Journal articles on the topic 'Thiol Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thiol Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xie, Zhenzhen, Mandapati V. Ramakrishnam Raju, Prasadanie K. Adhihetty, Xiao-An Fu, and Michael H. Nantz. "Effect of Thiol Molecular Structure on the Sensitivity of Gold Nanoparticle-Based Chemiresistors toward Carbonyl Compounds." Sensors 20, no. 24 (2020): 7024. http://dx.doi.org/10.3390/s20247024.
Full textBohli, Nadra, Meryem Belkilani, Juan Casanova-Chafer, Eduard Llobet, and Adnane Abdelghani. "Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation." Beilstein Journal of Nanotechnology 10 (December 4, 2019): 2364–73. http://dx.doi.org/10.3762/bjnano.10.227.
Full textLIEBERZEIT, PETER A., ABDUL REHMAN, SADAF YAQUB, and FRANZ L. DICKERT. "NANOSTRUCTURED PARTICLES AND LAYERS FOR SENSING CONTAMINANTS IN AIR AND WATER." Nano 03, no. 04 (2008): 205–8. http://dx.doi.org/10.1142/s1793292008001015.
Full textCasanova-Cháfer, Juan, Carla Bittencourt, and Eduard Llobet. "Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors." Beilstein Journal of Nanotechnology 10 (February 27, 2019): 565–77. http://dx.doi.org/10.3762/bjnano.10.58.
Full textHillion, Melanie, and Haike Antelmann. "Thiol-based redox switches in prokaryotes." Biological Chemistry 396, no. 5 (2015): 415–44. http://dx.doi.org/10.1515/hsz-2015-0102.
Full textFlaumenhaft, Robert, and Bruce Furie. "Vascular thiol isomerases." Blood 128, no. 7 (2016): 893–901. http://dx.doi.org/10.1182/blood-2016-04-636456.
Full textChamorro-Garcia, Alejandro, Gabriel Ortega, Davide Mariottini, Joshua Green, Francesco Ricci, and Kevin W. Plaxco. "Switching the aptamer attachment geometry can dramatically alter the signalling and performance of electrochemical aptamer-based sensors." Chemical Communications 57, no. 88 (2021): 11693–96. http://dx.doi.org/10.1039/d1cc04557a.
Full textHatori, Yuta, Takanori Kubo, Yuichiro Sato, Sachiye Inouye, Reiko Akagi, and Toshio Seyama. "Visualization of the Redox Status of Cytosolic Glutathione Using the Organelle- and Cytoskeleton-Targeted Redox Sensors." Antioxidants 9, no. 2 (2020): 129. http://dx.doi.org/10.3390/antiox9020129.
Full textZhang, Jun-Hua, Zi-Tong Zhang, Yang-Jing Ou, et al. "Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants." Nanoscale 12, no. 37 (2020): 19429–37. http://dx.doi.org/10.1039/d0nr04645k.
Full textVázquez-Torres, Andrés. "Redox Active Thiol Sensors of Oxidative and Nitrosative Stress." Antioxidants & Redox Signaling 17, no. 9 (2012): 1201–14. http://dx.doi.org/10.1089/ars.2012.4522.
Full textLieberzeit, Peter A., Abdul Rehman, Bita Najafi, and Franz L. Dickert. "Generating Bio-Analogous Recognition of Artificial Materials – Sensors and Electronic Noses for Odours." Advances in Science and Technology 58 (September 2008): 103–7. http://dx.doi.org/10.4028/www.scientific.net/ast.58.103.
Full textKOYAMA, EMIKO, HIDEO TOKUHISA, ABDELHAK BELAISSAOUI, YOSHINOBU NAGAWA, MASATOSHI KANESATO та TAKAO ISHIDA. "CONSTRUCTION OF MOLECULAR SENSORS FOR PROTONS USING π-CONJUGATED MOLECULES". International Journal of Nanoscience 04, № 04 (2005): 475–81. http://dx.doi.org/10.1142/s0219581x05003589.
Full textMcCormick, Wesley, Pádraig McDonagh, John Doran, and Denis McCrudden. "Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing." Catalysts 11, no. 10 (2021): 1161. http://dx.doi.org/10.3390/catal11101161.
Full textGlasco, Dalton Lee, and Jeffrey Gordon Bell. "Nonlinear Behavior during the Electrochemical Oxidation of Thiols." ECS Meeting Abstracts MA2022-01, no. 45 (2022): 1928. http://dx.doi.org/10.1149/ma2022-01451928mtgabs.
Full textLi, Steve Po-Yam, Justin Shum, and Kenneth Kam-Wing Lo. "Iridium(iii) polypyridine complexes with a disulfide linker as biological sensors and cytotoxic agents." Dalton Transactions 48, no. 26 (2019): 9692–702. http://dx.doi.org/10.1039/c9dt00793h.
Full textMahalakshmi, Radhakrishnan. "Oxidative Thiol Modifications as Molecular Redox Sensors in Human Mitochondria." Biophysical Journal 118, no. 3 (2020): 449a. http://dx.doi.org/10.1016/j.bpj.2019.11.2506.
Full textVogelsang, Lara, and Karl-Josef Dietz. "Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants." Biochemical Journal 477, no. 10 (2020): 1865–78. http://dx.doi.org/10.1042/bcj20190124.
Full textHildebrandt, Wulf, Steve Alexander, Peter Bärtsch, and Wulf Dröge. "Effect of N-acetyl-cysteine on the hypoxic ventilatory response and erythropoietin production: linkage between plasma thiol redox state and O2 chemosensitivity." Blood 99, no. 5 (2002): 1552–55. http://dx.doi.org/10.1182/blood.v99.5.1552.
Full textZaidi, Shabi Abbas, and Jae Ho Shin. "A review on the latest developments in nanostructure-based electrochemical sensors for glutathione." Analytical Methods 8, no. 8 (2016): 1745–54. http://dx.doi.org/10.1039/c5ay03140k.
Full textMinagawa, Yuichi, Mari Ohashi, Yoshinori Kagawa, Arata Urimoto, and Hiroshi Ishida. "Compact Surface Plasmon Resonance Sensor for Underwater Chemical Sensing Robot." Journal of Sensors 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/9846780.
Full textLee, Sang Jae, Dong-Gyun Kim, Kyu-Yeon Lee, Ji Sung Koo, and Bong-Jin Lee. "Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors." Archives of Pharmacal Research 41, no. 6 (2018): 583–93. http://dx.doi.org/10.1007/s12272-018-1036-0.
Full textCosta, Cláudio F., Celien Lismont, Serhii Chornyi, et al. "Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells." Antioxidants 12, no. 6 (2023): 1236. http://dx.doi.org/10.3390/antiox12061236.
Full textEremenko, A. V., E. A. Dontsova, A. P. Nazarov, et al. "Manganese Dioxide Nanostructures as a Novel Electrochemical Mediator for Thiol Sensors." Electroanalysis 24, no. 3 (2012): 573–80. http://dx.doi.org/10.1002/elan.201100535.
Full textJia, Yong Hui, and Chao Xu. "Dithiolate Mixed with Diimine and it's Metal Effects on Sensors." Advanced Materials Research 1021 (August 2014): 52–55. http://dx.doi.org/10.4028/www.scientific.net/amr.1021.52.
Full textChen, Yiting, Yanxia Li, Linqin Jiang, Lu Huang, Qi Lin, and Guonan Chen. "Fabrication of a heated electrode modified with a thiol-functionalized ionic liquid for electrochemical/electrochemiluminescence sensors." RSC Advances 6, no. 46 (2016): 39955–61. http://dx.doi.org/10.1039/c6ra05302e.
Full textQin, Junjie, Bohua Dong, Xue Li, et al. "Fabrication of intelligent photonic crystal hydrogel sensors for selective detection of trace mercury ions in seawater." Journal of Materials Chemistry C 5, no. 33 (2017): 8482–88. http://dx.doi.org/10.1039/c7tc02140b.
Full textPyrak, Jaworska, and Kudelski. "SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments." Molecules 24, no. 21 (2019): 3921. http://dx.doi.org/10.3390/molecules24213921.
Full textKnight, Jessica Renee, Yingying Wang, Shi Xu, Wei Chen, Clifford E. Berkman, and Ming Xian. "A modular template for the design of thiol-triggered sensors and prodrugs." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 247 (February 2021): 119072. http://dx.doi.org/10.1016/j.saa.2020.119072.
Full textNguyen, Long H., Farshad Oveissi, Rona Chandrawati, Fariba Dehghani, and Sina Naficy. "Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors." ACS Sensors 5, no. 7 (2020): 1921–28. http://dx.doi.org/10.1021/acssensors.0c00117.
Full textO’Connor, Naphtali A., Gustavo E. López, and Anthony Cruz. "Quinoline-2-thiol Derivatives as Fluorescent Sensors for Metals, pH and HNO." Current Chemistry Letters 3, no. 3 (2014): 189–94. http://dx.doi.org/10.5267/j.ccl.2014.3.001.
Full textDaskal, Yelyena, Susann Rabe, Rosemarie Dittrich, Christiane Oestreich, and Yvonne Joseph. "Chemiresistors Based on Bisdithiocarbamate Interlinked Gold Nanoparticles." Proceedings 2, no. 13 (2018): 933. http://dx.doi.org/10.3390/proceedings2130933.
Full textJousselin, Ambre, William L. Kelley, Christine Barras, Daniel P. Lew, and Adriana Renzoni. "The Staphylococcus aureus Thiol/Oxidative Stress Global Regulator Spx ControlstrfA, a Gene Implicated in Cell Wall Antibiotic Resistance." Antimicrobial Agents and Chemotherapy 57, no. 7 (2013): 3283–92. http://dx.doi.org/10.1128/aac.00220-13.
Full textGil de Melo, Shaiani Maria, Lucas Cunha Dias de Rezende, Raquel Petrilli, Renata Fonseca Vianna Lopez, Marilia O. F. Goulart, and Flavio da Silva Emery. "Nitrosation of BODIPY dyes and their applications in the development of thiol sensors." Dyes and Pigments 173 (February 2020): 107885. http://dx.doi.org/10.1016/j.dyepig.2019.107885.
Full textAfrin, R., and N. A. Shah. "Room temperature gas sensors based on carboxyl and thiol functionalized carbon nanotubes buckypapers." Diamond and Related Materials 60 (November 2015): 42–49. http://dx.doi.org/10.1016/j.diamond.2015.10.010.
Full textKUMAR, NANJUNDAN ASHOK, SUNG HUN KIM, JONG SU KIM, JONG TAE KIM, and YEON TAE JEONG. "FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES WITH CYSTEAMINE FOR THE CONSTRUCTION OF CNT/GOLD NANOPARTICLE HYBRID NANOSTRUCTURES." Surface Review and Letters 16, no. 03 (2009): 487–92. http://dx.doi.org/10.1142/s0218625x09012895.
Full textBatistuti, Marina R., Marcelo Mulato, and Paulo R. Bueno. "Breast cancer detection using charge sensors coupled to DNA monolayer." MRS Proceedings 1793 (2015): 19–26. http://dx.doi.org/10.1557/opl.2015.671.
Full textNorberg, Oscar, Irene H. Lee, Teodor Aastrup, Mingdi Yan, and Olof Ramström. "Photogenerated lectin sensors produced by thiol-ene/yne photo-click chemistry in aqueous solution." Biosensors and Bioelectronics 34, no. 1 (2012): 51–56. http://dx.doi.org/10.1016/j.bios.2012.01.001.
Full textSund, James B., Corey P. Causey, Scott D. Wolter, et al. "Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors." Applied Surface Science 301 (May 2014): 293–99. http://dx.doi.org/10.1016/j.apsusc.2014.02.067.
Full textKönig, Janine, Meenakumari Muthuramalingam, and Karl-Josef Dietz. "Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets." Current Opinion in Plant Biology 15, no. 3 (2012): 261–68. http://dx.doi.org/10.1016/j.pbi.2011.12.002.
Full textCaro, C., F. Gámez, and A. P. Zaderenko. "Preparation of Surface-Enhanced Raman Scattering Substrates Based on Immobilized Silver-Capped Nanoparticles." Journal of Spectroscopy 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/4127108.
Full textZiyatdinova, Guzel, and Liliya Gimadutdinova. "Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants." Micromachines 14, no. 7 (2023): 1440. http://dx.doi.org/10.3390/mi14071440.
Full textMochizuki, Masahito, Syifa Asatyas, Kasinan Suthiwanich, and Tomohiro Hayashi. "Thiol Molecules as Temperature Sensors for Surface-enhanced Raman Scattering Measurements of Heat-sensitive Materials." Chemistry Letters 45, no. 10 (2016): 1207–9. http://dx.doi.org/10.1246/cl.160572.
Full textJoo, Jinmyoung, Dongkyu Lee, Myungsun Yoo, and Sangmin Jeon. "ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells." Sensors and Actuators B: Chemical 138, no. 2 (2009): 485–90. http://dx.doi.org/10.1016/j.snb.2009.03.017.
Full textCozzens, Yuqing, Diane M. Steeves, Jason W. Soares, and James E. Whitten. "Light-Sensitive Gas Sensors Based on Thiol-Functionalized N-Isopropylacrylamide Polymer–Gold Nanoparticle Composite Films." Macromolecules 52, no. 7 (2019): 2900–2910. http://dx.doi.org/10.1021/acs.macromol.8b02638.
Full textOrtyl, Joanna, Paweł Fiedor, Anna Chachaj-Brekiesz, Maciej Pilch, Emilia Hola, and Mariusz Galek. "The Applicability of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile Sensors for Monitoring Different Types of Photopolymerization Processes and Acceleration of Cationic and Free-Radical Photopolymerization Under Near UV Light." Sensors 19, no. 7 (2019): 1668. http://dx.doi.org/10.3390/s19071668.
Full textTan, Shu Zhen, Pu Ni Zeng, Zhong Cao, Jiao Yun Xia, and Wei Li. "A Novel Technique for Preparation of the Fluorescence Sensor Based on Covalent Immobilization of 1-Aminopyrene." Advanced Materials Research 239-242 (May 2011): 1442–47. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.1442.
Full textBarber, Robert, Elisha McCrory, Sarah L. Brennan, et al. "Poly(5-Amino-1,4-naphthoquinone) – Lasered Graphene Sensor for the Detection of Cysteine." ECS Meeting Abstracts MA2022-02, no. 61 (2022): 2273. http://dx.doi.org/10.1149/ma2022-02612273mtgabs.
Full textShellaiah, Muthaiah, Natesan Thirumalaivasan, Basheer Aazaad, et al. "An AIEE Active Anthracene-Based Nanoprobe for Zn2+ and Tyrosine Detection Validated by Bioimaging Studies." Chemosensors 10, no. 10 (2022): 381. http://dx.doi.org/10.3390/chemosensors10100381.
Full textKida, Tetsuya, Hiroyuki Kurachi, Masayoshi Yuasa, Kengo Shimanoe, and Noboru Yamazoe. "Deposition of Pd onto SnO2 Nanoparticles-Based Gas Sensors Using a Pd Complex as the Precursor." Advanced Materials Research 47-50 (June 2008): 1506–9. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1506.
Full textVogel, Eric M., Eleanor L. Brightbill, Hilena Gezahagne, and Decarle S. Jin. "(Invited) Challenges with Electronic Biosensors." ECS Meeting Abstracts MA2022-02, no. 61 (2022): 2259. http://dx.doi.org/10.1149/ma2022-02612259mtgabs.
Full text