To see the other types of publications on this topic, follow the link: Three Point Bending Test.

Dissertations / Theses on the topic 'Three Point Bending Test'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Three Point Bending Test.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bonucchi, Nicola. "Caratterizzazione flessionale del rinforzo di pavimentazioni bituminose con interstrati sintetici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
Uno degli aspetti fondamentali della circolazione stradale è rappresentato dalla conservazione della qualità, in termini di comfort e sicurezza trasmessa all’utente, della sovrastruttura stradale. L’obiettivo della manutenzione stradale è di garantire un livello soddisfacente delle caratteristiche funzionali lungo tutto l’arco della vita utile dell’infrastruttura. Le ridotte disponibilità economiche di enti ed amministrazioni pubbliche, spingono i ricercatori ed i tecnici del settore ad individuare soluzioni tecniche e progettuali, in grado di coniugare economicità e durabilità degli interventi. Negli ultimi decenni, si è cercato di studiare l’effetto prodotto dall’eventuale inserimento di un interstrato di rinforzo all’interno della sovrastruttura. Lo studio, sviluppato e descritto nel presente documento, ha l’obiettivo di migliorare la comprensione dell’effettivo contributo che i materiali di rinforzo possono produrre all’interno degli strati legati di una pavimentazione flessibile. Gli obiettivi dell’indagine sperimentale, descritta nel presente documento, possono essere sintetizzati in tre punti fondamentali: - caratterizzazione flessionale di pavimentazioni bituminose con interstrati sintetici, in particolare lo scopo dell’indagine verte a quantificare il miglioramento del comportamento meccanico della pavimentazione dotata di rinforzo; - analisi del comportamento a fessurazione della pavimentazione, rinforzata e non, con particolare attenzione nei confronti del reflective cracking; - valutazione del collegamento tra i due strati bituminosi in presenza di interstrato sintetico. Per raggiungere tali obiettivi sono state eseguite due serie di prove di flessione su 3 punti (3PB) e prove di taglio Leutner.
APA, Harvard, Vancouver, ISO, and other styles
2

Said, Eman. "On the deflection of s32003 stainless steel beams." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54918.

Full text
Abstract:
Presented in this work are the results of twelve flexural tests conducted on small-scale coupons to establish the load-deflection behavior of UNS S32003 (ATI 2003®) hot-rolled duplex stainless steel flat plates. All specimens were tested as simply supported beams loaded at the midspan. Test specimens had nominal width and thickness of 1 in. and 0.25 in., respectively. Four different span lengths of 4 in., 6 in., 9 in., and 12 in. were investigated. Analysis of the results showed that the non-linear deflection behavior can be estimated reasonably well by adopting the conventional deflection equation pertaining to an assumed linear elastic material, but after replacing the modulus of elasticity with a secant modulus corresponding to the maximum tension strain resulting from the applied load.
APA, Harvard, Vancouver, ISO, and other styles
3

Longo, Francesco. "Analisi e caratterizzazione dei materiali di rinforzo nelle sovrastrutture stradali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
Nel presente elaborato è stato studiato l'effetto prodotto dall'inserimento di interstrati di rinforzo tra strati legati di una pavimentazione. Si è realizzato un confronto tra due pavimentazioni, una rinforzata e l'altra di controllo, mediante il software di calcolo OLCRACK, aventi le medesime caratteristiche geometriche e gli stessi materiali. In questo modo è stato possibile osservare l'effetto della griglia di rinforzo nel contrastare e ritardare il fenomeno del reflective cracking. Parallelamente è stata effettuata un'indagine sperimentale in laboratorio su travetti bi-strato rinforzati con due tipologie differenti di griglie. I risultati hanno evidenziato l'importanza del ricoprimento sulla griglia, poiché i travetti più spessi hanno dato una risposta migliore alla vita a fatica. In più è stata osservata l'importanza della resistenza a trazione della griglia nell'incremento dei cicli a rottura dei provini.
APA, Harvard, Vancouver, ISO, and other styles
4

Almaari, Firas, and Essam Aljbban. "Strain Rate Effect on Fracture Mechanical Properties of Ferritic-Pearlitic Ductile Iron." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78858.

Full text
Abstract:
This study investigates the effect of strain rate on fracture properties of Ferritic-Pearlitic Ductile Iron. A series of dynamic three point bending tests, with various load application rates, are conducted on Charpy V-notch specimens, in room temperature and approximately -18 °C. The tests are performed in a custom-made fixture and during the tests, force and displacement data are recorded. A XFEM (Extended Finite Element Method) model of the test setup has been established and material data from the tests are used as input to the model. The test results show a strong dependency of the strain rate regarding the force needed for crack initiation. Moreover, it can be concluded that low temperature makes the material very brittle, even at low load application rates.
APA, Harvard, Vancouver, ISO, and other styles
5

Majeed, Moiz, and Teja Geesala Rahitya Venkata. "Characterization of thin laminate interface by using Double Cantilever Beam and End Notched Flexure tests." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20852.

Full text
Abstract:
This thesis is intended to identify the mode I and mode II fracture toughness to characterize the thin laminate interface by using the Double Cantilever Beam test (DCB) and End Notched Flexure test (ENF). This study’s thin laminate was Polyethylene Terephthalate and Low-Density Polyethylene (PET-LDPE), which is mostly used by packaging industries in the manufacturing of packages to store liquid food. As PET-LDPE film is very flexible and difficult to handle, DCB and ENF tests cannot be performed directly so, sheet metal (Aluminium) was used as carrier material. PET-LDPE film is placed between two aluminum plates to reduce the flexibility and perform the tests. Therefore, the Aluminium plate was also studied to find the constitutive parameters (young’s modulus (E) and mixed hardening parameters (Plastic properties)) under the tensile test and three-point bending test. From the test response, energy release rate calculation has been done for different Pre-crack lengths to validate the DCB and ENF experimental setup, study the different Pre-crack lengths, and characterize the laminate interface. Finite Element simulation (FE simulation) for those tests were carried out in AbaqusTM2020. When needed, the force versus displacement response from FE simulation was optimized against experimental response to find the required constitutive parameters (Young’s modulus, Hardening parameters, and PET-LDPE material properties). Implementing of optimization algorithm and automated simulation has been done with the help of MATLAB code. In contrast, MATLAB works as a server, and Abaqus works as a client and connected two interfaces to run the optimization. The results obtained from experiments and FE simulations were compared to the results found in the literature.
APA, Harvard, Vancouver, ISO, and other styles
6

Moliterno, Évelyn Cassileine Bento dos Santos. "Estudo do posicionamento do dispositivo de teste utilizada no ensaio de propagação estável da trinca pelo método da cunha e da influencia do tamanho de agregado nos resultados de medida de energia de fratura utilizando o método da cunha e o da barra entalhada e flexionada." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/97/97134/tde-01102013-144648/.

Full text
Abstract:
Os materiais cerâmicos são utilizados pelo homem há milhares de anos e podem ser considerados os primeiros materiais utilizados na fabricação de ferramentas. Argamassas são materiais cerâmicos formados pela mistura de cimento, areia e água, são fluidos nas primeiras horas e endurecem com o tempo, ganhando resistência mecânica, já os refratários são materiais constituídos basicamente por duas partes, uma de granulometria fina denominada matriz e a outra de granulometria grosseira, chamada agregado, trabalham em altas temperaturas e muitas vezes sofrem choques térmicos. Devido a sua fragilidade, são susceptíveis a fratura catastrófica, por isso o conhecimento de seu comportamento mecânico é tão importante. Uma importante propriedade dos materiais cerâmicos é a energia de fratura e o método mais conhecido para a sua determinação é o da barra entalhada flexionada em três ou quatro pontos, porém o grande problema deste método é a relação de tamanho de agregado/área de fratura, pois como a barra apresenta, em geral, pequenas dimensões, o material pode apresentar um agregado de dimensões próximas à dimensão da área de fraturada e o resultado final pode ser fortemente afetado. Então, em 1986, Tschegg patenteou o método da cunha (wedge splitting test) que minimiza este efeito, devido à utilização de amostras com grande área de fratura. Desde então, este método vem sendo utilizado com freqüência por diversos pesquisadores no mundo. Porém não há estudos publicados que definam a posição ideal dos roletes do dispositivo de teste, levando ao uso de diferentes posições, sem que se saiba como isso pode influenciar o ensaio. Além de não existir uma definição de, a partir de que tamanho de agregado o método da barra entalhada passa a ser desaconselhável sendo necessário o uso do método da cunha. Neste trabalho analisou-se a influência da posição dos roletes e do tamanho de agregados nas medidas de energia de fratura e na carga máxima atingida no ensaio.
The ceramic materials are used by humans for thousands of years and can be considerate the first materials used in the manufacture of tools. Mortar are ceramic materials made by the mixture of cement, sand and water, it is fluid in the first hours and stiffen over time, gaining mechanical strength, the refractories in turn are made basically of two phases, one of fine granulometry called matrix and another of coarse called aggregate. It works over high temperature and many times suffer thermal shock. Due to its fragility, it is susceptible to catastrophic fracture; therefore the knowledge of its mechanical behavior is so important. One of the mainly properties of ceramic materials is the fracture energy and o most knew method for its determination is of three-point bending test on notched beams, but the biggest problem of this method is the relation between aggregate size and fracture area, because as the beam has small dimensions the aggregate can have a dimension so closed of the fracture area dimension and the final result can be tightly affect. Then in 1986, Tschegg patented the wedge splitting test, which minimizes this effect, because of the use of samples with a big fracture area. Since then, this method has been used for scientists around the world. But there are no studies that define the roll position of the test device, leading to the use of different positions, without know how it can influence the test. Besides not having a definition of from what aggregate size the wedge splitting test is advisable in despite of the bending test on notched beams. In this work was analyzed the influence of the rolls positions in the wedge splitting test and of the aggregate size in the measures of fracture energy and maximum load of test.
APA, Harvard, Vancouver, ISO, and other styles
7

Bhustalimath, Sanhgarsh. "Development and verificationof a method to determine theshear properties of Hybrix core." Thesis, KTH, Lättkonstruktioner, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290084.

Full text
Abstract:
This thesis helps develop a material model for a novel Fiber Core SandwichSheet construction. A test method was used to determine the mechanicalproperties of the sandwich material. Standard three point bendingtests coupled with digital image correlation was used. Results wereextracted from the digital image data. These results supplemented thedevelopment and tuning of an FE model of the sandwich material. Conclusionswere drawn about the feasibility of the method in studying sucha material.
Denna avhandling genomfördes mot utvecklingen av en homogeniseradmaterialmodell för en ny sandwich-konstruktion med fiberkärna. En testmetodanvändes för att bestämma de mekaniska egenskaperna hos sandwichmaterialet.Testmetoden involverade trepunkts i kombination meddigital bildkorrelation. Resultaten extraherades från den digitala bilddatanvid genomförande av trepunkts. Dessa resultat användes utvecklingenav en FE-modell av sandwichmaterialet. Slutsatser drogs om tillämplighetenav metoden för att studera ett sådant material.
APA, Harvard, Vancouver, ISO, and other styles
8

Kejík, Vít. "Predikce chování stříkaného betonu s využitím elastoplastického materiálového modelu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409748.

Full text
Abstract:
This work is focused on the application of advanced elasto-plastic material model intended for shotcrete. Spatial mathematical models of two laboratory tests are created, where this model is used. The first test is a three-point bending concrete specimen. Next, the behavior of the material is analyzed, in which input parameters are entered. Consequently, two reverse analyzes of the available data are analyzed where a match between prediction and measurement can be obtained. The second test is a modified tensile test, where is describe the material behavior in changing of input parameters. Subsequently, reverse data analysis is created, where an acceptable match between prediction and measurement is possible. In every study, the stress waveform in the fracture process zone is analyzed to more detail.
APA, Harvard, Vancouver, ISO, and other styles
9

Kolářová, Eva. "Vliv přídavku vícesměrně orientované výztuže na mechanické vlastnosti materiálu pro přípravu celkově snímatelných náhrad." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-217087.

Full text
Abstract:
Tato Diplomová práce se zabývá vlivem vyztužení na mechanické vlastnosti materiálu pro přípravu snímatelných náhrad. Pro testování byly použity tři sady vzorků: PMMA pryskyřice, PMMA pryskyřice s Dentapreg Mesh výztuží a PMMA pryskyřice vyztužena zesilující síťkou z nerezové oceli.Pro měření chování vzorků při statickém a dynamickém namáhání byl použit třibodový ohybový test a Charpy rázové kladivo. Viskoelastické vlastnostzi byly měřeny dynamicko-mechanickou analýzou (DMA). Skenovací elektronová mikroskopie (SEM) byla použita k charakterizaci lomových ploch. Během statického namáhání vzorků výztuž nehraje důležitou roli v porovnání s nevyztuženou pryskyřicí. Nicméně byl pozorován opačný trend při dymanickém namáhání, kde efekt výzruže rostl v řadě PMMA pryskyřice – síťka z nerezové oceli – Dentapreg Mesh.
APA, Harvard, Vancouver, ISO, and other styles
10

Šot, Michal. "Hodnocení napjatostního chování lepeného konstrukčního dřeva pomocí DIC analýzy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227634.

Full text
Abstract:
The work deals with issues of evaluation of the shear properties of timber structural materials, particularly CLT elements. The work contains an overview of extensive research so far presented scientific studies dealing with the characteristic shear properties of wood. In the practical part was carried out the experiment dealing with the failure mode of transverse lamellae of CLT elements that were exposed to shear stress. There were observed individual effects that this may affect the material properties. In the first part of the experiment were performed numerical models using FEM. In the second part, the test specimens were tested in three point bending. Here, attention was paid to the influence of macroscopic properties of wood on the distribution of stress cracks and shear strength, the tests were recorded using DIC system.
APA, Harvard, Vancouver, ISO, and other styles
11

Šedivý, Zbyněk. "Pokročilé vrstevnaté kompozity pro stomatologické aplikace." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-233372.

Full text
Abstract:
Disertační práce se zabývá mechanickou odezvou vrstevnatých kompozitů pro stomatologické aplikace. Různé skladby vrstev a různé částicové a vláknové kompozity jsou studovány v tříbodovém ohybu za pokojové teploty. Tyto výsledky jsou korelovány s výstupy dynamické termomechanické analýzy (DMTA) a optické analýzy (vysokorychlostní video záznam, SEM). Exeprimentální data byla použita pro srovnání s výsledky analytických a numerických modelů s cílem určit nejvhodnější model pro predikci základních mechanických vlastností vrstevnatých kompozitů. Na základě těchto analýz jsou navržena základní pravidla pro klinické použití vrstevnatých kompozitů ve stomatologických aplikacích jako jsou minimálně invazivní můstky nebo stabilizační dlahy.
APA, Harvard, Vancouver, ISO, and other styles
12

Havlíková, Ivana. "Vyhodnocení lomových testů těles z vybraných stavebních materiálů pomocí modelu Dvojí-K." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-355611.

Full text
Abstract:
The purpose of dissertation is the analysis of the calculation of fracture parameters using Double-K fracture model for quasi-brittle specimens with the stress concentrator loaded by three-point bending or wedge splitting. To calculation of these parameters was used the developed DKFM_BUT software in Microsoft Excel application with using of Visual Basic programming language. Furthermore, the adequate shape functions and compliance functions were introduced for the selected wedge splitting test configurations. Main part of this dissertation is the series of comprehensively implemented and evaluated fracture experiments on specimens from advanced building materials, while the attention was paid to the analysis of experimental data. Finally, the selected results obtained using mentioned software support were presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Islam, Mohammad Majharul. "Global-local Finite Element Fracture Analysis of Curvilinearly Stiffened Panels and Adhesive Joints." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/38687.

Full text
Abstract:
Global-local finite element analyses were used to study the damage tolerance of curvilinearly stiffened panels; fabricated using the modern additive manufacturing process, the so-called unitized structures, and that of adhesive joints. A damage tolerance study of the unitized structures requires cracks to be defined in the vicinity of the critical stress zone. With the damage tolerance study of unitized structures as the focus, responses of curvilinearly stiffened panels to the combined shear and compression loadings were studied for different stiffenersâ height. It was observed that the magnitude of the minimum principal stress in the panel was larger than the magnitudes of the maximum principal and von Mises stresses. It was also observed that the critical buckling load factor increased significantly with the increase of stiffenersâ height. To study the damage tolerance of curvilinearly stiffened panels, in the first step, buckling analysis of panels was performed to determine whether panels satisfied the buckling constraint. In the second step, stress distributions of the panel were analyzed to determine the location of the critical stress under the combined shear and compression loadings. Then, the fracture analysis of the curvilinearly stiffened panel with a crack of size 1.45 mm defined at the location of the critical stress, which was the common location with the maximum magnitude of the principal stresses and von Mises stress, was performed under combined shear and tensile loadings. This crack size was used because of the requirement of a sufficiently small crack, if the crack is in the vicinity of any stress raiser. A mesh sensitivity analysis was performed to validate the choice of the mesh density near the crack tip. All analyses were performed using global-local finite element method using MSC. Marc, and global finite element methods using MSC. Marc and ABAQUS. Negligible difference in results and 94% saving in the CPU time was achieved using the global-local finite element method over the global finite element method by using a mesh density of 8.4 element/mm ahead of the crack tip. To study the influence of different loads on basic modes of fracture, the shear and normal (tensile) loads were varied differently. It was observed that the case with the fixed shear load but variable normal loads and the case with the fixed normal load but variable shear loads were Mode-I. Under the maximum combined loading condition, the largest effective stress intensity factor was very smaller than the critical stress intensity factor. Therefore, considering the critical stress intensity factor of the panel with the crack of size 1.45 mm, the design of the stiffened panel was an optimum design satisfying damage tolerance constraints. To acquire the trends in stress intensity factors for different crack lengths under different loadings, fracture analyses of curvilinearly stiffened panels with different crack lengths were performed by using a global-local finite element method under three different load cases: a) a shear load, b) a normal load, and c) a combined shear and normal loads. It was observed that 85% data storage space and the same amount in CPU time requirement could be saved using global-local finite element method compared to the standard global finite element analysis. It was also observed that the fracture mode in panels with different crack lengths was essentially Mode-I under the normal load case; Mode-II under the shear load case; and again Mode-I under the combined load case. Under the combined loading condition, the largest effective stress intensity factor of the panel with a crack of recommended size, if the crack is not in the vicinity of any stress raiser, was very smaller than the critical stress intensity factor. This work also includes the performance evaluation of adhesive joints of two different materials. This research was motivated by our experience of an adhesive joint failure on a test-fixture that we used to experimentally validate the design of stiffened panels under a compression-shear load. In the test-fixture, steel tabs were adhesively bonded to an aluminum panel and this adhesive joint debonded before design loads on the test panel were fully applied. Therefore, the requirement of studying behavior of adhesive joints for assembling dissimilar materials was found to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints of the nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. Since the design of the combined load test fixture was for transferring the in-plane shear and compression loads to the panel, in-plane loads might have been responsible for the debonding of the steel tabs, which was similar to the results obtained from the nonlinear finite element analysis of the combined load test fixture. Then, fundamental studies were performed on the three-dimensional finite element models of adhesive lap joints and the Asymmetric Double Cantilever Beam (ADCB) joints for shear and peel deformations subjected to a loading similar to the in-plane loading conditions in the test-fixtures. The analysis was performed using ABAQUS, and the cohesive zone modeling was used to study the debonding growth. It was observed that the stronger adhesive joints could be obtained using the tougher adhesive and thicker adherends. The effect of end constraints on the fracture resistance of the ADCB specimen under compression was also investigated. The numerical observations showed that the delamination for the fixed end ADCB joints was more gradual than for the free end ADCB joints. Finally, both the crack propagation and the characteristics of adhesive joints were studied using a global-local finite element method. Three cases were studied using the proposed global-local finite element method: a) adhesively bonded Double Cantilever Beam (DCB), b) an adhesive lap joint, and c) a three-point bending test specimen. Using global-local methods, in a crack propagation problem of an adhesively bonded DCB, more than 80% data storage space and more than 65% CPU time requirement could be saved. In the adhesive lap joints, around 70% data storage space and 70% CPU time requirement could be saved using the global-local method. For the three-point bending test specimen case, more than 90% for both data storage space and CPU time requirement could be saved using the global-local method.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
14

Vyhlídal, Michal. "Porušování vybraných stavebních kompozitů v blízkosti rozhraní plniva a matrice." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372021.

Full text
Abstract:
The interface between aggregate grains and matrix in cementitious composites is their weakest element. The topic is particularly significant in the case of high performance and high strength concrete technology for which the eliminination or reduction of these weak links are necessary. The aim of this thesis is to determine the influence of the interface on the fracture behaviour of the cementitious composites. The fracture experiments were performed for this purpose and were complemented by the nanoindentation’s results and scanning electron microscopy results. Numerical model was created in ANSYS software on the basis of these data and the fracture toughness values of the interface were evaluated by means of the generalized fracture mechanics principles. Conclusion of the thesis is proof that the interface properties have a significant influence on the fracture behaviour of cementitious composites.
APA, Harvard, Vancouver, ISO, and other styles
15

López, Martínez Juan Ángel. "CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/79740.

Full text
Abstract:
Combining the most recent technologies in concrete, Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC) arises as a promising material for the near future. UHPFRC have shown how flexible concrete can be to adapt to the ever-changing social and environmental demands. With its high flexibility composition and its mechanical properties, UHPFRC is full of both unexplored and unexploited possibilities. Engineers should take responsibility for this task. However, it is fair to acknowledge that this is not an easy task and it requires the development of reliable and widely accepted design standards provided by the scientific community. A major concern about durability, long-lasting structures and reduction of maintenance cost, as well as the development of new concrete technologies, improved knowledge of fibre effect and a huge growth in the fibre industry accompanied by fibre price reduction have led, among other factors, to the development of new types of concrete whose mechanical behaviour substantially differs from conventional fibre-reinforced concrete. This is why current characterisation methodologies and design standards must be reviewed and adjusted to these newer materials. However, design standard revision cannot disregard former milestones achieved thanks to decades of hard work. It must offer an integrated view in which new types of concrete comprise existing ones in a broader group, because at the end of the day and despite having newer and improved properties, new types of concrete are still concrete. That is how it should be understood and how it must be reflected in newer codes and standards. The work presented herein is focused on one of these recently developed materials that embraces major advanced technologies in concrete: Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC). This work is specifically focused on those crucial requirements for the development and widespread use of it, such as constitutive tensile characterisation and classification. This work includes a deep revision of the uniaxial tensile behaviour of concrete and its development as fibre technology has evolved. In addition, traditional characterisation standard methods as well as those recently developed for its specific use on UHPFRC are reviewed and called into question. Throughout the document, the development of different methodologies to determine the uniaxial constitutive tensile behaviour of UHPFRC from bending tests are shown, together with a simplified characterisation proposal specially developed for being included in a standard. All developed methodologies presented herein are checked and validated. These methods are specifically designed for their application on experimental results obtained from a special type of four-point bending test, whose standardisation proposal for UHPFRC is also shown. Finally, a classification proposal is presented as a function of more relevant UHPFRC tensile parameters necessary for design that can be directly obtained from the standard characterisation test method suggested. Proposed classification encompasses the existing classification for conventional reinforced and fibre-reinforced concrete. In it, both plain concrete and fibre-reinforced concrete are presented as a particular case of a more general tensile constitutive response for concrete. Standard methodology and classification proposed are in accordance with the evolution of concrete and unify historic milestones achieved by the international research community.
El Hormigón de Muy Alto Rendimiento (HMAR) combina los últimos avances tecnológicos en hormigón y se erige como un material prometedor para el futuro. El HMAR ha demostrado su gran capacidad para adaptarse a las cada vez más exigentes demandas sociales y medioambientales. Con un gran abanico de posibilidades en su dosificación para conseguir las propiedades mecánicas deseadas, el HMAR es un material lleno de posibilidades aún sin explorar y sin explotar. Los ingenieros tienen la responsabilidad de esta tarea. Sin embargo, es justo reconocer que no se trata de una tarea fácil y que requiere de un desarrollo previo de códigos de diseño adecuados y ampliamente aceptados por parte de la comunidad científica. La aparición de nuevas tecnologías, el mayor conocimiento sobre la aportación de las fibras así como su industrialización y bajada de precios, las mayores preocupaciones sobre la durabilidad estructural, incremento de la vida útil o la reducción de los costes de mantenimiento, entre otros factores, han derivado en el desarrollo de nuevas tipologías de hormigones cuyo comportamiento mecánico difiere de manera sustancial de los tradicionales hormigones con fibras. Es por ello que tanto la readaptación de las metodologías de caracterización como las metodologías de diseño deben ser reformuladas. Y esto debe hacerse de manera no disruptiva, es decir, manteniendo la línea de los hitos alcanzados en los hormigones con fibras convencionales de manera que queden integrados en metodologías de caracterización y de diseño que los engloben, porque al fin y al cabo, y aunque con nuevas y mejores propiedades mecánicas, los nuevos hormigones siguen siendo hormigones. Así debe ser entendido y así debe quedar reflejado en las nuevas normativas. El presente trabajo se centra en uno de esos nuevos materiales desarrollados con el avance de las nuevas tecnologías como es el HMAR. En especial, este documento se centra en ese aspecto tan fundamental para el desarrollo de nuevos hormigones como es la caracterización mecánica y la tipificación. Este trabajo incluye una revisión del comportamiento mecánico uniaxial a tracción del hormigón y de su evolución con la aparición de las diferentes tecnologías. Además, se revisan y se ponen en cuestión los sistemas tradicionales de caracterización, así como los nuevos sistemas desarrollados en los últimos años para su empleo específico en el HMAR. A lo largo del documento se desarrollan diferentes metodologías para la obtención del comportamiento constitutivo a tracción del HMAR, así como la propuesta de una metdología simplificada de caracterización especialmente diseñada para ser incluida en una norma, todas ellas debidamente validadas. Estas metodologías son de aplicación específica a los resultados experimentales obtenidos mediante un ensayo a cuatro puntos sin entalla, cuya propuesta de estandarización para el HMAR ha sido también desarrollada. Finalmente, se presenta una propuesta de tipificación de acuerdo a los parámetros más relevantes del comportamiento a tracción del HMAR que son necesarios para el diseño y que pueden ser directamente obtenidos del ensayo de caracterización propuesto. Esta clasificación engloba a la clasificación existente para el hormigón armado convencional y los actuales hormigones con fibras, de manera que se presenta la actual definición de hormigón con fibras como un caso particular de estos nuevos hormigones, respetando al máximo la evolución de este material y aunando los logros conseguidos por la comunidad científica.
Dins de les combinacions de les tecnologies més recents en el formigó, el formigó de molt alt rendiment (UHPFRC) sorgeix com un material prometedor per al futur pròxim. L'UHPFRC ha demostrat poder ser un formigó flexible per adaptar-se a les sempre canviants demandes socials i mediambientals. Amb una gran flexibilitat en la seua composició i les seues propietats mecàniques, l`UHPFRC està ple de possibilitats de ser explorades i explotades. Els enginyers han de prendre la responsabilitat d'aquesta tasca. No obstant això, és just reconèixer que això no serà fàcil i requerirà el desenvolupament de normes de disseny fiables i àmpliament acceptades per la comunitat científica. Hi ha una gran preocupació al voltant de la durabilitat, la vida útil de les estructures i la reducció del cost de manteniment, juntament amb el desenvolupament de noves tecnologies de formigó, un millor coneixement de l'efecte de la fibra i un enorme creixement en la indústria de la fibra acompanyat per la reducció del preu de la fibra, han conduït, entre altres factors, al desenvolupament de nous tipus de formigons, el comportament mecànic dels quals es diferencia substancialment dels formigons reforçats amb fibres convencionals. És per això que les metodologies de caracterització actuals i les normes de disseny han de ser revisades i ajustades a aquests nous materials. No obstant això, la revisió del codis de disseny no pot prescindir de les antigues fites aconseguides gràcies a dècades de treball dur. S'ha d'oferir una visió integrada en la qual els nous tipus de formigons integren els ja existents en un grup més ampli, ja que, al cap i la fi i malgrat tenir propietats noves i millorades, els nous tipus de formigons són encara un tipus de formigó. Així es com s'hauria d'entendre i reflectir-se en els nous codis i normes. El treball presentat en aquest document es centra en un d'aquests materials que s'han desenvolupat recentment i que abasta les principals tecnologies avançades en el formigó: el Formigó de Molt Alt Rendiment Reforçat amb Fibres (UHPFRC). Aquest treball se centra específicament en els requisits fonamentals per al desenvolupament i l'ús generalitzat d'aquest, com ara la caracterització i classificació del comportament constitutiu a tracció. Aquest treball inclou una revisió profunda del comportament a tracció uniaxial del formigó i els seus canvis al temps que la tecnologia de les fibres ha evolucionat. A més, els mètodes tradicionals estàndard de caracterització, així com els recentment desenvolupats per al seu ús específic en l'UHPFRC són revisats i qüestionats. Al llarg del document, es mostra el desenvolupament de diferents metodologies per a determinar el comportament constitutiu a tracció uniaxial de l'UHPFRC, juntament amb una proposta de caracterització simplificada especialment desenvolupada per poder ser inclosa en normativa. Totes les metodologies desenvolupades presentades en aquest document han estat comprovades i validades. Aquests mètodes estan dissenyats específicament per a la seva aplicació en els resultats experimentals obtinguts a partir d'un tipus especial d'assaig de flexió a quatre punts, a més també s'inclou una proposta d'estandardització per a l'UHPFRC. Finalment, es presenta una proposta de classificació en funció dels paràmetres més rellevants del comportament a tracció de l'UHPFRC que són necessaris per al disseny i que es poden obtindre directament del mètode d'assaig estàndard suggerit per a la caracterització de l'UHPFRC. La classificació proposada té amb compte la classificació existent per al formigó armat convencional i el reforçat amb fibres. En ella, tant el formigó en massa com el formigó reforçat amb fibres es presenten com un cas particular d'una resposta constitutiva a tracció més general per al formigó. La metodologia estàndard i la classificació proposada estan d'acord amb l'evolució de formigó i unifica l
López Martínez, JÁ. (2017). CHARACTERISATION OF THE TENSILE BEHAVIOUR OF UHPFRC BY MEANS OF FOUR-POINT BENDING TESTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79740
TESIS
APA, Harvard, Vancouver, ISO, and other styles
16

Senapati, Rajeev. "Discrete element modelling of silicon nitride ceramics crack formation and propagation in indentation test and four point bending test /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Viszlay, Viliam. "Ohýbaná tělesa: Numerická podpora v software ANSYS." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240183.

Full text
Abstract:
The aim of the thesis is the investigation of fracture-mechanics parameters on specimens made of quasi-brittle materials. The principles of two-parameter fracture mechanics are used. Couple of numerical simulations were done and their outputs are used for two main analysed specimen geometries. For simulations the finite element method software ANSYS is used. In the first part, the thesis focuses on bended specimens. The influence of different geometric parameters on fracture mechanics behaviour of cracked specimen is investigated. For model calibration the outputs of other authors are used. In the second part the specimens for modified compact-tension test (CT test) are analysed. Similar to the first part, the influence of geometric parameters of the specimen (in this case, the specimen size) on fracture mechanics parameters were investigated. The modified CT test was derived from CT test which is commonly used for metal materials testing as the suitable geometry for cement-based composite materials testing. The outputs of both parts are calibration polynomials, which are expressions obtained for different specimen geometries, giving the value of fracture mechanics parameter as the function of specimen geometry. As the example, calibration curves are used to obtain fracture toughness of tested material using the outputs from recent experiment.
APA, Harvard, Vancouver, ISO, and other styles
18

Ho, Chia-Hua. "Mechanical behavior of three-point bending for unidirectional glass fiber reinforced plastic (GFRP) box beams /." Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1083541381&sid=15&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Arnold, Patricia A. "Validation of Mechanical Response Tissue Analysis by Three-Point Mechanical Bending of Artificial Human Ulnas." Ohio University Honors Tutorial College / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1366983271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bejček, Michal. "Vyhodnocení lomově-mechanických parametrů betonu po vystavení vysokým teplotám." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371838.

Full text
Abstract:
The diploma thesis is focused on the evaluation of mechanical fracture parameters of concrete after exposure to high temperatures. In the introductory theoretical part general principles of fracture mechanics with the concentration on a linear elastic fracture mechanics and non-linear fracture models for the concrete are summarized. The meaning of the three-point bending fracture test used for determination of fracture parameters is also explained. Further the influence of high temperatures on the partial components of concrete and general modeling of temperature loading is described. The practical part is concerned with the evaluation of fire experiments on the concrete panels including numerical simulations using GiD and ATENA software. The evaluation of data obtained from the three-point bending test carried out on specimens with initial stress concentrator taken from concrete panels is a main part of the diploma thesis. The values of modulus of elasticity, effective fracture toughness, work of fracture and fracture energy are determined from the measured F–d and F–CMOD diagrams after their proper corrections in the GTDiPS application. The evaluation of the selected mechanical fracture parameters was performed by StiCrack software using effective crack model and work of fracture method and DKFM_BUT software using the double-K fracture model. Finally, the attention is paid to the analysis of the obtained data.
APA, Harvard, Vancouver, ISO, and other styles
21

Sener, Karakas Sinem. "Shear Mode Rock Fracture Toughness Determination With A Circular Plate Type Specimen Under Three-point Bending." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613036/index.pdf.

Full text
Abstract:
Fracture toughness is an important rock property for rock fracturing and fragmentation applications. Theory and practice of opening mode (mode I) and shearing mode (mode II) fracture toughness tests are still in a developing stage for the cylindrical rock cores. A new circular plate type test specimen is used for mode II fracture toughness testing on rock cores. This involves a straight edge notched circular plate type core disc geometry under three-point bending load
new method and its associated specimen geometry is referred as straight edge notched disc bend (SNDB) specimen under three-point bending. Mode II fracture toughness results of the tests with this new geometry were compared to the results of the tests commonly employed for mode II fracture toughness testing. Specimen geometries were modeled and mode II stress intensity factors were computed by finite element modeling using ABAQUS program. For comparison purposes, mode II or shearing mode fracture toughness KIIc of two different rock types were determined by different testing methods commonly employed in recent practice. Core specimens of Ankara andesite and Afyon marble rock types were tested with cracked chevron notched Brazilian disc and cracked straight through Brazilian disc specimens under Brazilian type loading, semi-circular bend specimen and straight edge notched disc bending specimen geometries under three-point bending.For all testing groups, cylindrical cores with diameters varying from 7.5 cm to 12.5 cm were prepared with notch lengths changing from 1.5 cm to 2.6 cm. Effect of specimen thickness on mode II fracture toughness was investigated for three different testing methods. Fracture toughness values remained constant when thickness of the specimens was increased for cracked straight through Brazilian disc, semi-circular bend and straight notched disc bend methods. For cracked straight through Brazilian disc method KIIc values of Ankara andesite and Afyon marble were 0.99 MPa&radic
m and 0.86 MPa&radic
m, respectively. Mode II fracture toughness with semi-circular bend specimen was 0.43 MPa&radic
m for andesite and 0.46 MPa&radic
m for marble. When the results of the two three-point bending type tests were compared straight notched disc under three-point bending resulted in higher KIIc values (0.61 MPa&radic
m for andesite and 0.62 MPa&radic
m for marble) than the results found by semi-circular bend tests.
APA, Harvard, Vancouver, ISO, and other styles
22

Peterson, Kainoa John. "Mechanical Properties of Bone Due to SOST Expression: A 3-Point Bending Assessment of Murine Femurs." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/748.

Full text
Abstract:
Sclerostin, a protein coded for by the SOST gene, is an osteocyte-expressed negative regulator of bone formation. The absence of SOST in the genome may have an effect on bone formation both during skeletal maturation and full maturity. This study attempts to determine significant differences in the mechanical properties of bone that expresses SOST compared to bone that does not. One hundred femur samples from 6, 8, and 12 month old mice were obtained from Lawrence Livermore National Labs and loaded until failure using three-point bending. Results showed significant differences in treatment group effects for cross sectional area, yield force, and ultimate force. SOST knockout (KO) mice were found to have significantly higher values for these properties in comparison to transgenic (TG) and wildtype (WT) littermates. In addition, there was a noted effect dependent on the primary axis of loading, anterior-posterior versus medial-lateral. Lastly, data from this study support the existing hypothesis that there is no systematic side-to-side (left-right) difference in bone formation. This data may aid understanding of the role SOST has in bone formation. If the structural integrity and quality of bone resulting from the removal of the SOST gene is shown to be comparable to that of normal, healthy bone, the use of gene therapy to combat diseases/disorders such as osteoporosis may lead to important contributions to medical therapy.
APA, Harvard, Vancouver, ISO, and other styles
23

Abukharais, Ahlam [Verfasser], and Michael Vincent [Akademischer Betreuer] Swain. "Bond strength of different zirconia-veneering combinations (4-point bending interfacial fracture test) = Die Verbundfestigkeit in Vollkeramiksystemen (Vierpunkt Biegeprüfungssystem)." Freiburg : Universität, 2013. http://d-nb.info/1123479771/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tez, Burkay Yasar. "Effects Of Specimen Height And Loading Span On The Fracture Toughness Of Disc Type Rock Specimens Under Three Point Bending." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609496/index.pdf.

Full text
Abstract:
A relatively new fracture toughness testing method called Straight Notched Disc Bending (SNDB) was used before for fracture testing of Ankara Andesite and Afyon Marble cores. In this work to investigate the applicability of the new method to other rock types. With a preliminary notch of 10 mm, straight notched disc type specimens with a diameter of 75 mm were loaded by three-point bending loads. Investigation of effect of specimen height on the stress intensity factor and fracture toughness was carried out. Specimen heights (B) between 18 &ndash
67 mm were tried for andesite and marble cylindrical specimens. Loading span, that is span/radius (S/R) ratio was changed between 0.6 - 0.9 for andesite specimens. Stress intensity factor for specimens was computed with ABAQUS program. Stress intensity factor was found to increase with increasing specimen diameter for a fixed span/radius ratio. Stress intensity factor decreased with increasing specimen height. Changing span was found to have no significant effect on fracture toughness of andesite. Fracture toughness was significantly lower for specimens with smaller height. The suggested testing height interval for this type of specimens was between height/diameter ratios of 0.49 &ndash
0.64. Results were compared to the results obtained by a well-known specimen geometry named semi-circular bend specimens (SCB) under three-point bending. SCB tests produced lower values for fracture toughness for both rock types. Fracture toughness was 0.99 MPa&
#8730
m for Ankara Andesite and 0.70 MPa&
#8730
m for Afyon Marble.
APA, Harvard, Vancouver, ISO, and other styles
25

Campbell, Paul. "The application of the three-point bend test to predict rock mechanics and breakage parameters." Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lister, Joshua m. "STUDY THE EFFECTS OF CORE ORIENTATION AND DIFFERENT FACE THICKNESSES ON MECHANICAL BEHAVIOR OF HONEYCOMB SANDWICH STRUCTURES UNDER THREE POINT BENDING." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1176.

Full text
Abstract:
This study will present the Experimental, numerical and analytical characterizations of composite sandwich structures needed to optimize structure design. In this study, the effects of varying honeycomb core ribbon orientation and varying face sheet thickness’s have on the flexural behavior of honeycomb sandwich structures was investigated. Honeycomb sandwich panels were constructed using Hexcel 6367 A250-5H carbon fiber face sheets and Hexcel Nomex HRH-10-1/8-5 honeycomb cores. The mechanical properties of the constituent materials were discovered experimentally using ASTM standards and theoretical models using honeycomb mechanics and classical beam and plate theory are described. A failure mode map for loading under three point bending is developed from previous works by Triantafillou and Gibson26, showing the dependence of failure mode on face sheet to core thickness and honeycomb core ribbon orientation. Beam specimens are tested with the effects of Honeycomb core ribbon orientation and unequal face sheet thickness’s examined. Experimental data sufficiently agrees with theoretical predictions. A finite element model was developed in ABAQUS/CAE to validate experimental and analytical analysis and produced agreeable results. Optimal bending stiffness and strength with respect to minimum weight was analyzed. The results reveal an important role core ribbon orientation has in a sandwich beam’s bending behavior, and design of unequal ply count face sheets can produce higher stiffness to weight ratios than conventional symmetric sandwich structures of similar weight when subjected to a single static load.
APA, Harvard, Vancouver, ISO, and other styles
27

Staub, Déborah. "Étude du comportement mécanique à rupture des alumines de forte porosité : Application aux supports de catalyseurs d'hydrotraitement des résidus." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0089/document.

Full text
Abstract:
La présente étude porte sur le comportement mécanique de deux types de supports de catalyseurs utilisés industriellement en hydrotraitement des résidus. Ces supports extrudés, fabriqués par IFPEN, sont constitués d’alumine de transition γ avec un taux de porosité proche de 70%. La porosité du premier matériau est uniquement constituée de mésopores (< 50 nm). La porosité du second matériau est constituée de mésopores et de macropores (jusqu’à 20 µm). Les niveaux de sollicitation en service étant très peu connus, cette étude s’attache à décrire de manière précise et exhaustive le comportement mécanique de ces supports sous une large gamme de sollicitations, et à identifier les différents mécanismes de ruine possibles. L’objectif final est de mieux comprendre les relations entre les paramètres microstructuraux et les propriétés mécaniques afin d’identifier des leviers d’amélioration de la tenue mécanique des supports. Dans un premier temps, une méthodologie adaptée de caractérisation mécanique est établie. Le comportement des supports est étudié d’une part en traction, à l’aide d’essais de flexion trois points et d’écrasement diamétral, et d’autre part, en compression sous différents taux de triaxialité, à l’aide d’essais de compression uniaxiale et hydrostatique et d’essais de micro-indentation sphérique. Les différents mécanismes responsables de la ruine des supports sont identifiés au moyen de techniques d’imagerie telles que la microscopie électronique à balayage et la micro-tomographie à rayons X. En traction, le comportement est fragile avec l’amorçage de la rupture sur un défaut critique. En compression, une transition fragile / quasi-plastique du comportement est observée avec l’augmentation du taux de confinement. Cette quasi-plasticité s’exprime en particulier à travers un phénomène de densification de la macroporosité. Dans un deuxième temps, un critère de rupture est identifié pour chaque type de matériau en vue de représenter sur une même surface de charge les différents types de comportement et phénomènes physiques observés. Cette identification est réalisée en couplant les essais d’indentation sphérique à une analyse numérique. Des critères faisant intervenir la pression hydrostatique permettent de rendre compte de la forte dissymétrie du comportement des matériaux en traction et en compression. Enfin, dans un souci de se rapprocher des sollicitations subies par les supports de catalyseurs dans un réacteur en service, le comportement d’un empilement de supports est étudié en compression œdométrique. L’analyse de cet essai par tomographie à rayons X permet de déterminer les différents mécanismes de ruine intervenant au sein d’un empilement, en particulier ceux responsables de la génération de fines. Les résultats illustrent la pertinence de la caractérisation en flexion et en indentation des supports de catalyseurs seuls pour prévoir leur comportement au sein d’un empilement en compression
In this work, we study the mechanical behaviour of two types of catalysts supports produced by IFPEN and industrially used in residues hydrotreating. Those extruded supports are made of transition γ-alumina with about 70% of porous volume. The first material’s porosity is exclusively composed of mesopores (< 50 nm). The porosity of the second material is composed of both mesopores and macropores (up to 20 µm). Because of the limited knowledge of the stress fields in embedded catalysts supports in use in a reactor, this study aims at precisely and exhaustively describing the mechanical behaviour of those supports under a wide range of stresses, and identifying the possible damage mechanisms. The final objective is to better understand the influence of microstructural parameters on the mechanical properties of the supports in order to propose some leads about how to improve their mechanical strength. First, an adequate mechanical characterization methodology is set. On one hand, the tensile mechanical behaviour of the supports is studied with three-point bending and diametrical crushing tests. On the other hand, their compressive behaviour under various triaxiality rates is characterized in uniaxial and hydrostatic compression, and by spherical micro-indentation. The different damaging mechanisms are identified by imaging techniques such as scanning electronic microscopy and X-ray micro-tomography. Under tensile stresses, the supports exhibit a brittle behaviour and fracture initiates at a critical flaw. Under compressive stresses, a brittle/quasi-plastic transition is observed with increasing the triaxiality rate. The quasi-plasticity is mainly due to the densification of the macroporosity. The second part of the study consists in identifying, for each material, a fracture criterion able to represent every types of behaviour and physical phenomena observed on the same yield surface. This identification is achieved by coupling the spherical indentation tests to a numerical analysis. Fracture criteria involving hydrostatic pressure are well suited to describe the highly dissymmetric mechanical behaviour of the materials in tension and in compression. The last part of this work aims at studying the mechanical behaviour of a stack of supports under œdometric compression in order to produce stress fields more representative of those existing within the supports stacked in a reactor. This test is analysed by X-ray tomography, which allows us to determine/acknowledge the different damaging mechanisms involved in fragments and fines generation. The results illustrate the suitability of the bending and indentation tests to characterize the mechanical properties of a single support and relate them to its mechanical behaviour in a stack of supports under compression
APA, Harvard, Vancouver, ISO, and other styles
28

Trautmann, Radoslav. "Effect of Composition on Adhesion Strength Between Particle Filled Composite and Fiber Reinforced Composite." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233308.

Full text
Abstract:
Disertační práce se zabývala vlivem adheze mezi vláknovým (FRC) a částicovým (PFC) kompozitem a složením obou komponent na mechanické vlastnosti a způsob porušování modelových bi-materiálových kompozitních těles při statickém namáhání. Zkoumán byl také vliv způsobu přípravy bi-materiálového kompozitního tělesa na pevnost adheze mezi jeho kompozitními komponentami. K hodnocení mechanických vlastností bi-materiálových PFC/FRC těles byl použit jak 3 tak 4-bodový ohybový test za pokojové teploty a relativní vlhkosti 70%. Modifikovaný vytrhávací test byl použit k měření smykové pevnosti adheze mezi vláknovým a částicovým kompozitem. Tyto výsledky byly korelovány s výsledky ze strukturní a fraktografické analýzy (TGA, SEM). Experimentální data byla poté analyzována pomocí existujících mikromechanických modelů a byl nalezen vztah mezi tuhostí modelových bi-materiálových těles, složením a geometrií uspořádání jejich komponent a pevností adheze mezi těmito komponentami. Na základě těchto výsledků byl navržen optimální způsob vrstvení a přípravy PFC/FRC bimateriálových těles. Navržené postupy byly použity k přípravě a pre-klinickým testům nosných konstrukcí zubních můstků.
APA, Harvard, Vancouver, ISO, and other styles
29

Liu, Qiong. "Mechanical properties of Ti-o based ceramic nanowires." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/201954/1/Qiong_Liu_Thesis.pdf.

Full text
Abstract:
This thesis thoroughly investigated the mechanical properties of Ti-O based ceramic nanowires. It revealed that elastic bending properties including elastic strain and elastic moduli of different kinds of Ti-O based ceramic nanowires were related to their crystalline structures, defects in the structures, and defect activities during bending deformation. These findings help to provide more opportunities for strain engineering on Ti-O NWs and promote potential applications of Ti-O NW-based devices.
APA, Harvard, Vancouver, ISO, and other styles
30

JAIN, RAHUL LALIT. "Effective Area and Effective Volume Calculations for Ceramic Test Specimens." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1218123485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

SABATINELLI, ELISA. "New Approach to Investigate the Quality of Parmigiano Reggiano Cheese: Coupling of Structure Virtualization to Thermal, Rheological and Fracture Properties." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274590.

Full text
Abstract:
The Parmigiano Reggiano cheese is regulated by a Protected Designation of Origin (PDO) Disciplinary, which imposes achievement of requirements about product characteristics and production process, as well as its commercial quality and designation of origin. One of the Disciplinary features concerns the structure. According to the disciplinary, the typical structure of the cheese is defined as finely-granulose structure (“pasta finemente granulosa”) and it brittle fracture (“frattura a scaglie”); therefore, when cheese is fractured, it breaks into scale-like fragments. Nevertheless, the two related-structure requirements are specified in the disciplinary without a clear definition nor an objective method to evaluate them. The aim of this PhD project was to investigate the cheese structure, fundamental rheological and fracture properties with non-destructive methodology and identification of the functional relationships between composition, microstructure and thermo-rheological properties in a multi-scale level: from sub-micron to macroscopic level. A second aim was to find a definition to flake fracture and being able to quantitatively determine it, and therefore develop an objective method for assessing fracture behaviour as a quality requirement for Parmigiano Reggiano. With these aims, more than 1700 cheese samples were obtained from cheese wheels from different raw milk composition and with a ripening age ranging from 12-months to 72-months, with the assumption of having the most different structures as possible. Cheese samples were provided by Parmigiano-Reggiano Consortium and selected among different cheese factories: 12 ripening times with 12, 14, 16, 18, 24, 28, 30, 36, 46, 54, 60 and 72 months of ripening. Then, each cheese wheel was divided in two parts along the sagittal plane to obtaining two specular half cheese wheels: A and B. Each half was divided in 10 cloves. Then, each clove was cut to obtain samples of parallelepiped-shaped to be analyzed under three-point bending test. In the three-point bending test, since there are discontinuities in the material, a standardized incision was created in the sample, in order to concentrate the stresses applied on the tip of the notch and not on the internal discontinuities, and reduce their variability. Then, from the half obtained from the bending test, cubic-shaped samples (2cm size) were cut, in order to be analyzed under uniaxial compression and isothermal creep tests. Finally, round disk-shaped samples were obtained from the second half of the bending test (with 20mm of diameter and 2.5mm of height), in order to be subjected to thermo-rheological tests. Results suggested that the fracture mode is strictly related to the heterogeneity of cheese structure over a large range of scale. The applied stresses concentrate around the tips of sub-micron discontinuities, this latter arise from partially fused curd junctions originated during milk clotting and cutting; consequently new surfaces originate and propagate along with the interfaces between fat and protein matrices due to their different relaxation times. The extent of crack propagation within the cheese bulk is limited by the presence of micro-voids, as well as by plastic and viscous dissipative forces both decreasing during ripening of the cheese. Bending tests quantitatively described the extent of mode-I fracture. Creep and stress relaxation data were analysed to compare cheese samples by relaxation times. Finally, temperature and frequency sweep oscillatory tests provided quantitative data of both elastic recovery and viscous or plastic deformations. Differential scanning calorimetry (DSC) has been used to evaluate the thermal behaviour, at a temperature between -80 and 350°C, with a heating rate of 10°C/min. Cheese structure has been characterized with imaging techniques, by means of Electron Scanning Environmental Microscopy (ESEM) and X-ray computed tomography. The specimens were first fractured to analyze the fracture surfaces, in order to investigate the 2D and 3D-microstructure on a microscopic and sub-microscopic scale. The ESEM with different types of detectors (SSD-BSD, LFD and EDAX) gave us different types of information about the structure: phases making up the composition, morphology and chemical elements. ESEM has allowed us to evaluate the distribution of water, proteins, fats and air, and scale in which they extend (sub-microscopic, as well as macroscopic scale). The casein structure looks branched, moisturizes and incorporated a certain amount of still unmelted fat globules. The fat phase, no longer globular, which was formed during the cooking of the curd, appears smooth. In addition, we assessed the macroscopic structure through the analysis of the fracture surface images with the use of a video camera and Image J software. The investigation of the macroscopic, microscopic and sub-microscopic structure, gave us details on the surface characteristics. The structure of the fracture surfaces is characterized by the partial overlap and complementarity of the fracture surfaces and by a structural irregularity. We therefore hypothesized that the mechanism of origin and propagation of the fracture depends on the structural characteristics of the surface. The structure of the PR originates from the caseous granules that partially melt together during the cooking of the curd. The fracture of the PR originates near the discontinuities that correspond to the intergranule junctions, i.e. interface between two or more granules. The junctions represent a preferential point for the concentration of the stresses applied from the outside both for the presence of microcracks and for the distribution of salt crystals. Both represent points where the two surfaces will detach. The propagation of the fracture therefore occurs in two ways: with an inter-granular mechanism if the fracture occurs following the intergranular junctions; and with a trans-granular type mechanism. In the latter case, the mechanically applied effort is distributed at the interface of different phases: the protein and lipid phase. Proteins and lipids in fact have different relaxation times and for this reason, at the interface of the two phases, a tension is created that facilitates the detachment of the two surfaces. An industrial tomograph was used to virtualize the inner structure and reconstruct three-dimensional volumes. With industrial tomography, a porous structure was highlighted, which was originated due to the effect of microbial fermentation. Tomographic analysis has allowed us to virtually reconstruct the three-dimensional distribution of the pores, and calculate their volume. In the more mature PR there are smaller and more numerous pores, while in the younger PR there are larger pores. From the evaluation of the distribution of the pores within the volume, it was deduced that the PR has an elasto-plastic behaviour and that the different distribution of the pores affects the deformation mechanisms. This means that the older PR will be elastic and the younger more plastic, because the coalescence mechanisms are more dissipative. This research sets the basis for the optimisation of the making process of Parmigiano Reggiano, considering fracture requirements as a key quality driver in a reversed engineering approach.
APA, Harvard, Vancouver, ISO, and other styles
32

Colpo, Gracieli Bordin. "Análise de fadiga de misturas asfálticas através do ensaio de flexão em viga quatro pontos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/114463.

Full text
Abstract:
O fenômeno de fadiga é caracterizado pela deterioração estrutural que um material está sujeito quando submetido a um estado de tensões e de deformações repetidas, resultando assim, em um trincamento do pavimento, que pode até culminar na sua ruptura após um número suficiente de repetições de carregamento. Este processo é considerado como sendo a perda de resistência do material quando solicitado por uma carga repetida. Conhecer a resistência à fadiga de misturas asfálticas torna-se relevante para a formulação das misturas, para o dimensionamento de uma estrutura ou para a escolha de uma adequada solução em uma obra de recuperação do pavimento de uma rodovia. O ensaio laboratorial mais utilizado no Brasil para analisar a fadiga de misturas é o de tração indireta por compressão diametral em corpos de prova cilíndricos, contudo este ensaio apresenta algumas variáveis que diferenciam os resultados obtidos em laboratório com a realidade apresentada em campo. Neste sentido, o presente trabalho analisou o comportamento à fadiga, através do ensaio de flexão em viga quatro pontos, de duas misturas asfálticas: concreto asfáltico com ligante modificado por polímero (COMPAFLEX 60/85) e concreto asfáltico com ligante modificado por polímero e adição de TLA (CAP TLA FLEX). Para obter as vigas de mistura asfáltica optou-se por utilizar uma metodologia de moldagem e compactação das placas em uma usina de asfalto. Após este processo as placas foram serradas para obtenção das vigas nos tamanhos definidos, sendo estas amostras ensaiadas para verificação da densidade aparente e grau de compactação. Com o intuito de atingir o objetivo proposto foram realizados ensaios de fadiga à flexão em quatro pontos, sob modo de carregamento à deformação e tensão controlada, ensaios de fadiga por compressão diametral (tensão controlada) e ensaios de resistência à tração, sendo estes realizados à temperatura de 25°C. Também foi determinado o módulo dinâmico das misturas estudadas para as temperaturas de 15°C, 20°C e 25°C. Os resultados obtidos demonstram que a metodologia escolhida para a moldagem e compactação das placas foi adequada, pois as amostras apresentaram valores de volume de vazios, densidade aparente e grau de compactação semelhantes aos estabelecidos nos projetos das misturas. Em relação aos resultados obtidos nos ensaios de fadiga por compressão diametral a mistura CA-TLA obteve valores de vida de fadiga superiores em relação à mistura CA-E, enquanto no ensaio de flexão em quatro pontos, à deformação controlada, a mistura CA-E apresentou maiores vidas de fadiga. Os resultados dos ensaios de módulo dinâmico das misturas CA-TLA e CA-E foram apresentados através das representações clássicas nas curvas isotérmica, frequência‐temperatura, isócrona, espaço de Black e plano cole‐cole, mostrando que a mistura CA-TLA apresentou maior rigidez em relação a mistura CA-E.
The phenomenon of fatigue is characterized by structural deterioration when a material is subjected to a state of repeated stress and strain cycles, thus resulting in cracking of the pavement which may even result in its failure after a sufficient number of load repetitions. Considering the fatigue resistance of asphalt mixtures becomes relevant for the formulation of mixes, for the design of a pavement structure or for choosing an adequate solution for pavement rehabilitation in highways. The laboratory test commonly employed in Brazil to analyze the fatigue life of asphalt mixes is the indirect tensile test by diametrical compression in cylindrical specimens. However, this test presents some variables that differentiate the results obtained in laboratory with the in situ loading conditions. In this sense, the present work examined the fatigue behavior, through the four points bending beam test, in two asphalt mixtures: asphalt concrete with binder modified by polymer (COMPAFLEX 60/85) and asphalt concrete with binder modified by polymer and TLA (CAP TLA FLEX) addition. To obtain the beams of asphalt mixture, it was chosen to use a methodology of molding and compaction of the slabs in an asphalt plant, after this process the slabs were sawn in order to obtain the beams in set sizes, and these samples tested to verify the apparent density and degree of compaction. For the research, flexural fatigue tests were conducted in four points bending beam under controlled strain and stress modes, fatigue tests by diametrical compression (stress controlled) and tensile strength tests, all these conducted at a temperature of 25°C. It was also determined dynamic modulus of the mixtures at temperatures of 15°C, 20°C and 25°C. The results show that the methodology chosen for molding and compaction of the plates were appropriate because the samples showed targeted values of void volume, bulk density and degree of compaction, similar to those established in the mix design. Regarding the results obtained in fatigue tests by diametrical compression the mixture CA-TLA obtained values higher fatigue life compared to the mix CA-E, while in the bending test on four points, the controlled deformation, the mixture CA-E showed higher fatigue lifes. The test results of dynamic modulus of mixtures CA-TLA and CA-E were presented through classical representations of the isotherm curves, frequencytemperature, isochrone, Black space and cole-cole plane, showing that mixture CA-TLA presented higher stiffness in relation to mixture CA-E.
APA, Harvard, Vancouver, ISO, and other styles
33

Sim, Lay M. "Design, manufacturing and testing of smart beams with EFPI strain sensor for damage detection." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/13207.

Full text
Abstract:
This thesis aimed at the development of a fibre optic strain sensor-based damage detection and evaluation system (FODDAS) based on the composite beams. EFPI strain sensors were used with their integrity being assessed. Their performance, either bonded on the surfaces or embedded was examined extensively. They were shown to be adequate and reliable for strain measurements. Through-the-width damages were simulated by artificially-embedded delaminations, which were located at several through-the-thickness locations, each with two different sizes. The overall design considerations were guided by ply stresses and strains which were estimated by using the modified classical lamination theory (CLT). Considerable efforts were devoted to assessing the through-the-thickness mechanical behaviours of the beams containing optical fibres in three-point bending and short beam shear (SBS). They involved various optical fibre orientations with respect to 00 plies / longitudinal axis and at various through-the-thickness locations, each with different number of optical fibres. The understanding of these behaviours paved the way for the evaluation of the beam-based FODDAS. Smart preconditioned beams were subjected to the quasi -static loads whose magnitudes and locations were required to be well controlled. The viability and effectiveness of the beam-based FODDAS was evaluated in terms of strength and strain obtained by the embedded sensor as well as the surface-bonded strain gauges via the cross comparison of ten cases. For the strength, each beam was incrementally loaded up to the ultimate failure either in three-point bending or SBS. After each increment, the beam was unloaded and inspected for damage. For the given locations of EFPI-SS and artificial delamination as well as the sizes of the latter, it was found that the embedded EFPI-SSs were capable of picking up the stiffness degradation when the 10- mm as well as the 20-mm delamination was located at the 29-30 ply interface in the tensile region of a 32-ply quasi-isotropic carbon/epoxy smart composite beam. It was speculated from single tests results that the propagation of the embedded delamination of the sufficient size was able not only to be detected but also to be monitored by the sensors.
APA, Harvard, Vancouver, ISO, and other styles
34

Jenkins, Morgan Christen. "Fresh Mix Properties and Flexural Analysis with Digital Image Correlation of Additively Manufactured Cementitious Materials." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/96560.

Full text
Abstract:
Recently, additive manufacturing (AM), or "3D printing," is expanding into civil infrastructure applications, particularly cementitious materials. To ensure the safety, health, and welfare of the public, quality assurance and quality control (QA/QC) methods via standardized testing procedures are of the upmost importance. However, QA/QC methods for these applications have yet to be established. This thesis aims to implement existing ASTM standards to characterize additive manufactured cementitious composites and to gather better information on how to tackle the challenges that are inherent when printing with cementitious materials. In this work, fresh mix properties and hardened concrete properties were investigated using current ASTM standards as a starting point for applying or adapting them for AM applications. Specifically, this project applied existing ASTM standards for fresh mix mortars to measure setting time, flow, and early compressive strength as qualitative indicators of printability, pumpability, and buildability. The fresh mix properties were investigated for 12 different mortar mixes to demonstrate the effect that moisture content, absorption, and sand type can have on these fresh mix properties. The results for setting time and compressive strength demonstrated that there was less variability in the properties when the moisture condition of the aggregate was measured and accounted. Flow was shown to be strongly influenced by the sand type. Additively manufactured mortars were used to print a box in a layer-by-layer process. To evaluate the effect of layering on the flexural strength, three-point bending tests were implemented using four different loading orientations to explore the anisotropic mechanical properties. The observed anisotropic behavior was corroborated with stereo-digital image correlation data showing the stress-strain and load-deflection relationships. Two orientations (A and B) demonstrated brittle behavior while the other two orientations (C and D) experienced quasi-brittle behavior. In addition, setting a minimum unit weight of 132 pcf enabled an analysis of the effect that defects had on the mechanical performance: specimens greater than 132 pcf demonstrated greater and less variable strengths than the specimens less than 132 pcf. The discussion of how defects impacted performance of the different orientations can be valuable when determining how to effectively model, design, and inspect 3D printed structures in the future. The findings of this thesis confirm that existing ASTM standards for mortars can be modified and applied to AM cementitious composites for QA/QC. It is recommended that mixtures used in 3D printing of cementitious composites should design and accommodate the moisture condition of the aggregate to optimize the predictability of the fresh and early-age properties. For the hardened properties, it is recommended that testing procedures such as flexural testing account for anisotropic behavior. Furthermore, for implementation of 3D printed concrete structures, it is highly recommended that design is a function of loading orientation due to the anisotropic properties of the composite.
Master of Science
Recently, additive manufacturing (AM), or "3D printing," is expanding into civil infrastructure applications, specifically cementitious materials such as mortar and concrete. Understanding and predicting the behavior of the materials when using this new technique is vital for quality assurance and quality control (QA/QC). However, standard test methods have yet to be established for this new construction technique. This thesis aims to use existing testing standards to characterize AM cementitious composites and to gather better information on how to tackle the challenges of printing with these materials. In this work, properties before and after the materials hardened were studied by adapting current testing standards. Specifically, this project applied existing testing standards for fresh mix mortars to measure setting time, flow, and early compressive strength. These properties can serve as indicators of specific printing requirements. The fresh mix properties were studied for 12 different mortar mixes to show the effect of moisture content, absorption, and sand type. The results suggest that there was less variability in the properties when the moisture condition and type of the aggregate was accounted. The fresh mix materials were printed in a layer-by-layer process and then hardened in place. The effects of the layers were explored by performing flexure tests using four orientations with respect to how the load was applied to the layers. The observed difference in behavior for the different orientations was supported by digital image correlation data. In addition, an analysis of the effect defects had on the performance was included. Understanding how defects impacted performance can be valuable for effectively designing 3D printed structures in the future. The results of this thesis confirm that existing testing standards for mortars can be adapted and applied to AM cementitious materials for QA/QC. It is recommended that mixtures used in 3D printing of cementitious materials should account for the moisture condition of the aggregate to improve the predictability of the fresh and early-age properties. For the hardened properties, it is recommended that the design is a function of loading orientation due to the difference in behavior for the different orientations of the material.
APA, Harvard, Vancouver, ISO, and other styles
35

Alam, Muhammad Faisal. "Squeeze Casting as Alternative Fabrication Process for Carbon Fiber Reinforced Aluminium Matrix Composites." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24361.

Full text
Abstract:
Aluminium matrix composites are among the most promising candidate materials for light weight and high strength applications such as transportation and armour. In a previous study 6061 aluminum matrix composites reinforced with plain weave carbon fiber preform (AS4 Hexcel) were successfully fabricated by squeeze casting using the laminate fabrication technique. This research aims at optimizing the fabrication process in order to achieve improved strength and mechanical properties. It focuses on the liquid infiltration squeeze casting method. Good mechanical bonding between fiber and aluminium is achieved thanks to improved infiltration and impregnation of the fabric by liquid aluminium. Oxidation products at fiber/aluminium interface and porosity are reduced. As a result, composites are produced with overall improved mechanical properties. The flexural strength is increased by up to 19.9% and 15.4% compared to the laminate approach and the reference 6061 aluminium alloy squeeze cast under identical conditions, respectively. Similarly, overall hardness is improved. However, the impact strength is reduced by 7.76% and 25.78% when compared to casts fabricated by the laminate method and the reference aluminium alloy, respectively. The thesis constitutes a good basis for further research on fiber and particle reinforced aluminium matrix composites with the goal of further improving fracture toughness, particularly for gradient materials used in armour applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Hermansson, Denise, and Olivia Nilsson. "Capacity and lifetime analysis of pre-stressed slatted floors." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53205.

Full text
Abstract:
This study investigates the mechanical differences between old and newly produced slatted floors through a four-point bending test. To understand to what extent the actual environment has affected the slatted floors, the carbonation depth and corrosion will be examined. The tests showed no mechanical differences between slatted floors which had been in service for a certain amount of years and newly produces ones. Corrosion could be observed on some of the samples but it was not because of the carbonation process. When comparing the calculations of reinforced and pre-stressed concrete slatted floors, the result showed that the pre-stressed floor could carry up to double the load of what the reinforced slatted floor could. The conclusion of this study is, that the pre-stressed slatted floors will certainly hold for at least thirty years and will most likely hold for many years to come.
APA, Harvard, Vancouver, ISO, and other styles
37

Cevik, Muammer Ozgur. "Effects Of Neuropeptide-y (npy) On Bone Metabolism As A Neuromediator- A Definitive Study." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604861/index.pdf.

Full text
Abstract:
In order to elucidate the effects of NPY directly on bone tissue, two different doses of NPY (NPY dose 1= 1X10-5 M and NPY dose 2 = 1X 10&
#65533
6 M) and NPY dose 2 plus its inhibitor were applied together with hyaluronic acid (HA) into the intramedullary area of right tibia of Wistar rats. HA alone was administered as the control group. On three time points, day one, week one and week two after administration, the tibiae were collected and stored at &
#65533
20oC for analysis. Evaluation was performed via conventional radiography, dual energy X-ray absorbtiometry (DEXA), quantitative computerized tomography (QCT), three point bending test (TPB) and histology techniques. QCT was used to assess both atomic content and density of both medulla and cortex of tibiae. From DEXA results, it was observed that inhibition of NPY causes an increase in the bone mass from first day to second week. This phenomena was also observed in histology results so that new bone formation in the inhibitor administered bone was encountered at week two. In both medulla and cortex areas&
#65533
atomic content, an increase in average effective atomic number was displayed after administration of NPY plus NPY inhibitor throughout two weeks. In addition, density of medulla of tibiae measured by QCT also revealed an increase in bone mass when inhibitor is applied throughout two weeks. As a result, overall evaluation of data obtained from DEXA, QCT and histological analysis revealed that NPY inhibits bone formation or have a pro-osteoclastic effect
inversely HA displayed osteogenic effect.
APA, Harvard, Vancouver, ISO, and other styles
38

Müller, Torsten. "Untersuchungen zum Biegetragverhalten von Stahlfaserbeton und betonstahlbewehrtem Stahlfaserbeton unter Berücksichtigung des Einflusses von Stahlfaserart und Betonzusammensetzung." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-159513.

Full text
Abstract:
Auf der Basis der Bemessungsgrundlagen (DAfStb-Richtlinie „Stahlfaserbeton“, DBV-Merkblatt „Stahlfaserbeton“ und DIN 1045-1) wurden ausgewählte Bauteilversuche mit entsprechenden rechnerischen Überprüfungen der experimentell ermittelten Ergebnisse durchgeführt. Die Untersuchungen konzentrierten sich auf die Ermittlung der Effizienz von ausgewählten Stahlfasern in Betonen mit und ohne Betonstahlbewehrung in durch Biegung ohne Längskraft belasteten Versuchskörpern unter Betrachtung der Grenzzustände der Gebrauchstauglichkeit (GZG) und Tragfähigkeit (GZT). Das Versuchsprogramms umfasste neben der Prüfung ausgewählter Frischbetoneigenschaften die Bestimmung von Festbetonparametern an standardisierten Probekörpern. Des Weiteren wurden 4-Punkt-Biegezugversuche an Balken mit den Abmessungen l/h/b = 70/15/15 cm aus reinem Stahlfaserbeton sowie stahlfaserbewehrtem Stahlbeton, in Anlehnung an das DBV-Merkblatt „Stahlfaserbeton“ und die Richtlinie „Stahlfaserbeton“ vom DAfStb, durchgeführt. Aufbauend auf den Erkenntnissen aus den Materialversuchen im Labormaßstab wurden anschließend Untersuchungen an großformatigen Biegebalken (l/h/b = 420/40/20 cm) durchgeführt. Im Weiteren erfolgten Prüfungen und Auswertungen von Einzelfaserausziehversuchen mit ausgewählten Stahldrahtfasern in Verbindung mit Betonen unterschiedlicher Druckfestigkeit unter Berücksichtigung des Einflusses der Einbindelänge sowie des Einbindewinkels. Im Rahmen des Versuchsprogramms wurden die auf der Grundlage der 4-Punkt-Biegezugversuche ermittelten Ergebnisse analysiert und mit dem derzeit gültigen Bemessungsmodell nach DAfStb-Richtlinie „Stahlfaserbeton“ rechnerisch überprüft. Auf der Basis dieser Ergebnisse erfolgte die Entwicklung eines Ansatzes zur Optimierung der bestehenden Bemessungsansätze. Gegenstand dieser Forschungsarbeit war ebenfalls die Entwicklung eines Fasermodells, mit dem man auf der Grundlage des eingesetzten Fasergehaltes und der Faserart Rückschlüsse auf die Faseranzahl in einer rechteckigen Bruchfläche ziehen kann. Hierbei wurde ein Modell für Rechteckquerschnitte entwickelt, welches es ermöglicht, die durchschnittliche Faseranzahl in einer Bruchfläche, auf der Basis vereinfachter Annahmen, abzuschätzen. Die Verifizierung des Modells erfolgte durch den Vergleich der errechneten Faseranzahl mit zahlreichen experimentellen Versuchsergebnissen. Im letzten Abschnitt dieser Arbeit wurde die Herleitung bzw. Generierung von Bemessungshilfsmitteln zur Biegebemessung von Stahlfaserbeton mit und ohne Betonstahlbewehrung behandelt. Die Ausführungen beziehen sich dabei auf dimensionslose Bemessungstafeln und Interaktionsdiagrammen für Rechteckquerschnitte.
APA, Harvard, Vancouver, ISO, and other styles
39

Murai, Igor Hisashi. "Efeitos do exercício físico associado à suplementação de creatina na massa óssea de ratas ovariectomizadas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/39/39132/tde-06102014-091303/.

Full text
Abstract:
A literatura atual aponta o exercício físico como uma das estratégias nãofarmacológicas mais utilizadas no tratamento e prevenção de condições que acometem o tecido ósseo. Ademais, estudos indicam que a suplementação de creatina pode exercer efeitos positivos sobre o ganho de massa óssea. Sendo assim, o objetivo deste estudo foi investigar os efeitos preventivos do exercício físico associado à suplementação de creatina na perda de massa óssea em ratas ovariectomizadas. Diante disso, sessenta e cinco ratas da linhagem Wistar foram pareadas pelo peso corporal e dividas aleatoriamente em cinco grupos, sendo eles: 1) ratas falso-operadas (SHAM); 2) ratas ovariectomizadas (OVX), sedentárias e suplementadas com placebo (PL); 3) ratas OVX, sedentárias e suplementadas com creatina (CR); 4) ratas OVX, treinadas e suplementadas com placebo (PL+TR) e 5) ratas OVX, treinadas e suplementadas com creatina (CR+TR). Os animais foram submetidos a um protocolo de treinamento físico em declive em esteira rolante e suplementados com creatina diariamente por meio de gavagem esofágica. Foi realizada a avaliação de densitometria óssea para a obtenção dos parâmetros ósseos de conteúdo mineral ósseo (CMO) e densidade mineral óssea (DMO) de corpo total e regional, assim como a composição corporal nos períodos pré e pósintervenção. Além disso, foi removido o fêmur direito para a análise biomecânica. Após a intervenção, o grupo PL+TR apresentou maiores valores de CMO e DMO em comparação ao grupo PL (p=0,004 e p=0,020, respectivamente), ao passo que o grupo CR+TR experimentou maiores incrementos para o CMO e tendência ao aumento da DMO em comparação ao grupo CR (p=0,011 e p=0,064). A análise biomecânica do fêmur demonstrou que ambos os grupos treinados (PL+TR e CR+TR) apresentaram valores de força máxima significantemente maiores em relação aos grupos SHAM (p=0,024 e p=0,020, respectivamente), PL (p<0,001 e p<0,001) e CR (p=0,002 e p=0,002). Com relação à rigidez do fêmur, observou-se que o grupo SHAM não apresentou diferença significante quando comparado à ambos os grupos treinados (p=0,973 vs. PL+TR e p=0,998 vs. CR+TR), entretanto, apresentou diferença significante em relação aos grupos sedentários (p=0,048 vs. PL e p=0,024 vs. CR), ainda para esse parâmetro, o grupo PL apresentou diferença significante em relação ao grupo PL+TR (p=0,009), assim como o grupo CR foi significantemente diferente em relação ao grupo CR+TR (p=0,043). Não houve diferenças significantes entre os grupos PL e CR e entre os grupos PL+TR e CR+TR ao longo do estudo. Dessa forma, concluímos que a suplementação de creatina não apresentou efeitos isolados, nem aditivos, quando combinada ao treinamento físico, porém, o exercício físico promoveu efeitos positivos sobre o tecido ósseo, enfatizando, portanto, o seu papel terapêutico ímpar em atenuar a perda de massa óssea
The current literature indicates exercise training as one of the most used nonpharmacological strategies in the treatment and prevention of conditions that affect the bone tissue. Moreover, studies indicate that creatine supplementation may exert positive effects on bone mass gain. Thus, the aim of this study was to investigate the preventive effects of exercise training associated with creatine supplementation on bone loss in ovariectomized rats. Thus, sixty-five female Wistar rats were matched by body weight and randomly assigned into five experimental groups, as follows: 1) shammed (SHAM); 2) ovariectomized (OVX), sedentary and placebo-supplemented rats (PL); 3) OVX, sedentary and creatine-supplemented rats (CR); 4) OVX, trained and placebo-supplemented rats (PL+TR) and 5) OVX rats, trained and creatinesupplemented rats (CR+TR). The animals were submitted to a downhill running training protocol performed on a treadmill and supplemented with creatine on daily basis via gavage. Bone density were evaluated pre and post-intervention to obtain bone mineral content (BMC) and bone mineral density (BMD) from whole body and regional area, as well as body composition. Right femur was removed to biomechanical assessment. After the intervention, PL+TR group had higher BMC and BMD compared to the PL group (p=0.004 and p=0.020, respectively), while the CR+TR group experienced greater increases in BMC and tended to increase BMD compared to the CR group (p=0.011 and p=0.064, respectively). Biomechanical assessment demonstrated significantly higher femur maximum strength of both trained groups (PL+TR and CR+TR) compared to SHAM group (p=0.024 and p=0.020, respectively), PL group (p<0.001 and p<0.001) and CR group (p=0.002 and p=0.002). With respect to femur stiffness, no significant difference was observed from the SHAM group compared to both trained groups (p=0.973 vs. PL+TR and p=0.998 vs. CR+TR), however, significant difference was observed when compared to sedentary groups (p=0.048 vs. PL and p=0.024 vs. CR), moreover, significant difference was observed when the PL group was compared to PL+TR group (p=0.009), as well as the CR group was significantly different compared to the CR+TR group (p=0.043). There were no significant differences between PL and CR groups and between PL+TR and CR+TR groups along the study. Thus, we conclude that creatine supplementation showed no isolated, nor additive effects when combined with exercise training, however, exercise training promoted positive effects on bone tissue, thus emphasizing its unique therapeutic role in attenuating the loss of bone mass
APA, Harvard, Vancouver, ISO, and other styles
40

Krystýnová, Michaela. "Víceprvkové systémy biomateriálů na bázi hořčíku a zinku." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433000.

Full text
Abstract:
Dissertation thesis deals with basic research in the field of materials from pure Zn powders and Mg, Zn, and Ca binary mixtures prepared by powder metallurgy. General powder metallurgy principles and methods, a brief description of Mg, Zn, and Ca structure and properties, and the latest research in the field of bulk materials preparation from these elements via powder metallurgy are summarized in the theoretical part of the thesis. The experimental part focuses on the preparation of materials from finer and coarser Zn powder particles by hot pressing at 300 and 400 °C using the pressure of 100, 200, 300, 400, and 500 MPa. Binary mixtures based on Mg with the addition of Zn or Ca were prepared by hot pressing in the solid-state (300 °C) and hot pressing in the semi-solid state (400 °C, 450 °C in the case of Mg-Ca system) using the pressure of 500 MPa. Binary mixtures based on Zn with the addition of Mg or Ca were prepared by hot pressing in the semi-solid state (400 °C) using the pressure of 500 MPa. The prepared materials were evaluated in terms of microstructure, elemental and phase composition, microhardness, flexural strength, and fractography. The results showed that in the case of processed from pure Zn powders, a better combination of the flexural strength and displacement was achieved in the case of the finer Zn powder, namely in the material prepared at a temperature of 400 °C and a pressure of 500 MPa. In the case of mixtures, the best connection between the powder particles was achieved in the case of a material based on finer Zn powder with 0.5 wt.% of Mg, which had a significant effect on the achieved values of flexural strength and displacement. The amount of minor powder in the mixture had a significant effect on the prepared material structure and phase composition, while the processing conditions influenced the reached strength characteristics and fracture mechanism.
APA, Harvard, Vancouver, ISO, and other styles
41

Bo, Arixin. "Investigation of the mechanical and electron interaction properties of layered titanate nanowires." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/105649/4/Arixin_Bo_Thesis.pdf.

Full text
Abstract:
This project reports first-hand knowledge on the mechanical and electron interaction properties of titanate nanowires which possess a broad range of applications. Using experimental techniques, the mechanical bending and tensile behaviours of individual nanowires are analysed from which a time-dependant recovery and an atypical reversible defect motion of the nanowires are observed. Applying electron beam irradiation, joint formation between two titanate nanostructures is demonstrated with the underlying mechanisms explained. The electron-titanate interaction phenomenon is also shown to be a practical tool for tailoring structures at nanoscale.
APA, Harvard, Vancouver, ISO, and other styles
42

Graham, Zachary. "Numerical simulation of fracture of a nano-paper coated e-glass/polyester composite with thermal damage." Honors in the Major Thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/849.

Full text
Abstract:
Aerospace research for next-generation travel increasingly focuses on the use of advanced composites to reduce weight and cost while retaining strength. One subset of materials with great potential is based on the combination of resin matrix and glass-fiber reinforcement. This research explores the application of a candidate nanopaper coating with a given composite. Prior research applied a set of given heat fluxes to the top surface of the composite for a set of given periods of time, and subsequently performed a 3-point flexural test to determine the elastic modulus for both the coated and uncoated composite for all of the combinations of heat flux and time. A finite element (FE) model is developed using the ANSYS general purpose finite element analysis (FEA) software that models the degradation in strength/stiffness properties based on heating condition and with the goal of predicting cracking using the element death feature in ANSYS. This thesis describes the prior research suggesting both the need for and novelty of this model, and the procedures used to form the model. The loading conditions of the 3-point flexural test are replicated, and four measures of accuracy are developed based on the force versus displacement curve of the test and the FE model. It is envisioned that continuum-level models developed as a part of these research be applied for design of next-generation space components These measurements are used to verify the FE model, and this model is then employed to extrapolate beyond the context of experimental conditions.
B.S.M.E.
Bachelors
Mechanical, Material and Aerospace Engineering
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
43

Hejman, Ulf. "On initiation of chemically assisted crack growth and crack propagation paths of branching cracks in polycarbonate." Licentiate thesis, Malmö högskola, Teknik och samhälle, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7790.

Full text
Abstract:
Stress corrosion, SC, in some cases gives rise to stress corrosion cracking, SCC, which differs from purely stress intensity driven cracks in many aspects. They initiate and grow under the influence of an aggressive environment in a stressed substrate. They grow at low load and may branch. The phenomenon of SCC is very complex, both the initiation phase and crack extension itself of SCC is seemingly associated with arbitrariness due to the many unknown factors controlling the process. Such factors could be concentration of species in the environment, stress, stress concentration, electrical conditions, mass transport, and so on.In the present thesis, chemically assisted crack initiation and growth is studied with special focus on the initiation and branching of cracks. Polycarbonate plates are used as substrates subjected to an acetone environment. Experimental procedures for examining initiation and branching in polycarbonate are presented. An optical microscope is employed to study the substrate.The attack at initiation is quantified from pits found on the surface, and pits that act as origin for cracks is identified and the distribution is analysed. A growth criterion for surface cracks is formulated from the observations, and it is used to numerically simulate crack growth. The cracks are seen to coalesce, and this phenomenon is studied in detail. Branching sites of cracks growing in the bulk of polycarbonate are inspected at the sample surface. It is found that the total width of the crack branches are approximately the same as the width of the original crack. Also, angles of the branches are studied. Further, for comparison the crack growth in the bulk is simulated using a moving boundary problem based algorithm and similar behaviour of crack branching is found.
APA, Harvard, Vancouver, ISO, and other styles
44

Vepřek, Karel. "Experimentální a numerická analýza zesílení ŽB prvku na ohyb." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227294.

Full text
Abstract:
Design and manufacture of test elements for experimental testing laboratory. Testing of selected mechanical characteristics of test elements. Experimental analysis of test elements in the lab, creating a mathematical model in ATENA software and static calculation. Evaluation of experimental analysis and comparison with the values of numerical analysis. Graphic comparing the results of a final overall evaluation.
APA, Harvard, Vancouver, ISO, and other styles
45

Zedde, Nicola. "Dynamic mechanical-thermal, microstructural and mechanical analysis of ultra-light polymer-metal composites: influence of forming." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.
APA, Harvard, Vancouver, ISO, and other styles
46

Le, Ber Simon. "Matrices nanostructurées obtenues par voies liquides : application aux composites à matrice céramique." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14323/document.

Full text
Abstract:
Un nouveau procédé d’élaboration de CMC par voie liquide a été développé ; il met en œuvre l’utilisation de charges réactives afin d’obtenir un composite à bas coût. Afin de préserver le renfort en fibres Nicalon, ces charges doivent réagir sous azote à une température inférieure à 1100°C. Deux charges réactives répondant ces critères et présentant une prise de volume intéressante ont été identifiées : AlB2 et TiSi2.Le broyage planétaire de ces charges a été étudié afin d’évaluer l’influence de l’affinement de la microstructure sur les propriétés. Des poudres de surface spécifique élevée et de granulométrie proche l’échelle nanométrique ont été obtenues. La nitruration des charges a été analysée et un effet de taille a pu être mis en évidence sur la réactivité du TiSi2.Les poudres broyées ont été mises en suspension pour être imprégnées au sein de préformes. Les échantillons ont ensuite subi une étape de nitruration à 1100°C, cruciale pour la cohésion de la matrice. Un cycle PIP a ensuite été réalisé pour diminuer la porosité résiduelle.L’oxydation des matériaux obtenus a été étudiée dans des conditions correspondant à l’application aéronautique visée. Les propriétés mécaniques des composites élaborés ont été évaluées par des essais de flexion 3 points. La combinaison de l’utilisation de la charge réactive TiSi2 et d’un polysiloxane a permis d’obtenir un composite dont la contrainte à rupture est remarquable compte tenu du faible nombre d’étapes nécessaires à son élaboration par voie liquide
A new CMC manufacturing process has been developped ; the active filler technique is used in order to obtain a low cost composite. Active fillers must react under nitrogen atmosphere at a temperature below 1100°C so that the Nicalon fiber reinforcement is not damaged. Two active fillers meeting these criteria and offering an interesting volume expansion have been identified : AlB2 et TiSi2.The planetary milling of these fillers has been explored in order to assess the influence of microstructure refinement on properties. Powders with high specific surface areas and of granulometry close to the nanometric scale were obtained. The nitridation of the active fillers was examined and a size effect on TiSi2 reactivity was displayed.Milled powders were used in colloidal suspensions in order to be impregnated in preforms. Samples were subsequently nitrided at 1100°C ; this step was crucial for matrix cohesion. A PIP cycle was eventually performed in order to reduce residual porosity.The oxydation behaviour of materials was studied in conditions corresponding to the considered aeronautics application. Mechanical properties of composites were estimated by 3 point bending tests. Combining the use of TiSi2 and of a polysiloxane enabled to obtain a composite whose maximum bending stress was remarkable considering the limited number of steps required for its processing
APA, Harvard, Vancouver, ISO, and other styles
47

Březina, Matěj. "Příprava a charakterizace porézních materiálů na bázi hořčíku." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-390297.

Full text
Abstract:
Bulk magnesium materials produced nowadays via powder metallurgy are based on a vastly extensive technological spectrum, which makes it possible to create a wide range of materials. This work focuses on the preparation of bulk materials from magnesium powder by cold pressing and hot pressing, sintering and field assisted sintering. The bulk materials were prepared in a series of compacting pressures from 100 MPa to 500 MPa and the sintering temperatures were selected in the range of 300 ° C to 600 ° C in order to characterize the influence of the manufacturing conditions and technology on the final properties of bulk materials. Prepared materials were evaluated in terms of microstructure, hardness, microhardness, three-point bend test, and fractography. From the hot pressed materials, the samples prepared at 400 and 500 MPa and 400 °C had the highest strength and hardness. The classic sintering of magnesium in the furnace with argon atmosphere proved to be ineffective due to the oxide layer on the surface and the presence of oxygen in technical argon. The SPS sintering (Spark Plasma Sintering) was the more effective with the lower applying pressure used to make the preforms and with the higher applied pressure during the SPS process itself. Highest strength and hardness were achieved in this case of materials sintered at 600 ° C prepared from free powder and the most porous preform (100 MPa). The bulk materials were prepared using all methods used, but the properties of these materials varied considerably depending on the technology used.
APA, Harvard, Vancouver, ISO, and other styles
48

Ferrell, Monica Joy. "Flexural Behavior of Carbon/Epoxy IsoTruss Reinforced-Concrete Beam-Columns." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd695.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bordovský, Gabriel. "Simulace lomové zkoušky ve stavebnictví." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363858.

Full text
Abstract:
In this thesis, a program for fracture test in civil engineering has been optimized. The simulation is used for a validation of the fracture characteristics for blocks of construct material used for historic buildings reconstructure. This thesis illustrates the possibilities of an effective usage of the processor’s potential without the loss of the output quality. The individual parts of the simulation are analyzed and this thesis proposes for the critical sections some possible optimizations such as vectorization or parallel processing. The techniques used in this thesis may be used on similar computing problems and help shorten the required runtime. The prototype of the simulation was able to process the simulation in 7.7 hours. Optimized version is capable to process the same simulation in 2.1 hours on one core or 21 minutes on eight cores. The parallel optimized version is 21 times faster than the prototype.
APA, Harvard, Vancouver, ISO, and other styles
50

Arsenie, Ioana maria. "Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD025/document.

Full text
Abstract:
L’objectif de la thèse « Etude et modélisation des renforcements de chaussées à l’aide de grilles en fibre de verre sous sollicitations de fatigue » est de caractériser le rôle du renforcement de la couche de surface en béton bitumineux d’une structure de chaussée soumise à des sollicitations de fatigue au moyen d’une grille en fibre de verre appelée « géo-grille ». Le comportement en fatigue du composite formé de béton bitumineux et de géo-grille est étudié en laboratoire par des essais de flexion en quatre points (4PB), pilotés en déformation avec un chargement sinusoïdal alterné, à 10°C et 25 Hz. Les éprouvettes testées sont des poutres prismatiques de grandes dimensions 630 x 100 x 100 mm3. Elles sont de deux types : en béton bitumineux (non-renforcées) et en béton bitumineux renforcé par deux géo-grilles (renforcées). Le dispositif d’essais est un banc de fatigue en flexion en quatre points prototype, qui respecte les normes européennes. Les résultats expérimentaux ont été utilisés dans la modélisation de l’évolution de l’endommagement en fatigue de deux types d’éprouvettes. Les lois d’endommagement des matériaux de type Bodin sont implantées dans le code aux éléments finis CAST3M. Deux catégories de modèles ont été conçues, respectivement monocouche et tri-couches. Chaque catégorie comprend un modèle de poutre non-renforcée et un modèle de poutre renforcée. Le modèle de Castro-Sanchez a été testé pour prédire l’endommagement et notamment le nombre de cycles à la rupture pour chaque type de poutre
The objective of the PhD thesis « Study and modelling of the pavement reinforcement with glass fibre grid under fatigue loading » is to characterize the reinforcement role of the asphalt surface layer of a pavement subjected to fatigue loading with the glass fibre grid or « geo-grid ». The fatigue behaviour of the composite formed of asphalt mixture and geo-grid is studied in laboratory with four point bending tests (4PB) performed with sinusoidal waveform, at 10°C and 25 Hz. The tested specimens are 630 x 100 x 100 mm3 beams of two types: asphalt beams (non-reinforced) and asphalt beams reinforced with geo-grid (reinforced). A four point bending prototype device was designed to perform the fatigue tests on the big size asphalt specimens. The device respects the European Standards. The experimental results were used for modelling of the damage evolution under fatigue loading of the both types of beams. The damage laws of the materials are Bodin laws programmed in Cast3M finite element code. Two categories of models were conceived, respectively: one layer beam models and tri-layers beam models. Each category has a model of non-reinforced beam and a model of reinforced beam. Furthermore, Castro-Sanchez model was used to predict damage evolution and in particular the number of cycles to failure correspondent to the two types of beams
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography