Academic literature on the topic 'Three-dimensional solitons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Three-dimensional solitons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Three-dimensional solitons"

1

Liu, Siyao. "Algebraic Schouten Solitons of Three-Dimensional Lorentzian Lie Groups." Symmetry 15, no. 4 (2023): 866. http://dx.doi.org/10.3390/sym15040866.

Full text
Abstract:
In 2016, Wears defined and studied algebraic T-solitons. In this paper, we define algebraic Schouten solitons as a special T-soliton and classify the algebraic Schouten solitons associated with Levi-Civita connections, canonical connections, and Kobayashi–Nomizu connections on three-dimensional Lorentzian Lie groups that have some product structure.
APA, Harvard, Vancouver, ISO, and other styles
2

De, Uday Chand, and Chiranjib Dey. "On Three Dimensional Cosymplectic Manifolds Admitting Almost Ricci Solitons." Tamkang Journal of Mathematics 51, no. 4 (2020): 303–12. http://dx.doi.org/10.5556/j.tkjm.51.2020.3077.

Full text
Abstract:
In the present paper we study three dimensional cosymplectic manifolds admitting almost Ricci solitons. Among others we prove that in a three dimensional compact orientable cosymplectic manifold M^3 withoutboundary an almost Ricci soliton reduces to Ricci soliton under certain restriction on the potential function lambda. As a consequence we obtain several corollaries. Moreover we study gradient almost Ricci solitons.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhmudskii, A. A., and B. A. Ivanov. "Magnon bubbles: a new type of three-dimensional magnetic soliton." Soviet Journal of Low Temperature Physics 12, no. 6 (1986): 367–68. https://doi.org/10.1063/10.0031524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meng, Yong, Hafiz Wajahat Ahmed Riaz, and Ji Lin. "New types of nondegenerate solitons for a (2+1)-dimensional coupled system*." Communications in Theoretical Physics 77, no. 9 (2025): 095001. https://doi.org/10.1088/1572-9494/adc240.

Full text
Abstract:
Abstract In this paper, we investigate the (2+1)-dimensional three-component long-wave-short-wave resonance interaction system, which describes complex systems and nonlinear wave phenomena in physics. By employing the Hirota bilinear method, we derive the general nondegenerate N-soliton solution of the system, where each short-wave component contains N arbitrary functions of the independent variable y. The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types. Finally, we illustrate the structural features of several novel nondegenerate solitons, including M-shaped, multiple double-hump, and sawtooth double-striped solitons, as well as interactions between nondegenerate solitons, such as dromion-like solitons and solitoffs, with the aid of figures.
APA, Harvard, Vancouver, ISO, and other styles
5

Mondal, Ashis. "Three-dimensional para-Kenmotsu manifolds admitting eta-Ricci solitons." Gulf Journal of Mathematics 11, no. 2 (2021): 44–52. http://dx.doi.org/10.56947/gjom.v11i2.584.

Full text
Abstract:
In the present paper we study η-Ricci solitons on three-dimensional para-Kenmotsu manifolds with the curvature condition R.Q=0. Also we study conformal flat, projectively flat and concircularly flat η-Ricci soliton on a three-dimensional para-Kenmotsu manifold. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits η-Ricci solitons.
APA, Harvard, Vancouver, ISO, and other styles
6

FERRETTI, G., S. G. RAJEEV, and Z. YANG. "BARYONS AS SOLITONS IN THREE-DIMENSIONAL QUANTUM CHROMODYNAMICS." International Journal of Modern Physics A 07, no. 32 (1992): 8001–19. http://dx.doi.org/10.1142/s0217751x92003628.

Full text
Abstract:
We show that baryons of three-dimensional quantum chromodynamics can be understood as solitons of its effective Lagrangian. In the parity-preserving phase we study, these baryons are fermions for odd Nc and bosons for even Nc, never anyons. We quantize the collective variables of the solitons and thereby calculate the flavor quantum numbers. magnetic moments and mass splittings of the baryon. The flavor quantum numbers are in agreement with naive quark model for the low-lying states. The magnetic moments and mass splittings are smaller in the soliton model by a factor of logFπ/Ncmπ. We also show that there is a dibaryon solution that is an analog of the deuteron. These solitons can describe defects in a quantum antiferromagnet.
APA, Harvard, Vancouver, ISO, and other styles
7

Turan, Mine, Chand De, and Ahmet Yildiz. "Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds." Filomat 26, no. 2 (2012): 363–70. http://dx.doi.org/10.2298/fil1202363t.

Full text
Abstract:
The object of the present paper is to study 3-dimensional trans-Sasakian manifolds admitting Ricci solitons and gradient Ricci solitons. We prove that if (1,V, ?) is a Ricci soliton where V is collinear with the characteristic vector field ?, then V is a constant multiple of ? and the manifold is of constant scalar curvature provided ?, ? =constant. Next we prove that in a 3-dimensional trans-Sasakian manifold with constant scalar curvature if 1 is a gradient Ricci soliton, then the manifold is either a ?-Kenmotsu manifold or an Einstein manifold. As a consequence of this result we obtain several corollaries.
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Dianchen, Aly R. Seadawy, and Iftikhar Ahmed. "Applications of mixed lump-solitons solutions and multi-peaks solitons for newly extended (2+1)-dimensional Boussinesq wave equation." Modern Physics Letters B 33, no. 29 (2019): 1950363. http://dx.doi.org/10.1142/s0217984919503639.

Full text
Abstract:
In this work, based on the Hirota bilinear method, mixed lump-solitons solutions and multi-peaks solitons are derived for a new extended (2[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq equation by using ansatz function technique with symbolic computation. Through the mixed lump-solitons, we obtained two types of interaction phenomena, first from lump-single soliton solution and other from lump-two soliton solutions and their dynamics is given by three-dimensional plots and two-dimensional contour plots by taking appropriate values of given parameters. Furthermore, we obtained new patterns of multi-peaks solitons.
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Yan, Bo Tian, Hui-Ling Zhen, Xiao-Yu Wu, and Xi-Yang Xie. "Soliton solutions for a (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a plasma." Modern Physics Letters B 30, no. 20 (2016): 1650213. http://dx.doi.org/10.1142/s0217984916502134.

Full text
Abstract:
Under investigation in this paper is a (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation, which describes the nonlinear behaviors of ion-acoustic waves in a magnetized plasma where the cooler ions are treated as a fluid with adiabatic pressure and the hot isothermal electrons are described by a Boltzmann distribution. With the Hirota method and symbolic computation, we obtain the one-, two- and three-soliton solutions for such an equation. We graphically study the solitons related with the coefficient of the cubic nonlinearity [Formula: see text]. Amplitude of the one soliton increases with increasing [Formula: see text], but the width of one soliton keeps unchanged as [Formula: see text] increases. The two solitons and three solitons are parallel, and the amplitudes of the solitons increase with increasing [Formula: see text], but the widths of the solitons are unchanged. It is shown that the interactions between the two solitons and among the three solitons are elastic.
APA, Harvard, Vancouver, ISO, and other styles
10

Aburdzhaniya, G. D., V. P. Lakhin, and A. B. Mikhailovskii. "Nonlinear regular structures of drift magneto-acoustic waves." Journal of Plasma Physics 38, no. 3 (1987): 373–86. http://dx.doi.org/10.1017/s0022377800012666.

Full text
Abstract:
Nonlinear regular structures in a magnetized plasma connected with drift magneto-acoustic waves (DMA) are investigated theoretically. Three-dimensional nonlinear equations of weakly dispersive DMA waves are obtained. These equations contain both the scalar nonlinearity and the vector one, and generalize the two-dimensional Kadomtsev–Petviashvili (KP) equation. The existence is shown of regular stationary structures due to the scalar nonlinearity: one-dimensional solitons, two-dimensional rational solitons, chains of solitons and so-called ‘crosses’. The stability of one-dimensional DMA solitons is investigated. It is shown that soliton stability depends on the sign of the wave dispersion as in the case of systems described by the KP-type equation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Three-dimensional solitons"

1

Roush, Douglas L. "Three-dimensional analysis of Azimuthal dependence of sound propagation through shallow-water internal solitary waves." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FRoush.pdf.

Full text
Abstract:
Thesis (M.S. in Meteorology and Physical Oceanography)--Naval Postgraduate School, June 2006.<br>Thesis Advisor(s): John A. Colosi. "June 2006." Includes bibliographical references (p.43). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramos, Guallar Daniel. "Ricci flow on cone surfaces and a three-dimensional expanding soliton." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/133325.

Full text
Abstract:
El principal objectiu d'aquesta tesi és l'estudi de l'evolució mitjançant el flux de Ricci de superfícies amb singularitats de tipus cònic. Un segon objectiu, sorgit de les tècniques que utilitzem, és l'estudi de famílies de solitons del flux de Ricci en dimensió 2 i 3. El flux de Ricci és una equació d'evolució per a varietats Riemannianes, introduïda per R. Hamilton el 1982. És des dels avenços assolits per G. Perelman amb aquesta tècnica el 2002 quan el flux de Ricci s'ha establert com a una disciplina pròpia, aixecant un gran interès per la comunitat. Aquesta tesi conté quatre resultats originals. El primer resultat és una classificació exhaustiva dels solitons en superfícies llises i còniques. Amb aquesta classificació completem els precedents trobats per Hamilton, Chow i Wu entre d'altres, i obtenim descripcions explícites de tots els solitons en dimensió 2. El segon resultat és una Geometrització de les superfícies còniques mitjançant el flux de Ricci. Aquest resultat, que utilitza el primer resultat ja esmentat, estén la teoria de Hamilton al cas singular. Aquest és el resultat més extens, per al qual fem servir i desenvolupem tècniques tant d'anàlisi i EDPs com de geometria de comparació . El tercer resultat és l'existència d'un flux de Ricci que elimina les singularitats còniques . Això exposa clarament la no unicitat de solucions al flux, en analogia als fluxos de Ricci amb cusps de P. Topping . El quart resultat és la construcció d'un nou solitó gradient expansiu en dimensió 3. De la mateixa manera que amb els solitons cònics, donem una construcció explícita utilitzant tècniques de retrats de fase. Demostrem també que és l'únic solitó amb la seva topologia i la seva cota inferior de la curvatura, i que és un cas crític entre tots els solitons expansius en dimensió 3 amb curvatura acotada inferiorment. A més, mostrem que l'evolució de la seva curvatura escalar no és monòtona.<br>El principal objetivo de esta tesis es el estudio de la evolución mediante el flujo de Ricci de superficies con singularidades de tipo cónico. Un segundo objetivo, surgido de las técnicas que utilizamos, es el estudio de familias de solitones del flujo de Ricci en dimensión 2 y 3. El flujo de Ricci es una ecuación de evolución para variedades Riemannianas, introducida por R. Hamilton en 1982. Es desde los logros alcanzados por G. Perelman con esta técnica en 2002 cuando el flujo de Ricci se ha establecido en una disciplina propia, despertando un gran interés en la comunidad. Esta tesis contiene cuatro resultados originales. El primer resultado es una clasificación exhaustiva de los solitones en superficies lisas y cónicas. Con esta clasificación completamos los precedentes hallados por Hamilton, Chow y Wu entre otros, y obtenemos descripciones explícitas de todos los solitones en dimensión 2. El segundo resultado es una Geometrización de las superficies cónicas mediante el flujo de Ricci. Este resultado, que utiliza el primer resultado ya mencionado, extiende la teoría de Hamilton al caso singular. Este es el resultado más extenso, para el que usamos y desarrollamos técnicas tanto de análisis y EDPs como de geometría de comparación. El tercer resultado es la existencia de un flujo de Ricci que elimina las singularidades cónicas. Esto expone claramente la no unicidad de soluciones al flujo, en analogía a los flujos de Ricci con cúspides de P. Topping. El cuarto resultado es la construcción de un nuevo solitón gradiente expansivo en dimensión 3. Del mismo modo que con los solitones cónicos, damos una construcción explícita utilizando técnicas de retratos de fase. Demostramos también que es el único solitón con su topología y su cota inferior de la curvatura, y que es un caso crítico entre todos los solitones expansivos en dimensión 3 con curvatura acotada inferiormente. Además, mostramos que la evolución de su curvatura escalar no es monótona.<br>The main objective of this thesis is the study of the evolution under the Ricci flow of surfaces with singularities of cone type. A second objective, emerged from the techniques we use, is the study of families of Ricci flow solitons in dimension 2 and 3. The Ricci flow is an evolution equation for Riemannian manifolds, introduced by R. Hamilton in 1982. It is from the achievements made by G. Perelman with this technique in 2002 when the Ricci flow has been established in a discipline itself, generating a great interest in the community. This thesis contains four original results. First result is a complete classification of solitons in smooth and cone surfaces. This cllassification completes the preceding results found by Hamilton, Chow and Wu and others, and we obtain explicit descriptions of all solitons in dimension 2. Second result is a Geometrization of cone surfaces by Ricci flow. This result, which uses the aforementioned first result, extends the theory of Hamilton to the singular case. This is the most comprehensive result in the thesis, for which we use and develop analysis and PDE techniques, as well as comparison geometry techniques. Third result is the existence of a Ricci flow that removes cone singularities. This clearly exposes the non-uniqueness of solutions to the flow , in analogy to the Ricci flow with cusps of P. Topping. The fourth result is the construction of a new expanding gradient Ricci soliton in dimension 3. Just as we do with solitons on cone surfaces, we give an explicit construction using techniques of phase portraits. We also prove that this is the only soliton with its topology and its lower bound of the curvature, and besides this is a critical case amongst all expanding solitons in dimension 3 with curvature bounded below. Furthermore, we show that the evolution of its scalar curvature is not monotone.
APA, Harvard, Vancouver, ISO, and other styles
3

Ніколенко, Валентина Володимирівна, Валентина Владимировна Николенко, Valentyna Volodymyrivna Nikolenko та Е. Н. Хряпина. "Трехмерные солитоны". Thesis, Издательство СумГУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/8114.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Three-dimensional solitons"

1

Davydov, A. S. "Three-Dimensional Solitons (Polarons) In Ionic Crystals." In Solitons in Molecular Systems. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3340-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davydov, A. S. "Three-Dimensional Solitons (Polarons) in Ionic Crystals." In Solitons in Molecular Systems. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-3025-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ioannidou, T., B. Piette, and W. Zakrzewski. "Three dimensional skyrmions and harmonic maps." In Bäcklund and Darboux Transformations. The Geometry of Solitons. American Mathematical Society, 2001. http://dx.doi.org/10.1090/crmp/029/24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saitoh, N. "Three-Dimensional Lattice Model Based on Soliton Theory." In Nonlinear Physics. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84148-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barthelemy, A., C. Froehly, M. Shalaby, P. Donnat, J. Paye, and A. Migus. "Soliton-Like Self-Trapping of Three-Dimensional Patterns." In Ultrafast Phenomena VIII. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84910-7_91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhonghao, Li, and Zhou Guosheng. "Optical Soliton Solutions in Three Dimensional Bulk Dispersive Linear Media." In Coherence and Quantum Optics VII. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dunajski, Maciej. "Integrability of ASDYM and twistor theory." In Solitons, Instantons, and Twistors, 2nd ed. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198872535.003.0007.

Full text
Abstract:
Abstract In this chapter we explore the integrability of anti-self-dual Yang-Mills equations (ASDYM) using twistor methods. The twistor transform is a far-reaching generalization of the inverse scattering transform studied in Chapter 2. All local solutions to the ASDYM equations are parameterized by certain holomorphic vector bundles over a three-dimensional complex manifold called the twistor space.
APA, Harvard, Vancouver, ISO, and other styles
8

Dunajski, Maciej. "Lagrangian formalism and field theory." In Solitons, Instantons, and Twistors. Oxford University PressOxford, 2009. http://dx.doi.org/10.1093/oso/9780198570622.003.0005.

Full text
Abstract:
Abstract Our treatment of integrable systems in the first three chapters made essential use of the Hamiltonian formalism both in finite and infinite dimensional settings. In the next two chapters we shall concentrate on classical field theory, where the covariant formulation requires the Lagrangian formalism. It is assumed that the reader has covered the Lagrangian treatment of classical mechanics and classical field theory at the basic level [102, 187]. The aim of this chapter is not to provide a crash course in these subjects, but rather to introduce less standard aspects.
APA, Harvard, Vancouver, ISO, and other styles
9

Dunajski, Maciej. "Integrability of ASDYM and twistor theory." In Solitons, Instantons, and Twistors. Oxford University PressOxford, 2009. http://dx.doi.org/10.1093/oso/9780198570622.003.0007.

Full text
Abstract:
Abstract The ASDYM equations played an important role in the last chapter because of their connection with the YM instantons. In this chapter we shall explore the integrability of these equations using the twistor methods. The twistor transform described in Section 7.2 is a far reaching generalization of the inverse scattering transform studied in Chapter 2. All local solutions to the ASDYM equations will be parameterized by certain holomorphic vector bundles over a three-dimensional complex manifold called the twistor space. Some solutions to ASDYM can be written down explicitly as the equations can be reduced to a linear problem. The class (6.4.26) is one example. While one cannot hope to write the most general solution in terms of ‘known’ functions, the twistor methods will allow to reduce the problem to a number of algebraic operations like the Riemann–Hilbert factorization.
APA, Harvard, Vancouver, ISO, and other styles
10

CHOU, KUAN-CHAO, and YUAN-BEN DAI. "SOLITON-SOLITON SCATTERING AND THE SEMI-CLASSICAL APPROXIMATION FOR THE PROBLEM OF SCATTERING IN THREE-DIMENSIONAL SPACE." In Selected Papers of K C Chou. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814280389_0036.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Three-dimensional solitons"

1

Huang, Q., W. He, X. Zhang, et al. "Observation of Breathing Solitons in a Three-Dimensional Phase Space in a Mode-Locked Fibre Laser." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Skupin, S., F. Maucher, and W. Krolikowski. "Rotating three-dimensional solitons." In 2010 International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2010. http://dx.doi.org/10.1109/caol.2010.5634252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Falcao-Filho, Edilson L., Cid B. de Araujo, Georges Boudebs, Herve Leblond, and Vladimir Skarka. "Three-dimensional spatial solitons in CS2." In Quantum Electronics and Laser Science Conference. OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qf1g.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lahav, Oren, Ofer Kfir, Pavel Sidorenko, Maor Mutzafi, Avner Fleischer, and Oren Cohen. "Three-Dimensional Spatiotemporal Pulse-Train Solitons." In CLEO: QELS_Fundamental Science. OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fm3f.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mihalache, D. "Stable three-dimensional solitons in two-dimensional photonic lattices." In Congress on Optics and Optoelectronics, edited by Miroslaw A. Karpierz, Allan D. Boardman, and George I. Stegeman. SPIE, 2005. http://dx.doi.org/10.1117/12.621606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosanov, Nikolay N. "Three-dimensional dissipative optical solitons: laser bullets." In Laser Optics 2000, edited by Serguei A. Gurevich and Nikolay N. Rosanov. SPIE, 2001. http://dx.doi.org/10.1117/12.418815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leblond, Hervé, Boris A. Malomed, and Dumitru Mihalache. "Three-dimensional spinning solitons in quasi-two-dimensional optical lattices." In SPIE Proceedings, edited by Valentin I. Vlad. SPIE, 2007. http://dx.doi.org/10.1117/12.757861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Efremidis, Nikolaos K., Yannis Kominis, Nikos Moshonnasa, et al. "Three-dimensional vortex solitons in self-defocusing media." In SPIE Proceedings, edited by Valentin I. Vlad. SPIE, 2007. http://dx.doi.org/10.1117/12.757879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Changfu, Yan Zhu, and Zhixin Zhang. "Three-dimensional spatiotemporal solitons in self-defocusing media." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sheppard, A. P., and M. Haelterman. "Nonparaxiality stabilizes three-dimensional soliton beams in Kerr media." In Nonlinear Guided Waves and Their Applications. Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.nwe.19.

Full text
Abstract:
Three-dimensional (1+2D) spatial solitons have been well known since the early 1960's [1,2] as the unstable equilibrium state between self-focusing and diffraction. Theory have shown that below a certain critical power, the soliton beam diffracts away into radiation, while above this threshold, suffers catastrophic self-focusing [3,4]. However, although experiment corroborates this result, it should be noted that the 1+2D soliton instability is predicted from an incomplete mathematical model, namely, the nonlinear Schrödinger (NLS) equation that is based on the paraxial approximation. The 1+2D NLS equation makes the physically unreasonable prediction that the soliton beam will collapse to a singularity within a finite distance [3,4]. The arrest of catastrophic collapse observed experimentally has been explained by appealing to either saturation [5,6] or nonlocality [7-9] of the nonlinearity. However, the problem of singularity simply breaks up by recognizing that the paraxial model is not fit to describe a strongly collapsing beam and that the effects of nonparaxiality [10-12] and polarization coupling [13] should be incorporated into the model.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!