Journal articles on the topic 'Thomas equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thomas equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sakovich, S. Y. "On the Thomas equation." Journal of Physics A: Mathematical and General 21, no. 23 (1988): L1123—L1126. http://dx.doi.org/10.1088/0305-4470/21/23/003.
Full textAl-Ghafri, K. S. "On the Exact Solutions of the Thomas Equation by Algebraic Methods." International Journal of Nonlinear Sciences and Numerical Simulation 16, no. 2 (2015): 73–77. http://dx.doi.org/10.1515/ijnsns-2014-0049.
Full textBluman, G. W., and S. Kumei. "Symmetry-based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries." European Journal of Applied Mathematics 1, no. 3 (1990): 217–23. http://dx.doi.org/10.1017/s0956792500000188.
Full textTafrikan, Mohammad, and Mohammad Ghani. "Iterative Method of Thomas Algorithm on The Case Study of Energy Equation." Postulat : Jurnal Inovasi Pendidikan Matematika 3, no. 1 (2022): 14. http://dx.doi.org/10.30587/postulat.v3i1.4346.
Full textEl-Nahhas, A. "Analytic Approximations for Thomas-Fermi Equation." Acta Physica Polonica A 114, no. 4 (2008): 913–18. http://dx.doi.org/10.12693/aphyspola.114.913.
Full textAshbaugh, Mark S., Rafael D. Benguria, and Cecilia Yarur. "Thomas-Fermi-von Weizs�cker equation." Duke Mathematical Journal 63, no. 1 (1991): 199–215. http://dx.doi.org/10.1215/s0012-7094-91-06309-x.
Full textAdomian, G. "Solution of the Thomas-Fermi equation." Applied Mathematics Letters 11, no. 3 (1998): 131–33. http://dx.doi.org/10.1016/s0893-9659(98)00046-9.
Full textStefanescu, Ștefan, Daria-Ioana Vișa, Tiberiu Harko, and Gabriela Mocanu. "Gravitational collapse of Bose-Einstein condensate dark matter halos with logarithmic nonlinearity." Romanian Astronomical Journal 33, no. 1-2 (2023): 15–35. http://dx.doi.org/10.59277/roaj.2023.1-2.02.
Full textPurushothaman, Ganesh, Ekambaram Chandrasekaran, John R. Graef, and Ethiraju Thandapani. "Oscillation of Third-Order Thomas–Fermi-Type Nonlinear Differential Equations with an Advanced Argument." Mathematics 12, no. 24 (2024): 3959. https://doi.org/10.3390/math12243959.
Full textTavassoli Kajani, Majid, Adem Kılıçman, and Mohammad Maleki. "The Rational Third-Kind Chebyshev Pseudospectral Method for the Solution of the Thomas-Fermi Equation over Infinite Interval." Mathematical Problems in Engineering 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/537810.
Full textPatil, Dinkar P., Yashashri S. Suryawanshi, and Mohini D. Nehete. "Application of Soham Transform for Solving Mathematical Models Occurring in Health Science and Biotechnology." INTERNATIONAL JOURNAL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH 2, no. 2 (2022): 273–88. http://dx.doi.org/10.47509/ijmsor.2022.v02i02.11.
Full textErsoy, Ozlem, and Idris Dag. "The Exponential Cubic B-Spline Algorithm for Korteweg-de Vries Equation." Advances in Numerical Analysis 2015 (February 17, 2015): 1–8. http://dx.doi.org/10.1155/2015/367056.
Full textDesaix, M., D. Anderson, and M. Lisak. "Variational approach to the Thomas–Fermi equation." European Journal of Physics 25, no. 6 (2004): 699–705. http://dx.doi.org/10.1088/0143-0807/25/6/001.
Full textKorpusov, M. O. "Blowup Solutions of the Nonlinear Thomas Equation." Theoretical and Mathematical Physics 201, no. 1 (2019): 1457–67. http://dx.doi.org/10.1134/s0040577919100040.
Full textEsposito, Salvatore. "Majorana solution of the Thomas–Fermi equation." American Journal of Physics 70, no. 8 (2002): 852–56. http://dx.doi.org/10.1119/1.1484144.
Full textHe, Ji-Huan. "Variational approach to the Thomas–Fermi equation." Applied Mathematics and Computation 143, no. 2-3 (2003): 533–35. http://dx.doi.org/10.1016/s0096-3003(02)00380-6.
Full textKhan, Hina, and Hang Xu. "Series solution to the Thomas–Fermi equation." Physics Letters A 365, no. 1-2 (2007): 111–15. http://dx.doi.org/10.1016/j.physleta.2006.12.064.
Full textFernández, Francisco M., and John F. Ogilvie. "Approximate solutions to the Thomas-Fermi equation." Physical Review A 42, no. 1 (1990): 149–54. http://dx.doi.org/10.1103/physreva.42.149.
Full textGranas, A., R. B. Guenther, and J. W. Lee. "A Note on the Thomas-Fermi Equation." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 61, no. 3-5 (2008): 204–5. http://dx.doi.org/10.1002/zamm.19810610311.
Full textBiedenharn, L. C. "A remark on the thomas-fermi equation." International Journal of Quantum Chemistry 9, S9 (2009): 31–33. http://dx.doi.org/10.1002/qua.560090807.
Full textParand, Kourosh, Kobra Rabiei, and Mehdi Delkhosh. "An efficient numerical method for solving nonlinear Thomas-Fermi equation." Acta Universitatis Sapientiae, Mathematica 10, no. 1 (2018): 134–51. http://dx.doi.org/10.2478/ausm-2018-0012.
Full textChaudhary, Harideo. "Application of Differential Equation to Population Growth." Tribhuvan University Journal 28, no. 1-2 (2013): 75–80. http://dx.doi.org/10.3126/tuj.v28i1-2.26218.
Full textKaldybek, F. N., and I. F. Spivak-Lavrov. "DERIVATION OF THE DIMENSIONAL THOMAS-FERMI EQUATION FOR THE THOMAS-FERMI ATOM MODEL." Vestnik of M. Kozybayev North Kazakhstan University, no. 2 (54) (July 7, 2022): 7–16. http://dx.doi.org/10.54596/2309-6977-2022-2-7-16.
Full textMonk, Peter, Joachim Schöberl, and Astrid Sinwel. "Hybridizing Raviart-Thomas Elements for the Helmholtz Equation." Electromagnetics 30, no. 1-2 (2010): 149–76. http://dx.doi.org/10.1080/02726340903485414.
Full textOvando, G., J. J. Peña, and J. Morales. "Effective mass Schrödinger equation with Thomas-Fermi potential." Journal of Physics: Conference Series 574 (January 21, 2015): 012108. http://dx.doi.org/10.1088/1742-6596/574/1/012108.
Full textLiu, Chunxiao, and Shengfeng Zhu. "Laguerre pseudospectral approximation to the Thomas–Fermi equation." Journal of Computational and Applied Mathematics 282 (July 2015): 251–61. http://dx.doi.org/10.1016/j.cam.2015.01.004.
Full textBénilan †, Philippe, and Haïm Brezis. "Nonlinear problems related to the Thomas-Fermi equation." Journal of Evolution Equations 3, no. 4 (2003): 673–770. http://dx.doi.org/10.1007/s00028-003-0117-8.
Full textZhu, Shengfeng, Hancan Zhu, Qingbiao Wu, and Yasir Khan. "An adaptive algorithm for the Thomas–Fermi equation." Numerical Algorithms 59, no. 3 (2011): 359–72. http://dx.doi.org/10.1007/s11075-011-9494-1.
Full textLaurenzi, Bernard J. "An analytic solution to the Thomas–Fermi equation." Journal of Mathematical Physics 31, no. 10 (1990): 2535–37. http://dx.doi.org/10.1063/1.528998.
Full textChan, C. Y., and S. W. Du. "A constructive method for the Thomas-Fermi equation." Quarterly of Applied Mathematics 44, no. 2 (1986): 303–7. http://dx.doi.org/10.1090/qam/856183.
Full textMacLeod, Allan J. "Chebyshev series solution of the Thomas-Fermi equation." Computer Physics Communications 67, no. 3 (1992): 389–91. http://dx.doi.org/10.1016/0010-4655(92)90047-3.
Full textYao, Baoheng. "A series solution to the Thomas–Fermi equation." Applied Mathematics and Computation 203, no. 1 (2008): 396–401. http://dx.doi.org/10.1016/j.amc.2008.04.050.
Full textFriedman, M., A. Rabinovitch, Y. Rosenfeld, and R. Thieberger. "Thomas-Fermi equation with non-spherical boundary conditions." Journal of Computational Physics 70, no. 2 (1987): 284–94. http://dx.doi.org/10.1016/0021-9991(87)90183-5.
Full textRȩbilas, Krzysztof. "Thomas Precession and the Bargmann-Michel-Telegdi Equation." Foundations of Physics 41, no. 12 (2011): 1800–1809. http://dx.doi.org/10.1007/s10701-011-9579-7.
Full textTheotokoglou, Efstathios E., Theodoros I. Zarmpoutis, and Ioannis H. Stampouloglou. "Closed-Form Solutions of the Thomas-Fermi in Heavy Atoms and the Langmuir-Blodgett in Current Flow ODEs in Mathematical Physics." Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/721637.
Full textGopalakrishnan, Jayadeep. "A Schwarz Preconditioner for a Hybridized Mixed Method." Computational Methods in Applied Mathematics 3, no. 1 (2003): 116–34. http://dx.doi.org/10.2478/cmam-2003-0009.
Full textIssakhov, Alibek, and Bakytzan Zhumagulov. "Numerical Modelling of the Thermal Process in the Aquatic Environment." Advanced Materials Research 787 (September 2013): 669–74. http://dx.doi.org/10.4028/www.scientific.net/amr.787.669.
Full textJaros, Jaroslav, and Takaŝi Kusano. "On Avakumovic’s theorem for generalized Thomas-Fermi differential equations." Publications de l'Institut Math?matique (Belgrade) 99, no. 113 (2016): 125–37. http://dx.doi.org/10.2298/pim1613125j.
Full textBhattacharyya, K., MS Uddin, and GC Layek. "Application of Scaling Group of Transformations to Steady Boundary Layer Flow of Newtonian Fluid over a Stretching Sheet in Presence of Chemically Reactive Species." Journal of Bangladesh Academy of Sciences 35, no. 1 (2011): 43–50. http://dx.doi.org/10.3329/jbas.v35i1.7969.
Full textMavrin, Aleksey A., and Alexander V. Demura. "Approximate Solution of the Thomas–Fermi Equation for Free Positive Ions." Atoms 9, no. 4 (2021): 87. http://dx.doi.org/10.3390/atoms9040087.
Full textDmytriv, V., Z. Stotsko, and I. Dmytriv. "Simulation of boundary layer under laminar and turbulent modes of newtonian fluid motion in a flexible pipeline." Technological Complexes 16 (December 5, 2019): 73–84. http://dx.doi.org/10.36910/2312-0584-16-2019-008.
Full textKARABULUT, Utku Cem, and Turgay KÖROĞLU. "Rasyonel Üslü Cebirsel ve Üstel Eşleme Yaklaşımı ile Thomas-Fermi Denklemi için İkinci Derece Doğruluklu Sonlu Farklar Yöntemi." Afyon Kocatepe University Journal of Sciences and Engineering 23, no. 3 (2023): 628–37. http://dx.doi.org/10.35414/akufemubid.1150843.
Full textFranco, A. T., and C. O. R. Negrão. "INDOOR AIR TEMPERATURE DISTRIBUTION AN ALTERNATIVE APPROACH TO BUILDING SIMULATION." Revista de Engenharia Térmica 2, no. 1 (2003): 19. http://dx.doi.org/10.5380/reterm.v2i1.3514.
Full textParker, G. W. "Numerical solution of the Thomas-Fermi equation for molecules." Physical Review A 38, no. 5 (1988): 2205–10. http://dx.doi.org/10.1103/physreva.38.2205.
Full textLeung, Y. C., and Shou-yong Pei. "High-density expansions of the relativistic Thomas-Fermi equation." Physical Review A 40, no. 5 (1989): 2731–37. http://dx.doi.org/10.1103/physreva.40.2731.
Full textÖlschläger, M., G. Wirth, C. Morais Smith, and A. Hemmerich. "Kinetic Thomas–Fermi solutions of the Gross–Pitaevskii equation." Optics Communications 282, no. 7 (2009): 1472–77. http://dx.doi.org/10.1016/j.optcom.2008.12.054.
Full textLiao, Shijun. "An explicit analytic solution to the Thomas–Fermi equation." Applied Mathematics and Computation 144, no. 2-3 (2003): 495–506. http://dx.doi.org/10.1016/s0096-3003(02)00423-x.
Full textParand, K., and M. Shahini. "Rational Chebyshev pseudospectral approach for solving Thomas–Fermi equation." Physics Letters A 373, no. 2 (2009): 210–13. http://dx.doi.org/10.1016/j.physleta.2008.10.044.
Full textBaker, George A., and J. D. Johnson. "General structure of the Thomas-Fermi equation of state." Physical Review A 44, no. 4 (1991): 2271–83. http://dx.doi.org/10.1103/physreva.44.2271.
Full textRobin, W. "Another rational analytical approximation to the Thomas-Fermi equation." Journal of Innovative Technology and Education 5, no. 1 (2018): 7–13. http://dx.doi.org/10.12988/jite.2018.823.
Full text