Academic literature on the topic 'Thorium cycle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thorium cycle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thorium cycle"

1

Jiyang, Yu, Wang Kan, You Songbo, et al. "Thorium fuel cycle of a thorium-basedadvanced nuclear energy system." Progress in Nuclear Energy 45, no. 1 (2004): 71–83. http://dx.doi.org/10.1016/j.pnueene.2004.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mendoza España, Alberto D., and Blair P. Bromley. "A CANADIAN PERSPECTIVE OF THE ECONOMIC ISSUES ASSOCIATED WITH DEPLOYING THORIUM-BASED FUEL CYCLES AND BREEDING IN HEAVY-WATER REACTORS." CNL Nuclear Review 8, no. 2 (2019): 109–30. http://dx.doi.org/10.12943/cnr.2017.00021.

Full text
Abstract:
To meet future global needs for energy and green technology, it is prudent to identify energy sources and technology that may potentially be economically beneficial. Thorium-based fuels with nuclear technology, such as the Canadian heavy-water reactor, have been proposed as a way to meet those global needs, though economic challenges persist in deploying thorium-based fuels. Therefore, economic strategies to overcome the economic challenges in deploying thorium-based fuels are needed. To identify potential strategies for advancing the deployment of thorium-based fuels, this paper conducts a historical examination of the economics of thorium fuel cycles to identify economic factors that can influence a country’s development of thorium-based fuel cycles. In particular, this paper reviews the economic issues associated with Canada’s experience in deploying thorium-based fuel cycles. The study finds that the existence of natural resources and the associated price, a nuclear fuel cycle’s costs, a country’s international trade balance position and economic growth policies, the profitability of the electrical power and nuclear industry, and the technical and economical characteristics of the nuclear reactor developed in a country may all influence the adoption of a thorium-based fuel cycle. Furthermore, recent advancements in developing thorium-based fuel cycles are suggested as a possible way of bridging the technical and economic gap between near-term and long-term implementation of thorium-based fuel cycles that may overcome current economic challenges.
APA, Harvard, Vancouver, ISO, and other styles
3

Naumov, Valery S. "Conceptual potential of a pyroelectrochemical technology for the thorium engagement in the fast neutron fuel cycle." Nuclear Energy and Technology 5, no. 1 (2019): 17–22. http://dx.doi.org/10.3897/nucet.5.33977.

Full text
Abstract:
The use of thorium in combination with plutonium in nuclear power generation offers a solution to the problem of reducing the accumulation of long-lived transplutonium nuclides. Along with this, the existing uranium fuel cycle (UFC) has such disadvantage as the vulnerability to unauthorized use of nuclear materials. The thorium fuel cycle (TFC) is devoid of these drawbacks. The engagement of thorium in nuclear power is possible provided the availability of an appropriate technology for reprocessing irradiated thorium. A fuel cycle based on thorium oxide may not differ in principle from the already developed pyrochemical fuel cycle involving uranium and plutonium oxides. Thorium oxide is most commonly obtained in compact state by electrolysis of molten salts from thorium-containing electrolytes. The most thorough studies of physical and chemical and electrochemical behavior of thorium in molten haloids of alkali and alkaline-earth metals were conducted in the 1960ies and the 1970ies. Since extensive experimental material has been accumulated by now for justification of the use of pyroelectrochemical and chemical processes for regeneration of fuel in molten salts, then it has also been proposed that technologies for fuel reprocessing in molten chlorides of alkali metals should be applied resulting in a crystalline product that can be used for the fuel element fabrication. Unlike uranium and plutonium, thorium behavior in molten salt environments is less complex. In molten salts, thorium exists predominantly in the form of Th4+, and the mixture of uranium and thorium dioxides with ThO2 content reaching up to 50 % can be obtained by electrolysis of molten salts. Therefore, the existing amount of knowledge about the chemistry of thorium allows regarding the use of pyrochemical processes in production of thorium oxide as highly promising, and the available data on the physical and chemical properties of thorium and its compounds in high-temperature molten salts makes it possible to state that the pyroelectrochemical technology can be potentially used in production and reprocessing of thorium fuel.
APA, Harvard, Vancouver, ISO, and other styles
4

Raaj Saasthaa Arumuga Kumar, Eeshu, Piotr Darnowski, Mihir Kiritbhai Pancholi, and Aleksandra Dzido. "Thorium application in the medium-sized sodium-cooled fast reactor." E3S Web of Conferences 137 (2019): 01030. http://dx.doi.org/10.1051/e3sconf/201913701030.

Full text
Abstract:
The report presents an analysis of the medium-sized Sodium-Cooled Fast Reactor (SFR) core with Thorium-based Mixed-Oxide fuel. The introduction of Transuranics (TRU) to the fuel was to allow long-lived nuclear waste incineration. The studied core is based on the modified Advanced Burner Reactor (ABR) 1000MWth core design, which was analysed in the OECD/NEA “Benchmark for Neutronic Analysis of Sodium-Cooled Fast Reactor Cores with Various Fuel Types and Core Sizes”. The full-core simulations with SERPENT 2.1.31 Monte Carlo computer code and ENDF library were performed, including static criticality and fuel burnup calculations for five fuel cycles. The core inventories at the Beginning of Cycle (BOC) and End of Cycle (EOC) were studied, and the impact of thorium fuel was assessed. The proposed core design is a burner reactor which uses thorium fuel. The excess core reactivity stays positive for long time despite large net consumption of transuranic elements as new fissile Uranium 233 is constantly breed from Thorium 232. Breeding of uranium allows longer fuel cycles.
APA, Harvard, Vancouver, ISO, and other styles
5

Mintz Testa, Bridget. "Thunder on the Horizon." Mechanical Engineering 139, no. 02 (2017): 38–43. http://dx.doi.org/10.1115/1.2017-feb-2.

Full text
Abstract:
This article discusses the advantageous usage of thorium-based breeder reactors in the nuclear industry. Since thorium is more abundant than uranium and can be turned into fuel without the enrichment process needed to concentrate U-235, experts believe that the thorium fuel cycle could be more sustainable than the uranium cycle. The addition of thorium to the fluid salt helps reduce uranium consumption. ThorCon, a Florida-based nuclear power startup, has developed the ThorCon reactor that will be breeding some of its own fuel by irradiating thorium. Thorium is about three times more abundant than uranium, and all of it can be used to create a fuel source for nuclear reactors. Thor Energy is developing two different families of thorium-based fuels with both U-235 and Pu-239 as the fissile driver material. The interest in thorium suggests that it is going to take an unconventional approach to lead to the much-anticipated Nuclear Renaissance.
APA, Harvard, Vancouver, ISO, and other styles
6

Wei, Chunlin, Xiuan Shi, Yongwei Yang, and Zhiwei Zhou. "ICONE19-43519 Preliminary Research on Thorium-Uranium Fuel Cycle Characteristic in PWR." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hirakawa, Naohiro. "Perspectives on Thorium Fuel Cycle Study." TRENDS IN THE SCIENCES 2, no. 11 (1997): 61–63. http://dx.doi.org/10.5363/tits.2.11_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noh, Taewan. "Technical Review on Thorium Breeding Cycle." Journal of Energy Engineering 25, no. 2 (2016): 52–64. http://dx.doi.org/10.5855/energy.2016.25.2.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lung, Michel, and Otto Gremm. "Perspectives of the thorium fuel cycle." Nuclear Engineering and Design 180, no. 2 (1998): 133–46. http://dx.doi.org/10.1016/s0029-5493(97)00296-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milian Lorenzo, Daniel Evelio, Daniel Milian Pérez, Lorena Pilar Rodríguez García, et al. "Study of Thorium Fuel Cycles for Light Water Reactor VBER-150." International Journal of Nuclear Energy 2013 (December 23, 2013): 1–9. http://dx.doi.org/10.1155/2013/491898.

Full text
Abstract:
The main objective of this paper is to examine the use of thorium-based fuel cycle for the transportable reactors or transportable nuclear power plants (TNPP) VBER-150 concept, in particular the neutronic behavior. The thorium-based fuel cycles included Th232+Pu239, Th232+U233, and Th232+U and the standard design fuel UOX. Parameters related to the neutronic behavior such as burnup, nuclear fuel breeding, MA stockpile, and Pu isotopes production (among others) were used to compare the fuel cycles. The Pu transmutation rate and accumulation of Pu with MA in the spent fuel were compared mutually and with an UOX open cycle. The Th232+U233 fuel cycle proved to be the best cycle for minimizing the production of Pu and MA. The neutronic calculations have been performed with the well-known MCNPX computational code, which was verified for this type of fuel performing calculation of the IAEA benchmark announced by IAEA-TECDOC-1349.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thorium cycle"

1

Leniau, Baptiste. "Caractérisation des sources radioactives du cycle du combustible. Applications au cycle du thorium : synthèse de l'232U en combustibles solides." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00907058.

Full text
Abstract:
Si le cycle du thorium possède plusieurs avantages par rapport au cycle U/Pu, notamment une meilleure régénération de la matière fissile en spectre thermique et une production moindre d'actinides mineurs, il présente plusieurs limites. L'une d'elles est la présence, dans le combustible thorié irradié, d'232U. Cet isotope est le précurseur d'un rayonnement γ de 2.6 MeV. Cette thèse a, en partie, pour objectif d'étudier les différents paramètres influençant la synthèse de ce noyau dans divers types de combustibles et de réacteurs.L'autre partie de ce travail consiste à estimer l'impact de cet indésirable sur la radioprotection de l'aval du cycle. Dans ce but, un ensemble d'outils, permettant le calcul des spectres énergétiques des différents rayonnements émis par la matière radioactive, a été spécialement développé. Ces outils, dont la véracité a été éprouvée par l'intermédiaire de plusieurs benchmarks, fait partie intégrante de ce travail de thèse.
APA, Harvard, Vancouver, ISO, and other styles
2

Mathieu, Ludovic. "Cycle thorium et réacteurs à sel fondu : exploration du champ des paramètres et des contraintes définissant le "Thorium Molten Salt Reactor"." Phd thesis, Grenoble INPG, 2005. http://tel.archives-ouvertes.fr/tel-00010791.

Full text
Abstract:
Le recours à l'énergie électronucléaire pour diminuer les émissions anthropiques de CO2 nécessite des avancées technologiques majeures. Les réacteurs nucléaires de IVe génération doivent répondre à plusieurs contraintes, telles qu'une sûreté améliorée, la régénération du combustible et la minimisation de la production de déchets radioactifs. De ce point de vue, l'utilisation du Cycle Thorium en Réacteurs à Sel Fondu semble prometteuse. Cet axe de recherche, étudié dans le passé, avait cependant débouché sur un concept dont les défauts ont empêché la réalisation. Une nouvelle réflexion est menée afin de trouver des solutions et d'aboutir au concept de Thorium Molten Salt Reactor. Le couplage d'un code de transport de neutrons avec un code d'évolution des matériaux permet de simuler le comportement d'un coeur nucléaire, et de suivre son évolution tout au long de sa vie. Par cette méthode, nous avons étudié un large éventail de configurations de réacteurs. Les performances de ces systèmes ont été évaluées, grâce à un jeu de contraintes qu'ils doivent satisfaire au mieux. Ce travail a permis de comprendre bon nombre de phénomènes physiques régissant le comportement de ces réacteurs. Grâce à cette nouvelle compréhension, la recherche de configurations acceptables a pu aboutir à des solutions satisfaisantes, apportant un souffle nouveau dans le domaine des Réacteurs à Sel Fondu.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Dean 1971. "Optimization of a seed and blanket thorium-uranium fuel cycle for pressurized water reactors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29956.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2003.<br>Includes bibliographical references (p. 189-194).<br>A heterogeneous LWR core design, which employs a thorium/uranium once through fuel cycle, is optimized for good economics, wide safety margins, minimal waste burden and high proliferation resistance. The focus is on the Whole Assembly Seed and Blanket (WASB) concept, in which the individual seed and blanket regions each occupy one full-size PWR assembly in a checkerboard core configuration. A Westinghouse 4-loop 1150 MWe PWR was selected as the reference plant design. The optimized heterogeneous core, after several iterations, employs 84 seed assemblies and 109 blanket assemblies. Each assembly has the characteristic 17x17 rod array. The seed fuel is composed of 20 w/o enriched annular UO2 pellets. Erbium is used in the fresh seed to help regulate local power peaking and reduce soluble boron concentrations. Erbium was evenly distributed into all pin central holes except for the peripheral pins and four corner pins of each assembly where more erbium was used due to their higher power level. The blanket fuel is a mixture of 87% ThO2 - 13% UO2 by volume, where the uranium is enriched to 10 w/o. The blanket fuel pin diameter is larger than the seed fuel pin diameter. There are two separate fuel management flows: a standard three-batch scheme is adopted for the seed (18 month cycle length) and a single-batch for the blanket, which is to stay in the core for up to 9 seed cycles. The WASB core design was analyzed by well known tools in the nuclear industry. The neutronic analysis was performed using the Studsvik Core Management System (CMS), which consists of three codes: CASMO-4, TABLES-3 and SIMULATE-3. Thermal-hydraulic analysis was performed using EPRI's VIPRE-01.<br>(cont.) Fuel performance was analyzed using FRAPCON. The radioactivity and decay heat from the spent seed and blanket fuel were studied using MIT's MCODE (which couples MCNP and ORIGEN) to do depletion calculations, and ORIGEN to analyze the spent fuel characteristics after discharge. The analyses show that the WASB core can satisfy the requirements of fuel cycle length and safety margins of conventional PWRs. The coefficients of reactivity are comparable to currently operating PWRs. However, the reduction in effective delayed neutron fraction (eff) requires careful review of the control systems because of its importance to short term power transients. Whole core analyses show that the total control rod worth of the WASB core is about 1/3 less than those of a typical PWR for a standard arrangement of Ag-In-Cd control rods in the core. The use of enriched boron in the control rods can effectively improve the control rod worth. The control rods have higher worth in the seed than in the blanket. Therefore, a new loading pattern has been designed so that almost all the control rods will be located in seed assemblies. However, the new pattern requires a redesign of the vessel head of the reactor, which is an added cost in case of retrofitting in existing PWRs. Though the WASB core has high power peaking factors, acceptable MDNBR in the core can be achieved under conservative assumptions by using grids with large local pressure loss coefficient in the blanket. However, the core pressure drop will increase by 70% ...<br>by Dean Wang.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Inoue, Yuichiro 1969. "Combining thorium with burnable poison for reactivity control of a very long cycle BWR." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17750.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2004.<br>Page 126 blank.<br>Includes bibliographical references (p. 104-106).<br>The effect of utilizing thorium together with gadolinium, erbium, or boron burnable absorber in BWR fuel assemblies for very long cycle is investigated. Nuclear characteristics such as reactivity and power distributions are evaluated using CASMO-4. Without thorium, the results show that gadolinium enriched in Gd-157 has the lowest reactivity swing throughout the cycle. However, the local peaking factor (LPF) in the assembly at beginning-of-life (BOL) is high. The erbium case shows more reactivity swing but the LPF is lowest of all three cases. B4C case has the highest reactivity at BOL which would have to be suppressed by control rods. The most important advantage of B4C over others is the saving of uranium inventory needed to achieve the target exposure of 15 effective full power years (EFPY). Further analysis for transient conditions must be performed to ensure meeting all transient limits. Use of thorium in place of some burnable poison makes it possible to save some uranium enrichment while achieving equivalent discharge burnup to the case without thorium, but only by about 1 %. The benefit is small because almost the same amount of burnable poison is always required for suppressing excess reactivity throughout the cycle. Since Th-232 functions more like U-238 than burnable poison, this limits the allowed thorium to extend discharge burnup. Since all fuel assembly designs in this study have the same target exposure of 15EFPY, the economic performance of each design can be compared based on the amount and enrichment of both uranium and burnable absorbers for each fuel design.<br>(cont.) The B4C-Al fuel is most economical in overall cost even with large uncertainties. The overall cost of gadolinium and erbium cases are concluded to be about the same when large uncertainties are considered.<br>by Yuichiro Inoue.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
5

Party, Eliot. "Etude des réactions (n, xn) pour les noyaux fertiles / fissiles du cycle du combustible innovant au Thorium." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE020.

Full text
Abstract:
Pour atteindre les objectifs de précision des simulations de réacteurs, des données nucléaires précises sont nécessaires, particulièrement pour les futurs réacteurs. Dans ce travail de thèse, une étude approfondie des réactions (n,xn) sur le 232Th a été réalisée par la méthode de la spectroscopie gamma prompte associée a la technique du temps de vol. Les sections efficaces de 81 (n,n'γ), 11(n,2nγ) et 7 (n,3nγ) ont été obtenues pour des énergies de 0,2 a 20 MeV, ce qui étend considérablement la gamme d’énergie couverte par les données expérimentales. De plus, l'impact de l’incertitude des sections efficaces sur la simulation de systèmes nucléaires a été examiné pour les isotopes du cycle du thorium 232Th et 233U en utilisant les logiciels MCNP et SERPENT. Ce travail a montré que l’incertitude sur la section efficace de diffusion inélastique (n,n’) du 232Th est la source d’incertitude principale pour plusieurs paramètres de réacteur<br>To attain target precisions in reactor simulation, accurate nuclear data are needed, especially for future reactors. In this work, a thorough study of (n,xn) reactions on 232Th has been realised using prompt gamma spectroscopy associated with time of flight method. Cross sections of 81 (n,n'γ), 11 (n,2nγ) and 7 (n,3nγ) have been obtained for energies from 0,2 to 20 MeV, thus expanding considerably the energy range covered by experimental data. Moreover, the influence of cross sections’ uncertainties on nuclear system simulation has been studied for thorium fuel cycle isotopes 232Th and 233U using MCNP and SERPENT codes. This work has shown that uncertainty on inelastic scattering (n,n’) for 232Th is the main contributors to uncertainty of several reactor parameters
APA, Harvard, Vancouver, ISO, and other styles
6

Ferrant, Laure. "Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium à n_TOF." Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00011454.

Full text
Abstract:
Dans le contexte des études sur les systèmes innovants de production d'énergie, des réacteurs exploitant le combustible thorium sont envisagés. Les sections efficaces de fission induite par neutrons des actinides qui y sont engagés entrent en jeu dans les simulations de scénarios. Pour les alimenter, des bases de données sont produites à partir de résultats expérimentaux et de modèles. Pour certains noyaux, elles présentent des lacunes ou des désaccords. Pour compléter ces bases de données, nous avons construit un dispositif original constitué d'une alternance de PPACs(chambres à avalanches sur plaques parallèles) et des cibles ultra-minces, que nous avons installé auprès de l'installation n_TOF. Nous décrivons les détecteurs, le montage, et le soin apporté à la fabrication et à la caractérisation des cibles. La détection en coïncidence des produits de fission se fait grâce à des mesures de temps très précises et à leur localisation par la méthode de la ligne à retard. Nous avons contribué, au sein de la collaboration n_TOF, à la caractérisation de la nouvelle source intense de neutrons de spallation du CERN, basée sur le temps de vol des neutrons, et nous en décrivons les caractéristiques et les performances. Nous avons pu mener des mesures sur les actinides ^{232}Th, ^{234}U, ^{233}U, ^{237}Np, ^{209}Bi, et ^{nat}Pb relativement aux références ^{235}U et ^{238}U, en utilisant un système d'acquisition innovant. Nous avons pu tirer parti du large domaine d'énergie accessible, de 0,7 eV à 1 GeV, et de l'excellente résolution dans ce domaine. Le traitement des données et l'état d'avancée de l'analyse sont décrits afin d'éclairer les performances et les limites des résultats obtenus.
APA, Harvard, Vancouver, ISO, and other styles
7

Vermeulen, Mark James. "Measurement of the ²³⁶U(n,γ) cross section for the thorium fuel cycle at the CERN n_TOF facility". Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/9681/.

Full text
Abstract:
This manuscript details the successful measurement, and subsequent analysis, of the uranium-236(n,g) radiative capture kernels in the resolved resonance region, of importance to the thorium fuel cycle. The experiment took advantage of the convenient features of the CERN n_TOF facility. Features such as a fully digital DAQ, high instantaneous neutron flux, and the powerful background rejection capabilities offered by the BaF2 Total Absorption Calorimeter (TAC) detector, owing to its near 4 pi solid angle coverage and high segmentation. These features, coupled with a high purity (99.85%) U-236 sample, resulted in the successful measurement of the radiative kernels to within 10%. Having successfully extracted the radiative kernels up to 1500 eV with the R-matrix code SAMMY, and accounted for all sources of uncertainty, is was possible to quantify the total uncertainty for the radiative kernels. In this manner, the uncertainties were found to range from 2.3%, for resonances with little scattering and pile-up, to 5.3% for resonances with more significant scattering and pile-up effects. Hence not only was the goal of achieving the requested accuracy of 10% achieved, but even reaching the desired 5%. Given the limited data available for this reaction, it is of value to be able to contribute the results of the current work to the nuclear data community to bolster the information currently available for the U-236 neutron capture cross section. Comparison with the latest versions of three of the major libraries, our cross section is in overall agreement with JEFF-3.2, 6% larger than JENDL-4.0 and 20% larger than ENDF/B-VII.1. These are sizable differences considering our accuracy of just 2-5%, suggesting that some revision of the libraries may be in order.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindley, Benjamin A. "The use of reduced-moderation light water reactors for transuranic isotope burning in thorium fuel." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247162.

Full text
Abstract:
Light water reactors (LWRs) are the world’s dominant nuclear reactor system. Uranium (U)-fuelled LWRs produce long-lived transuranic (TRU) isotopes. TRUs can be recycled in LWRs or fast reactors. The thermal neutron spectrum in LWRs is less suitable for burning TRUs as this causes a build-up of TRU isotopes with low fission probability. This increases the fissile feed requirements, which tends to result in a positive void coefficient (VC) and hence the reactor is unsafe to operate. Use of reduced-moderation LWRs can improve TRU transmutation performance, but the VC is still severely limiting for these designs. Reduced-moderation pressurized water reactors (RMPWRs) and boiling water reactors (RBWRs) are considered in this study. Using thorium (Th) instead of U as the fertile fuel component can greatly improve the VC. However, Th-based transmutation is a much less developed technology than U-based transmutation. In this thesis, the feasibility and fuel cycle performance of full TRU recycle in Th-fuelled RMPWRs and RBWRs are evaluated. Neutronic performance is greatly improved by spatial separation of TRU and 233-6U, primarily implemented here using heterogeneous RMPWR and RBWR assembly designs. In a RMPWR, the water to fuel ratio must be reduced to around 50% of the normal value to allow full actinide recycle. If implemented by retrofitting an existing PWR, steady-state thermal-hydraulic constraints can still be satisfied. However, in a large break loss-of-coolant accident, the emergency core cooling system may not be able to provide water to the core quickly enough to prevent fuel cladding failure. A discharge burn-up of ~40 GWd/t is possible in RMPWRs. Reactivity control is a challenge due to the reduced worth of neutron absorbers in the hard neutron spectrum, and their detrimental effect on the VC, especially when diluted, as for soluble boron. Control rods are instead used to control the core. It appears possible to achieve adequate power peaking, shutdown margin and rod-ejection accident response. In RBWRs, it appears neutronically feasible to achieve very high burn-ups (~120 GWd/t) but the maximum achievable incineration rate is less than in RMPWRs. The reprocessing and fuel fabrication requirements of RBWRs are less than RMPWRs but more than fast reactors. A two-stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a second stage continuous burn in a RBWR, is technically reasonable. It is possible to limit the core area to that of an ABWR with acceptable thermal-hydraulic performance. In this case, it appears that RBWRs are of similar cost to inert matrix incineration in LWRs, and lower cost than RMPWRs and Th- and U-based fast reactor recycle schemes.
APA, Harvard, Vancouver, ISO, and other styles
9

Boyer, Sébastien. "Dans le cadre du nouveau cycle de combustible ²³²Th/²³³U, détermination de la section efficace de capture radiative ²³³Pa(n,γ) pour des énergies de neutrons comprises entre 0 et 1 MeV". Bordeaux 1, 2004. http://www.theses.fr/2004BOR12862.

Full text
Abstract:
Dans l'optique d'un développement durable du nucléaire, un des thèmes de recherche du CNRS dicté par la loi Bataille de 1991, est l'étude d'une nouvelle filière nucléaire utilisant un combustible à base de minerai de Thorium (232Th) où le noyau fissile est l'233U. Le principal intérêt de ce type de combustible réside dans sa particularité de produire les déchets transuraniens en beaucoup plus faible quantité que les réacteurs à eau pressurisée actuels. Cependant certaines données nucléaires importantes concernant cette nouvelle filière sont très mal connues comme par exemple celles relatives au noyau charnière Protactinium 233 (233Pa). Sa période de 27 jours lui confère un rôle particulier dans le cycle mais en raison de sa trop forte activité l'étude de ce noyau relève du défi expérimental. Pour contourner cette difficulté, la probabilité d'émission de rayonnements gamma dans la réaction induite par neutrons 233Pa(n,γ) entre 0 et 1 MeV d'énergie neutron a été déterminée à partir de la réaction de transfert 232Th(3He,p)234Pa*. Le dispositif de mesure permettait d'identifier la particule de sortie signant ainsi la voie de réaction tandis que des scintillateurs de type C6D6 permettaient la détection en coi͏̈ncidence des rayonnements gamma émis. La méthode d'analyse des évènements gamma a nécessité la pondération des spectres de photons par des fonctions mathématiques calculées dites "fonctions de poids". Leurs déterminations requièrent néanmoins une connaissance parfaite du comportement des scintillateurs (efficacité, fonctions de réponse) dans la géométrie choisie. Pour ce faire une étude préliminaire a été réalisée à l'aide de sources gamma et avec des réactions induites par protons sur des noyaux légers. Les simulations utilisant le code de transport MCNP ont été validées par les résultats expérimentaux.
APA, Harvard, Vancouver, ISO, and other styles
10

Nuttin, Alexis. "Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté." Habilitation à diriger des recherches, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00711063.

Full text
Abstract:
Le niveau de conversion des réacteurs CANDU et REP en cycle thorium a été étudié dans l'optique d'une utilisation en troisième et dernière strate de scénarios symbiotiques. Le plutonium du combustible REP usé serait par exemple utilisé en CANDU Th/Pu pour produire de l'233U, qui alimenterait ces réacteurs à eau et haute conversion. En cas d'augmentation importante de la production d'énergie à partir d'uranium, cette alternative basée sur des réacteurs existants pourrait suppléer une IVe génération trop tardive. Pour évaluer la compétitivité de tels scénarios, des calculs de cycles détaillés ont été effectués selon une méthodologie de simulation de coeur développée pour le CANDU-6 et adaptée au REP de type N4. Le CANDU Th/233U enrichi à 1.30 wt% est régénérateur, avec un burnup court de 7 GWj/t. Augmenter légèrement l'enrichissement allonge considérablement le cycle, au prix d'une sous-génération. Multirecycler conduit également à une perte de conversion, qui peut néanmoins être compensée par un chargement fissile hétérogène. La conversion à puissance standard est moins bonne en REP Th/233U qu'en CANDU (inventaire fissile réduit de moitié après 50 GWj/t) mais peut être améliorée par sous-modération. L'analyse neutronique montre que l'essentiel du gap de conversion entre CANDU et REP vient des conditions opératoires économes en neutrons du CANDU. Des scénarios ont été comparés du point de vue de l'économie d'uranium et de l'aval du cycle dans les deux cas, et ont confi rmé l'intérêt du CANDU. Deux pistes de recherche ont été identi fiées : l'évaluation de la sûreté des CANDUs au thorium par cinétique avec contre-réactions thermiques, et l'étude de coeurs fortement sous-modérés en cuve standard de REP.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Thorium cycle"

1

Ade, Brian. Safety and regulatory issue of the thorium fuel cycle. United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

S, Ganesan. A review of the current status of nuclear data for major and minor isotopes of thorium fuel cycle. Bhabha Atomic Research Centre, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agency, International Atomic Energy, ed. Thorium fuel cycle: Potential benefits and challenges. International Atomic Energy Agency, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Introduction of Thorium in the Nuclear Fuel Cycle. OECD, 2015. http://dx.doi.org/10.1787/9789264241732-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

K, Basu T., Srinivasan M, and India Atomic Energy Commission, eds. Thorium fuel cycle development activities in India: A decade of progress, 1981-1990. Bhabha Atomic Research Centre, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thorium Fuel Cycle - Potential Benefits And Challenges: Iaea Tecdoc Series #1450. Intl Atomic Energy Agency, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Potential of Thorium Based Fuel Cycles to Constrain Plutonium and Reduce Long Lived Waste Toxicity (IAEA-Tecdoc Series). International Atomic Energy Agency, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thorium cycle"

1

Basak, Uddharan. "Thorium Fuel Cycle Activities in IAEA." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mathers, Daniel, and Kevin Hesketh. "A View on the Thorium Fuel Cycle." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kadi, Yacine. "Thorium-Fuel Cycle and Transmutation (Sessions 6, 7)." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Greneche, Dominique. "The Thorium Fuel Cycle: Past Achievements and Future Prospects." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tak, Taewoo, Jiwon Choe, Yongjin Jeong, Jinsu Park, Deokjung Lee, and T. K. Kim. "Power Flattening Study of Ultra-Long Cycle Fast Reactor Core." In Thorium—Energy for the Future. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2658-5_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baldova, D., and E. Fridman. "High-Conversion Th-U-233 Fuel Cycle for Current Generation in PWRs." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sehgal, Bal Raj. "Feasibility and Desirability of Employing the Thorium Fuel Cycle for Power Generation." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krepel, J., B. Hombourger, V. Bykov, C. Fiorina, K. Mikityuk, and A. Pautz. "Paul Scherrer Institute’s Studies on Advanced Molten Salt Reactor Fuel Cycle Options." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Haicheng, Zhigang Ge, Weixiang Yu, et al. "Nuclear Data Development Related to the Th–U Fuel Cycle in China." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ganesan, S. "Nuclear Data Development Related to the Th–U Fuel Cycle in India." In Thorium Energy for the World. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26542-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thorium cycle"

1

Downar, Thomas J., Sean M. McDeavitt, S. T. Revankar, A. A. Solomon, and T. K. Kim. "Thoria-Based Cermet Nuclear Fuel: Neutronics Fuel Design and Fuel Cycle Analysis." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22305.

Full text
Abstract:
Cermet nuclear fuels have significant potential to enhance fuel performance because of low internal fuel temperatures and low stored energy. The combination of these benefits with the inherent proliferation resistance, high burnup capability, and favorable neutronic properties of the thorium fuel cycle provide intriguing options for using thoria based cermet nuclear fuel in advanced nuclear fuel cycles. This paper describes aspects of a Nuclear Energy Research Initiative (NERI) project with two primary goals: (1) Evaluate the feasibility of implementing the thorium fuel cycle in existing or advanced reactors using a zirconium-matrix cermet fuel, and (2) Develop enabling technologies required for the economic application of this new fuel form. The following paper will first describe the fuel thermal performance model developed for the analysis of dispersion metal matrix fuels. The model will then be applied to the design and analysis of thorium/uranium/zirconium metal matrix fuel pins for light water reactors using neutronic simulation methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Subkhi, Moh Nurul, Zaki Su'ud, and Abdul Waris. "Design study of long-life PWR using thorium cycle." In THE 3RD INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING 2011: ICANSE 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4725443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boczar, Peter G., Bronwyn Hyland, Keith Bradley, and Sermet Kuran. "Achieving Resource Sustainability in China Through the Thorium Fuel Cycle in the Candu Reactor." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29664.

Full text
Abstract:
The CANDU® reactor is the most resource-efficient reactor commercially available. The features that enable the CANDU reactor to utilize natural uranium facilitate the use of a wide variety of thorium fuel cycles. In the short term, the initial fissile material would be provided in a “mixed bundle”, in which low-enriched uranium (LEU) would comprise the outer two rings of a CANFLEX® bundle, with ThO2 in the central 8 elements. This cycle is economical, both in terms of fuel utilization and fuel cycle costs. The medium term strategy would be defined by the availability of plutonium and recovered uranium from reprocessed used LWR fuel. The plutonium could be used in Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. Recovered uranium could also be effectively utilized in CANDU reactors. In the long term, the full energy potential from thorium could be realized through the recycle of the U-233 (and thorium) in the used CANDU fuel. Plutonium would only be required to top up the fissile content to achieve the desired burnup. Further improvements to the CANDU neutron economy could make possible a very close approach to the Self-Sufficient Equilibrium Thorium (SSET) cycle with a conversion ratio of unity, which would be completely self-sufficient in fissile material (recycled U-233).
APA, Harvard, Vancouver, ISO, and other styles
4

Moir, R. W. "Fission-suppressed fusion breeder on the thorium cycle and nonproliferation." In FUSION FOR NEUTRONS AND SUBCRITICAL NUCLEAR FISSION: Proceedings of the International Conference. AIP, 2012. http://dx.doi.org/10.1063/1.4706890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xia, Bing, and Fu Li. "Preliminary Study on the Feasibility of Utilizing the Thermal Fissile Breeding Capability of the Th-U Fuel Cycle in HTR-PM." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16460.

Full text
Abstract:
HTR-PM is a demonstration plant of the modular high temperature reactor with two pebble-bed cores of 250 MWth. Since the early HTRs, such as AVR and THTR in Germany, thorium-based fuel has been regarded as an important fueling option. In this work, the feasibility of maximizing thorium utilization and minimizing the refueling effort of uranium fissile under the framework of HTR-PM is investigated. The preliminary neutronics features of the Th-233U fuel cycle in the equilibrium state of the HTR-PM are analyzed. Two types of fuel loading schemes are considered: the ThU-MOX scheme, namely the so-called “ThOX” fuel in literatures, and the SEP scheme, which means “separate” fuel pebbles loaded with thorium oxide and uranium oxide, respectively. The ThU-MOX scheme utilizes the mixed Th+HEU oxide fuel particles in all the fuel pebbles in the core, in which the enrichment of HEU is 93%. The SEP scheme utilizes the separate thorium pebbles and LEU pebbles mixed homogeneously in the core. The preliminary results on the ThU-MOX scheme indicate that thorium mixed with HEU in the fuel particle can lower the 235U loading requirement per energy generated, compared with the normal LEU loading scheme of the HTR-PM, and enhance the safety performance for high heavy metal loading cases. On the other hand, the results of SEP scheme reveal that the self shielding effect of the thorium particles depresses the absorption of thorium and the utilization of 233U. However, the situation can be improved by lengthening the residence time of the thorium pebbles. Furthermore, more realistic features are investigated as the basis of future works, including the initial core and the running-in phase, the impact of control poisons.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Ganglin, and Kan Wang. "Research on the Radioactivity of Thorium Fuel in Different Reactors." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48671.

Full text
Abstract:
It’s very important to estimate the mass and radiotoxicity of isotopes in spent fuel of thorium fuel cycle, which will benefit the application of the thorium fuel. Much research work has been done on the spent fuel and radioactivity of thorium-based fuel before, yet the difference in usage is always ignored. This paper studies the raise of isotopes in spent fuel of thorium-based fuel cycle in pressurized water reactors and fast neutron reactors, focus on the radioactivity level of actinides and fission products, the important nuclides which have long term radiological impact or give the highest contribution to the total dose on short term after different decay periods. The paper discuss the important nuclides in the measurement of thorium fuel burnup, the conclusion will benefit the actual application of thorium fuel.
APA, Harvard, Vancouver, ISO, and other styles
7

Raitses, Gilad, Michael Todosow, and Alex Galperin. "Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75898.

Full text
Abstract:
Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a “conventional” assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical “blanket”) and the “driving” part of the core (a supercritical “seed”). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER’s/PWR’s. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the amount of discharged spent fuel, for a given energy production, compared with standard VVER/PWR. The total Pu production rate of RTF cycles is only 30% of standard reactor. In addition, the isotopic compositions of the RTF’s and standard reactor grade Pu are markedly different due to the very high burnup accumulated by the RTF spent fuel.
APA, Harvard, Vancouver, ISO, and other styles
8

Cerullo, Nicola, Giovanni Guglielmini, and A. Di Pietro. "Thorium Cycle in High Temperature Gas-Cooled Gas Turbine Reactors (HTG-GT) Using Highly Enriched Uranium Obtained From the Dismantling of Nuclear Weapons." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-099.

Full text
Abstract:
The closed thorium fuel cycle is based on the use of fissile U-233 produced by the thorium fertilization in the original fuel element without any refabrication action, which is very difficult, due to the high activity of Thorium activated products. The need of a consistent amount of fissile material for beginning the U-Th cycle activity, in order to sustain the Thorium conversion reactions, requires an high initial U-235 enrichment. This condition, due to high investment costs, stopped, in the last years, any initiative in this field. The end of the cold war and the disarmament agreements pose the problem of the use of military grade fissile materials resulting from the dismantling of nuclear weapons both Russian and American. In this paper the problem is analyzed and a High Temperature Gas-cooled Gas Turbine (HTG-GT) reactor, using a nuclear U-Th fuel cycle utilizing military grade highly enriched uranium, is proposed.
APA, Harvard, Vancouver, ISO, and other styles
9

McINTYRE, PETER, and AKHDIYOR SATTAROV. "ACCELERATOR-DRIVEN THORIUM-CYCLE FISSION: GREEN NUCLEAR POWER FOR THE NEW MILLENNIUM." In Proceedings of the Fifth International Conference – Beyond 2010. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340861_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerasimov, Aleksander S., Boris R. Bergelson, and Tamara S. Zaritskaya. "Two Periods of Long-Term Storage of Thorium Spent Fuel." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1219.

Full text
Abstract:
Abstract Radiotoxicity and decay heat power of actinides from spent thorium-uranium nuclear fuel of VVER-1000 type reactor during 100 000 year storage are discussed. Actinide accumulation in thorium fuel cycle is much less than in uranium fuel cycle. The radiotoxicity of actinides of thorium-uranium fuel by air is 5.5 times less and radiotoxicity by water is 3.5 times less than radiotoxicity of actinides of uranium fuel. Extraction of most important nuclides for transmutation permits to reduce radiologic danger of wastes remaining in storage.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thorium cycle"

1

Ade, Brian, Andrew Worrall, Jeffrey Powers, Steve Bowman, George Flanagan, and Jess Gehin. Safety and Regulatory Issues of the Thorium Fuel Cycle. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1146984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krahn, Steven, Timothy Ault, and Andrew Worrall. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1400239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Author, Not Given. Analysis of the Thorium Fuel Cycle Report on Potential Advantages and Uncertainties of the Thorium Seed Blanket Unit Fuel Concept. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1033561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Worrall, Louise, Vlad Henzl, Alicia Swift, et al. Safeguards Technology for Thorium Fuel Cycles: Research and Development Needs Assessment and Recommendations. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1818724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography