. http://dx.doi.org/10.4028/www.scientific.net/kem.742.473.

Full text
Abstract:
Carbon fibre reinforced plastics (CFRPs) can be classified according to whether the matrix is a thermoset or a thermoplastic. Thermoset-matrix composites are by tradition far more common, but thermoplastic-matrix composites are gaining in importance. There are several techniques for combining carbon fibres with a thermoplastic-matrix system. The composite’s characteristics as well as its manufacturing costs are dependent on the impregnation technique of the carbon fibre and the textile structure respectively. Carbon fibre reinforced thermoplastics (CFRTPs) are suitable for fast and economic pr
APA, Harvard, Vancouver, ISO, and other styles
2

Kolonko, Angelika, Frank Helbig, Jürgen Tröltzsch, Daisy Nestler, and Lothar Kroll. "Torque-Fiber-Winding (TFW)-Procedure: Manufacturing of Textile-Based Unidirectional Prepreg for Raw Material and Material Development of Carbon Fibre Reinforced Thermoplastics." Key Engineering Materials 742 (July 2017): 498–505. http://dx.doi.org/10.4028/www.scientific.net/kem.742.498.

Full text
Abstract:
There is the need to determine the process capability of available and novel carbon fibre (CF) roving with minimal material and reproducible procedures in the field of research and development of continuous fibre reinforced composites and structural components, as well as to identify the power delivery in thermoplastic laminate constructions. The innovative TFW procedure with the appropriate system technology allows the production of piece size variable unidirectional (UD) prepreg in a continuous sequential process of spiral winding. A flexible surface design, resulting in the partial fixation
APA, Harvard, Vancouver, ISO, and other styles
3

Neugebauer, Reimund, Verena Kräusel, and Alexander Graf. "Process Chains for Fibre Metal Laminates." Advanced Materials Research 1018 (September 2014): 285–92. http://dx.doi.org/10.4028/www.scientific.net/amr.1018.285.

Full text
Abstract:
The combination of fibre-reinforced materials with metals is defined as a fibre metal laminate. These material composites have already been a subject of research for several years. The long manufacturing time resulting from the period required for consolidation of the thermosetting resin is a major disadvantage of the fibre metal laminates previously in use (for instance GLARE, which is a combination of aluminium with glass fibre-reinforced plastic). In this paper, a new fibre metal laminate with a thermoplastic resin in the carbon fibre-reinforced plastics (CFRP) is introduced. The applicatio
APA, Harvard, Vancouver, ISO, and other styles
4

Karapepas, Christos, Maik Trautmann, Andreas Todt, et al. "Development of Tailored Hybrid Laminates: Manufacturing of Basalt Fibre Reinforced Thermoplastic Orthoses with Aluminum Thin Sheets." Key Engineering Materials 809 (June 2019): 245–52. http://dx.doi.org/10.4028/www.scientific.net/kem.809.245.

Full text
Abstract:
Nowadays, orthoses are made from fibre reinforced thermoset based composites with a high manual labor input. These thermoset based orthoses are no longer formable, which brings forth a significant disadvantage. Hence, hybrid laminates consisting of fibre reinforced thermoplastic films and thin metal sheets can replace successive thermoset based systems due to their advantages of higher formability and the suitability for mass production. In the present work, various surface treatment methods like pickling or mechanical blasting have been used on thin metal sheets to increase the adhesive and s
APA, Harvard, Vancouver, ISO, and other styles
5

Sexton, Anthony, Wesley Cantwell, Matthew Doolan, and Shankar Kalyanasundaram. "Investigation of the Deformation Behaviour of a Thermoplastic Fibre Metal Laminate." Materials Science Forum 773-774 (November 2013): 503–11. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.503.

Full text
Abstract:
Fibre metal laminates are sandwich materials comprised of a fibre-reinforced composite and a metal alloy. These advanced materials offer superior properties compared to the monolithic constituents; primarily, improved specific strength and stiffness compared to metals and improved impact and fatigue resistance when compared to composite materials. The use of these advanced materials is currently restricted to specialised applications where the superior properties justify the high cost of manufacturing. The formability of a fibre metal laminate based on a glass fibre reinforced polypropylene an
APA, Harvard, Vancouver, ISO, and other styles
6

Lyu, Xiuqi, Yi Wan, Jun Takahashi, and Isamu Ohsawa. "Health condition evaluation of carbon fiber–reinforced thermoplastic with a tapping system." Journal of Thermoplastic Composite Materials 31, no. 7 (2017): 959–73. http://dx.doi.org/10.1177/0892705717729196.

Full text
Abstract:
Carbon fiber–reinforced thermoplastic (CFRTP) composites are gaining popularity in the manufacturing industry of lightweight automobiles. Common composite defects (e.g. voids and delamination) often occur inside CFRTP composites due to their inappropriate manufacturing process and long-term service. In this study, an instrumented tapping system was designed to evaluate the health condition of CFRTP composites by controlling the input force and velocity. The effective mathematical expressions of the contact duration and amplitude of the interactive force were derived to quantify the local stiff
APA, Harvard, Vancouver, ISO, and other styles
7

Qin, Yang, John Summerscales, Jasper Graham-Jones, Maozhou Meng, and Richard Pemberton. "Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites." Polymers 12, no. 12 (2020): 2928. http://dx.doi.org/10.3390/polym12122928.

Full text
Abstract:
Awareness of environmental issues has led to increasing interest from composite researchers in using “greener” materials to replace synthetic fiber reinforcements and petrochemical polymer matrices. Natural fiber bio-based thermoplastic composites could be an appropriate choice with advantages including reducing environmental impacts, using renewable resources and being recyclable. The choice of polymer matrix will significantly affect the cost, manufacturing process, mechanical properties and durability of the composite system. The criteria for appropriate monomers are based on the processing
APA, Harvard, Vancouver, ISO, and other styles
8

Hürkamp, André, Sebastian Gellrich, Tim Ossowski, et al. "Combining Simulation and Machine Learning as Digital Twin for the Manufacturing of Overmolded Thermoplastic Composites." Journal of Manufacturing and Materials Processing 4, no. 3 (2020): 92. http://dx.doi.org/10.3390/jmmp4030092.

Full text
Abstract:
The design and development of composite structures requires precise and robust manufacturing processes. Composite materials such as fiber reinforced thermoplastics (FRTP) provide a good balance between manufacturing time, mechanical performance and weight. In this contribution, we investigate the process combination of thermoforming FRTP sheets (organo sheets) and injection overmolding of short FRTP for automotive structures. The limiting factor in those structures is the bond strength between the organo sheet and the overmolded thermoplastic. Within this process chain, even small deviations o
APA, Harvard, Vancouver, ISO, and other styles
9

Rimmel, Oliver, David May, Christian Goergen, Artur Poeppel, and Peter Mitschang. "Development and validation of recycled carbon fiber-based binder tapes for automated tape laying processes." Journal of Composite Materials 53, no. 23 (2018): 3257–68. http://dx.doi.org/10.1177/0021998318820422.

Full text
Abstract:
The current growth in use of fiber reinforced polymer composites causes a strongly increasing amount of waste. Current approaches for fiber reinforced polymer composites recycling usually not exploit the potential of endless fibers as they are shortened during recycling and will not be properly aligned in the final product. Considering this, the present work aimed at the development of a recycling process for long recycled carbon fibers, where fiber length is preserved and load-related fiber orientation is possible. The starting point for the presented work was so-called slivers, which are lon
APA, Harvard, Vancouver, ISO, and other styles
10

Baho, Omar, Gilles Ausias, Yves Grohens, and Julien Férec. "Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters." International Journal of Advanced Manufacturing Technology 110, no. 7-8 (2020): 2105–17. http://dx.doi.org/10.1007/s00170-020-05876-9.

Full text
Abstract:
Abstract Laser-assisted automated fiber placement (AFP) is highly suitable for an efficient production of thermoplastic-matrix composite parts, especially for aeronautic/aerospace applications. Heat input by laser heating provides many advantages such as better temperature controls and uniform heating projections. However, this laser beam distribution can be affected by the AFP head system, mainly at the roller level. In this paper, a new optico-thermal model is established to evaluate the laser energy quantity absorbed by a poly(ether ether ketone) reinforced with carbon fibers (APC-2). Durin
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thermoplastic fibre-reinforced composites – Manufacturing system"

1

Claassen, Marius. "A reconfigurable manufacturing system for thermoplastic fibre-reinforced composite parts : a feasibility assessment." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97045.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2015.<br>ENGLISH ABSTRACT: The South African manufacturing industry plays a pivotal role in the growth of its local economy. Modern manufacturing requirements include the ability to respond quickly to product variability, fluctuations in product demand and new process technologies. The reconfigurable manufacturing paradigm has been proposed to meet the demands of the new manufacturing requirements. In order to assess the feasibility of incorporating automated, reconfigurable manufacturing technologies into the production process of thermoplastic fibre-re
APA, Harvard, Vancouver, ISO, and other styles
2

Crawley, Christopher Anthony. "Thermoforming of continuous fibre-reinforced thermoplastic composites." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mashau, Shivasi Christopher. "An investigation into the manufacturing of complex, three-dimensional components using continuous fibre reinforced thermoplastic composites." Thesis, 2017. https://hdl.handle.net/10539/24191.

Full text
Abstract:
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, October 2017<br>This research looks into the manufacturing process of complex geometries using continuous fibre reinforced thermoplastics (CFRTP). The purpose of this work was to develop methods that will enable the production of defect free complex components. This was achieved by investigating the key process parameters in the CFRTP manufacturing process, and
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermoplastic fibre-reinforced composites – Manufacturing system"

1

Azaman, M. D., S. M. Sapuan, S. Sulaiman, E. S. Zainudin, and A. Khalina. "Processability of Wood Fibre-Filled Thermoplastic Composite Thin-Walled Parts Using Injection Moulding." In Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-07944-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bar, Mahadev, R. Alagirusamy, and Apurba Das. "Advances in Natural Fibre Reinforced Thermoplastic Composite Manufacturing: Effect of Interface and Hybrid Yarn Structure on Composite Properties." In Advances in Natural Fibre Composites. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64641-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermoplastic fibre-reinforced composites – Manufacturing system"

1

Kobayashi, Satoshi, and Toshiko Osada. "Experimental and Analytical Resin Impregnation Characterization in Carbon Fiber Reinforced Thermoplastic Composites." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8627.

Full text
Abstract:
Abstract Effect of molding condition on resin impregnation behavior and the associated mechanical properties were investigated for carbon fabric reinforced thermoplastic composites. Carbon fiber yarn (TORAYCA, Toray) was used as a reinforcement, and thermoplastic PI (AURUM PL 450 C, Mitsui Chemicals) was used as the matrix. CFRTP textile composites were compression-molded with a hot press system under the molding temperature, 390 °C, 410 °C and 430 °C, molding pressure 2 MPa and 4 MPa and molding time 0∼300 s. In order to evaluate the impregnated state, cross sectional observation was performe
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Tae Hwa, Pei-Chung Wang, S. Jack Hu, and Mihaela Banu. "Investigation of the Dynamic Response of a Multispot System at Joining Using Ultrasonic Welding." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64916.

Full text
Abstract:
Abstract Ultrasonic welding is one of the most practical joining method for polymer composite materials and has been adapted in the aerospace and automotive industries. To effectively join polymer composite assemblies, it is critical to understand the dynamic response of the welding system so that sound heating generation and welding sequences in the ultrasonic welding of the assemblies can be properly obtained. This study presents a dynamic response model of a multi-spot configuration assembly using ultrasonic welding. Here, a dynamic model of joining a U-shaped carbon fiber reinforced thermo
APA, Harvard, Vancouver, ISO, and other styles
3

Stavrov, Darko, and Harald E. N. Bersee. "Thermal Aspects in Resistance Welding of Thermoplastic Composites." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47222.

Full text
Abstract:
This paper presents a comprehensive experimental study on the thermal aspects in resistance welding of thermoplastic composites. A special test set-up was developed to perform the experiments. Glass fiber reinforced polyetherimide was the material used for manufacturing the welding specimens. Stainless steel mesh was used for production of heating elements. The temperature distribution was monitored using type-K thermocouples connected to a data acquisition system. The main objective of the study was investigating a possible solution for the edge effect. Temperature profiles over the weld leng
APA, Harvard, Vancouver, ISO, and other styles
4

Qamar, Isabel P. S., and Richard S. Trask. "Development of Multi-Dimensional 3D Printed Vascular Networks for Self-Healing Materials." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3829.

Full text
Abstract:
Self-healing materials have emerged as an alternative solution to the repair of damage in fibre-reinforced composites. Recent developments have largely focused on a vascular approach, due to the ability to transport healing agents over long distances and continually replenish from an external source. However fracture of the vascular network is required to enable the healing agents to infiltrate the crack plane, ceasing its primary function in transporting fluid and preventing the repair of any further damage events. Here we present a novel approach to vascular self-healing through the developm
APA, Harvard, Vancouver, ISO, and other styles
5

Rangisetty, Sridher, and Larry D. Peel. "The Effect of Infill Patterns and Annealing on Mechanical Properties of Additively Manufactured Thermoplastic Composites." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-4011.

Full text
Abstract:
Recently, carbon fiber-reinforced thermoplastics (CFRTPs) have become popular choices in desktop-based additive manufacturing, but there is limited information on their effective usage. In Fused Deposition Modeling (FDM), a structure is created by layers of extruded beads. The degree of bonding between beads, bead orientation, degree of interlayer bonding, type of infill and the type of material, determines overall mechanical performance. The presence of chopped fibers in thermoplastics increases melt viscosity, changes coefficients of thermal expansion, may have layer adhesion issues, and cau
APA, Harvard, Vancouver, ISO, and other styles
6

Garate, Juan, Stephen A. Solovitz, and Dave Kim. "A Preliminary Study on Small Thermoplastic Composite Wind Turbine Blade Design and Fabrication." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51745.

Full text
Abstract:
Today a large-scale wind turbine blade can be 70 m long and 5 m in root chord length, and it is fabricated in a single piece. This feature leads to high initial costs, as transportation of a large blade requires special trucks, escorts, and road adaptations. These constraints can account for approximately 6–7% of the total investment for the blade. In addition, the manufacturing process commonly used is a hand lay-up configuration of thermoset composite sheets. These materials are not reusable after fabrication, which is a non-renewable feature of existing systems. The project consists of manu
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!